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Abstract

Summary: Today’s immense growth in complex biological data demands effective and flexible tools for integration,
analysis and extraction of valuable insights. Here, we present CoNI, a practical R package for the unsupervised inte-
gration of numerical omics datasets. Our tool is based on partial correlations to identify putative confounding varia-
bles for a set of paired dependent variables. CoNl combines two omics datasets in an integrated, complex
hypergraph-like network, represented as a weighted undirected graph, a bipartite graph, or a hypergraph structure.
These network representations form a basis for multiple further analyses, such as identifying priority candidates of
biological importance or comparing network structures dependent on different conditions.

Availability and implementation: The R package CoNI is available on the Comprehensive R Archive Network

(https://cran.r-project.org/web/packages/CoNI/) and GitLab (https://gitlab.com/computational-discovery-research/
coni). It is distributed under the GNU General Public License (version 3).

Contact: manuel.kuhn@helmholtz-muenchen.de or dominik.lutter@helmholtz-muenchen.de

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction

The increasing availability of novel omics techniques and the
growing amount of produced complex biological data has gener-
ated a bottleneck at the analysis step, mainly for the lack of inte-
gration tools. The integration is challenging due to the complexity
and heterogeneity of the data and the related difficulties for proc-
essing and generating summarized concrete insights (Hasin et al.,
2017). Biological data integration is even more difficult if one con-
siders the vast types of available biomolecules that cover different
information layers, starting from DNA modifications to RNA,
phosphoproteome and metabolome. This general complexity
increases by adding cellular resolution in space and time, clinical
parameters and inter- and intra-organ interactions. Regarding this
complexity, it is evident that new specialized tools are needed to
combine and extract meaningful information from these heteroge-
neous datasets.

To this end, we developed Correlation-guided Network
Integration (CoNI) (Klaus ez al., 2021), an unsupervised data-driven
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correlation-based tool to uncover potential interactions between fea-
tures and how they are regulated between different molecular
regimes. The inferred interactions and estimated regulatory variables
are represented in a graph structure that allows for multiform repre-
sentation. We present CoNI as an R package.

2 Methods

CoNI is designed to integrate two paired numerical omics datasets.
A linker set L = [l,»_,-] , where the row indices correspond to the linker
features i = (1,...,p) and the column indices j = (1,...,7) corres-
pond to the samples. Another data set, of the same samples, repre-
sents the vertex set V = [v};] where the row indices correspond to
vertex features k=1,...,m. Features may be genes, proteins,
metabolites or other continuous biological variables. Input data do
not require normalization. CoNI is designed to identify and inte-
grate features of L that are potential confounding variables for cor-
related feature pairs of V.
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2.1 Integration

CoNI first calculates a correlation matrix p,; for all features v,
over the samples. A partial correlation matrix R is computed for all
the triplets, consisting of two vertices and one controlling linker fea-
ture. Both matrices p,, ; and p,,; may be sparsified by keeping
only the significantly correlated pairs to retain meaningful interac-
tions and reduce computational costs. Next, we perform significance
testing comparing the difference between p,, ., and p,,; applying
Steiger test (Steiger, 1980). When we have a significant difference
between p, ., and p,, ;, we consider /; a confounder for the vertex
pairs (Klaus ez al., 2021). Finally, we construct a network with
nodes as the correlated features of V and the edges as the identified
confounding variables from L. This network structure allows mul-
tiple representations: a complex undirected weighted graph (vertices
formed by V and weighted edges formed by L), a bipartite graph
with L and V forming two node categories or a hypergraph where
features of L form edges connecting multiple vertices of V (Fig. 1).

2.2 Analysis

The different output networks can subsequently be used for further
analysis and visualization. CoNI uses the R package igraph for
graph handling and analysis (Csardi and Nepusz, 2005). The output
networks in CoNI include as default the network statistics node de-
gree, hub score, betweenness and edge-betweenness. These or other
network statistics like the node degree distribution can be used to
compare networks coming from different conditions. The user can
also get the shared triplets between networks of different conditions
or, through a series of pre-implemented functions, count the shared
linker features and summarize them based on predefined vertex
classes. The results can be visualized through bar plots and stacked
bar plots (see the vignette).

As CoNI allows for different network representations, each may
be used for specific follow-up analysis. For example, one can apply
different clustering algorithms like greedy modularity, spectral and
edge-betweenness community clustering to the networks (see the
vignette) to identify co-regulated communities or co-regulators.
Additionally, with the hypergraph structure, one can analyze com-
plex topological features (Klamt ez al., 2009).
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Another pre-implemented analysis feature of CoNI is the identi-
fication of local controlling features. These features are confounders
enriched for a specific subnetwork of correlated vertices
(Supplementary File S1 for details). It is also possible to rank linker-
features by the absolute difference between p,, \;, and p,;, where
large values reflect a stronger effect on the vertex-pair relationship.

An exemplary application can be found in the package’s vignette
(Supplementary File S2). This case corresponds to the analysis of the
primary data of Klaus et al. (2021), which additionally includes an-
other use case in the Supplementary Material. More details on how
to use CoNI can be found in the help files of the R package, includ-
ing a toy data example.

3 Results

3.1 Comparison on a real-world dataset

To date, a variety of data integration software exists (Subramanian
et al., 2020). Generally, many of these tools apply dimensionality re-
duction, that is, extract latent variables that capture the differences
in the conditions, and features of interest are found by their contri-
bution or correlation to these latent vectors (Argelaguet ef al., 2018;
Picard et al., 2021; Rohart et al., 2017). Other tools use regulariza-
tion techniques for variable selection (Wu et al., 2019) or integrate
multiple omics data by generating graphs or graph-like structures
(Yan et al., 2018). The former is typically used for disease subtyp-
ing, predicting biomarkers for distinct disease states, and clustering
(Menyhart and Gydrffy, 2021). In addition, graph-based methods
aim to identify and represent interactions between elements and
how they are regulated between different molecular regimes (Wani
and Raza, 2019).

The uniqueness of CoNI consists of its focus on identifying con-
founders, that is, identifying features from one dataset that poten-
tially influence the pairwise relationships of features of another
dataset and its consequent use of variable graph representations. A
summary of common and different features of data integration tools
is given in Supplementary Table S1. We could show that CoNI can
identify relevant biological confounders (Klaus et al., 2021), and we
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Fig. 1. Correlation-guided Network Integration workflow. (1) Vertex Features are used to calculate a pairwise correlation matrix Pk (2) Partial correlation matrices in the
form p,, ;, are calculated using vertex pairs and linker features. (3) Coefficients in p,; ; are compared to those in p,, ;, with Steiger tests, and confounders are selected accord-
ing to significance. (4) Results can be represented as a network where vertex features are the nodes, and in the edges that connect them, there are one or more confounders (a);
as a bipartite graph using vertex features as one type of node and confounders as a second type (b); or as a hypergraph structure (incidence matrix) where an edge can connect

multiple vertices (c)
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Fig. 2. Comparison of recovered triplets and partial matches. (A) Barplot shows the percentage of recovered triplets for the different simulations for CoNI, MOFA+ and
iCluster+. (B) Barplot shows the percentage of CoNI recovered triplets compared to the percentage of partial matches of MOFA+ and iCluster+. A partial match is defined as
the presence of one or two features from the triplets among the features with top weights of the same latent vector. Simulation parameters can be found on top of the bars: the
sample size (n), ‘Filter High Variance Features’ option (FHVF) which is either false (F) or true (T), and the absolute difference of the artificial (p, ) and original (p,) vertex pair
correlation (¢). Where ¢ > |p, — py|
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Fig. 3. CoNI sensitivity, specificity and false discovery rate. Barplot shows average sensitivity, specificity, and false discovery rate for the CoNI results of the different simula-
tions. Every simulation was repeated 100 times. Simulation parameters can be found on top of the bars: the sample size (n), ‘Filter High Variance Features’ option (FHVF),
which is either false (F) or true (T), and the absolute difference of the artificial (p, ) and original (p,) vertex pair correlation (¢). Where t > |p} - p1,|

compared the results of CoNI with those of two recent unsupervised
methods (Supplementary File S1).

3.2 CoNlI on simulated datasets and comparison to

other software

We use MOFA+ (Argelaguet et al., 2020) to generate an artificial
dataset. We then compared the results of CoNI applied on this data-
set with those obtained with MOFA+, as it is also an integration
tool, and iCluster+ (Shen et al., 2009), another recent unsupervised
tool for omics data integration. However, the unique design of
CoNI to infer triplets of putative molecular interactions without
prior knowledge makes it challenging to compare performance with
these tools directly. Therefore, the simulated vertex data was modi-
fied using the simulated linker data to induce artificial correlations
with varying degrees of change defined by the parameter #; the
allowed absolute difference between the artificial (p,) and original
(pv) vertex pair correlation (Supplementary File S1). A modified ver-
tex pair and the correlation-inducing linker feature were defined as
a true positive triplet (TPT). First, we tested the ability of CoNI to
recover TPTs and calculated sensitivity, specificity, and false discov-
ery rate. We then compared the results of CoNI to those obtained by
running MOFA+ and iCluster+. Like other tools, MOFA+ and
iCluster+ were not designed to recover triplets; therefore, the fea-
tures were searched among the top features with the highest weights
from all ‘latent vectors’ (Supplementary File S1). We assumed a trip-
let was found if the vertex pair and linker feature were part of the
features with absolute maximum weights within the same latent vec-
tor. If one or two features of the triplets were found, we considered
this result a partial match.

CoNI recovered between 2.4% and 71.7% of the triplets de-
pending on the simulation parameters (Fig. 2A, Supplementary
Table S$10). In contrast, MOFA+ recovered <3% and iCluster+ al-
most no triplets in all simulations (Fig. 2A). This result is not sur-
prising as both programs were designed for different purposes. A
more even result was obtained comparing triplets to partial matches
(Fig. 2B, Supplementary Table S10). The results show that CoNI

can provide new insights into molecular interactions that other soft-
ware do not.

Opverall, CoNI showed specificity values close to one and a false-
positive rate close to zero for all simulations (Fig. 3, Supplementary
Table S8). Higher sensitivity values were observed for higher values
of ¢ (Fig. 3, Supplementary Table S8). These results indicate that
CoNl is good at finding linker features with a strong effect on the re-
lationship of the vertex pair features (Fig. 3, Supplementary Table
$8). The weakest performance was observed with ten samples and
the ‘Filter High Variance Features’ option (Fig. 3, Supplementary
Table S8). The reason is that with this pre-filtering option, most
linker features were discarded before the run. The poor performance
observed with ten samples is in line with the fact that correlations
perform better with more samples (Steiger, 1980). For CoNI, the
same principle applies; the more samples, the better. Theoretically,
there are no limitations on the number of features to run CoNI, but
computational time increases as more features are given as input.
The pairwise combinations of the vertex data grow in the order of
0(m™/?), and the total number of combinations is then multiplied by
the total number of linker features p. To run CoNI with many fea-
tures is computationally intensive (Supplementary File S1). As CoNI
is an open-source tool, community feedback will help to improve
and extend our CoNI framework.

3.3 Conclusions

CoNI is an R package for unsupervised data-driven integration of
two numerical omics datasets from the same samples that can be
used to identify potential critical confounders of biological rele-
vance. In addition, CoNI can represent its result in three different
graph representations that allow for further analyses.
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