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• About 6 % of the European population is
sensitized to airborne Alternaria spores.

• Need of reliable spore's (here automatic)
monitoring in a climate change scenario

• Development and validation of an algo-
rithm to detect Alternaria spores.

• Automatic re-analysis of the historical da-
tabase to obtain a complete time series.

• Detection of a latitudinal gradient of
Alternaria spores in Bavaria, South-
Germany
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AlthoughAlternaria spores arewell-known allergenic fungal spores, automatic bioaerosol recognition systems have not
been trained to recognize these particles until now. Herewe report the development of a new algorithm able to classify
Alternaria spores with BAA500 automatic bioaerosolmonitors. The best validation score was obtainedwhen themodel
was trained on both data from the original dataset and artificially generated images, with a validation unweighted
mean Intersection over Union (IoU), also called Jaccard Index, of 0.95. Data augmentation techniques were applied
to the training set.While some particleswere not recognized (false negatives), false positiveswere few. The results cor-
relatedwell withmanual counts (mean of four Hirst-type traps), with R2=0.78. Counts fromBAA500were 1.92 times
lower than with Hirst-type traps.
, Annual Spore Integral.
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Classification
Time series
The algorithm was then used to re-analyze the historical automatic pollen monitoring network (ePIN) dataset
(2018–2022), which lacked Alternaria spore counts. Re-analysis of past data showed that Alternaria spore exposure in
Bavaria was very variable, with the highest counts in the North (Marktheidenfeld, 154 m a.s.l.), and the lowest values
close to the mountains in the South (Garmisch-Partenkirchen, 735 m a.s.l.).
This approach shows that in our network future algorithms can be run on past datasets. Over time, the use of different
algorithms could lead to misinterpretations as stemming from climate change or other phenological causes. Our ap-
proach enables consistent, homogeneous treatment of long-term series, thus preventing variability in particle counts
owing to changes in the algorithms.
1. Introduction

Allergy has become an important health issue over the last decades and
currently about 20 % of the worldwide population suffers from some kind
of allergy (Pawankar, 2014). Because the prevalence of pollinosis in
Europe has been reported to be around 40 % (D’Amato et al., 2007),
many studies have focused on pollen allergies, but allergic reactions can
also be caused by fungal spores.

Fungal allergies are still a largely unexplored field, in part due to the
lack of airborne spore monitoring (Bozek and Pyrkosz, 2017; Crameri
et al., 2014; Kasprzyk et al., 2015; Martinez-Canavate Burgos et al., 2007;
Tabar et al., 2008) stemming from themore difficultmanual spore counting
as compared to pollen. In addition, the dominance of Cladosporium spores'
results in laborious, tedious and unpopular work (many of the same parti-
cles to count).

Alternaria spp. is a ubiquitous saprophytic (parasitic) fungus, being one
of the four main fungal allergenic genera together with Cladosporium,
Aspergillus and Penicillium (DAmato et al., 1997; Bozek and Pyrkosz, 2017).
Sensitization to molds may already start in childhood and its symptoms
are the same as for pollinosis: allergic rhinitis and/or asthma (D'Amato
et al., 1997; Delfino et al., 1996; Forkel et al., 2021; Grinn-Gofroń et al.,
2011; Kasprzyk et al., 2015; Simon-Nobbe et al., 2008; Spieksma, 2003;
Twaroch et al., 2015). The threshold for the start of symptoms by Alternaria
spores is calculated to be about 100 spores/m3 (Twaroch et al., 2015).

Allergy to Alternaria coincides with the period when their conidia are
present in the air, which mainly happens during the summer and the
early autumn. Spore levels are positively correlated with higher tempera-
ture, lower humidity and windy days (two days before their release),
and negatively correlated with precipitation (Grinn-Gofroń et al., 2011).
This is why Alternaria spores are called ‘dry’ spores (Spieksma, 2003). In
Europe, prevalence of Alternaria allergies varies along a latitudinal gradi-
ent, with a lower incidence in northern countries (2–3 %) and higher prev-
alence in Mediterranean countries, with the highest incidence in Spain and
Greece (around 20 %) (D'Amato et al., 1997; Damialis et al., 2015a;
Damialis et al., 2015b). In Spain,Alternaria spores show a bimodal behavior
with two peaks during the season (Maya-Manzano et al., 2012; Picornell
et al., 2022).

Because fungal spore concentrations in the air partly coincide with the
pollen season, it is sometimes difficult for allergologists to make the correct
diagnosis of a fungal spore allergy. This is further complicated by the fact
that allergy to molds frequently appears in multi-sensitized patients (Lizaso
Bacaicoa et al., 2003; Twaroch et al., 2015; Vidal et al., 2014).With an accu-
rate diagnosis it is possible to personalize medication or immunotherapy,
avoiding wrong immunotherapy will improve the patients' quality of life
and reduce other side effects of allergic diseases, such as economic impacts
due to absence from work (Kasprzyk et al., 2019).

The hallmark of allergy diagnosis is a provocation test by the eliciting
compound. This is however time consuming and costly, and is not popular
in general medical practice. Knowing airborne spore concentrations and
correlating this with patients' symptoms, either online or with a hand-
written diary, improves diagnosis (Lizaso Bacaicoa et al., 2003; Tabar
et al., 2008; Twaroch et al., 2015). Thus, monitoring of airborne concentra-
tions is a valuable tool that can help allergists, for example by enabling the
linking of spore exposure data with patients' symptoms, thus reducing the
need for provocation tests.
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Until now, Hirst volumetric pollen traps have been the main pollen
monitoring devices throughout Europe (Buters et al., 2018; Hirst, 1952).
However, the methodology is highly time-consuming and requires expert's
knowledge to identify particles. In addition, results appear with a delay
from 7 to 10 days (Tummon et al., 2021a, 2021b).

In the last fifteen years, automatic pollen monitoring devices have
appeared on the market, with most becoming available only in the past 5
years. These devices are capable of classifying pollen based on different
technologies (i.e. image or holographic recognition or fluorescence) and
provide real-time or near real-time airborne concentrations (Chappuis
et al., 2020; Oteros et al., 2020; Šauliene et al., 2019; Šaulienė et al.,
2021; Sauvageat et al., 2019; Tešendić et al., 2020). Currently they are
not yet used operationally to classify fungal spores, although some success
has been achieved for short test periods (Erb et al., 2022).

Since 2018, Bavaria (Germany) has the first fully automatic pollenmon-
itoring network worldwide (www.ePIN.bayern.de, accessed April 2022)
composed of eight BAA500 (Helmut Hund GmbH,Wetzlar, Germany) auto-
matic pollenmonitors, able to count>30 different taxa (Oteros et al., 2015,
2020). The device is an image recognition-based system that collects ambi-
ent air at a rate of 1120 L/min. Airborne particles impact on a sticky plate
and stacks of images with different optical depths are taken with a camera
attached to a microscope. These stacks are then condensed to one synthetic
(2D) image that is stored in an online database. Software then determines
what part of the image is a pollen grain, an inorganic particle or a spore,
and then also stores the particle's identity (Fig. 1).

Deep learning (DL) techniques have rapidly evolved over the last decades
and are able to accomplishmany tasks, including detecting objects in images
(Schmidhuber, 2015). Convolutional Neural Networks (CNNs) were the best
performers in the ImageNet classification challenge (Krizhevsky& Sutskever,
2012) and later, when applied to object detection tasks (Girshick et al., 2014;
Szegedy et al., 2013). Therefore, they have been employed in multiple
fields, including pollen classification (Khanzhina et al., 2022; Polling
et al., 2021; Sevillano et al., 2020; Sauvageat et al., 2019). One of such
CNNs is the U-net, initially developed to detect cells (Ronneberger et al.,
2015), but that has beenwidely used inmany applications in various fields,
as in Abascal et al. (2022).

Although Alternaria spores are easily recognized in the synthetic images
of the BAA500 by eye, the existing algorithms were not trained to correctly
classify and report their concentrations.

Here we developed an algorithm based on the U-net architecture to
widen the classifying capability of the BAA500 by additionally detecting
Alternaria spores. Moreover, this tool also worked to re-analyze the image
database to generate a complete and homogeneous time series, i.e. for all
devices in Bavaria since their installation. Our work also validated the
algorithm against the results of manual analysis from Hirst-type pollen
monitors, currently considered as the only reference in Aerobiology.

2. Materials and methods

We processed real-life images produced by BAA500 monitors. Every
3 h, a microscope-camera photographs about 144 regions of the sticky
plate, each region being a single stack of approximately 210 images per re-
gion in the z-axis. Then, software condenses the images into one synthetic
(2D), grayscale 1280 × 960-pixel image per stack (“raw images”), remov-
ing the background. Particles are detected and classified as either pollen,

http://www.ePIN.bayern.de
Jeroen Buters
D`Amato



Fig. 1.Automatic image recognitionworkflow. The BAA500 sucks in 1120 L/min and particles impact onto a round sticky plate. Every 3 h, amicroscope-camera photographs
around 144 regions of the plate, taking a stack of approximately 210 images per region in the z-axis. Software then condenses the images into one synthetic (2D) image per
stack, removing the background. Synthetic images and coordinates of all the particles detected are stored in the ePIN database. Data augmentation techniques were applied
to both datasets and used to train the U-net. A second CNN confirmed the output of the U-net. (B) Synthetic images (2D) produced by BAA500 are analyzed by the U-
net algorithm and the CNN. Output shows (in this case) Alternaria spores as yellow patches.
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fungal spores, or as non-pollen particles. All images and the detected parti-
cles' coordinates are stored in a No-SQL database (Fig. 1).

2.1. Alternaria dataset and Auxiliary dataset

Our focus in this work was on identifying Alternaria spores, which are
currently not identified in the ePIN network and are usually classified as
“non-pollen particles”. We started by compiling an Alternaria spore image
collection (“Alternaria dataset”) from a sub-sample of 2689 images that
contained Alternaria spores, mainly from the months of July and August,
when Alternaria spores are airborne at high levels.

Then, images were annotated with the VGG Image Annotation (VIA)
2.0.10 open software (Dutta et al., 2019). To reduce additional error
sources on the training set, fourteen people worked on the annotation
task creating segmentationmasks by surrounding each sporewith the anno-
tation tool. All annotations were manually checked by experts before their
use for the training, and resulted in a set of >3000 annotations of Alternaria
spores. The dataset contained masks for two more automatically-labeled
classes as well: other particles (not Alternaria) and background.

An additional dataset of particles captured and classified with the
BAA500 software (“Auxiliary dataset”) was created by selecting particles
from the ePIN database which were manually checked by experts during a
previous validation process. Furthermore, these images were re-validated
by other experts before their use to exclude any misclassifications made
by the manual counters. This Auxiliary dataset (with double expert classifi-
cation) contained samples of cropped particles, whose sizes depended on
the particle content. Therefore, imageswere resized to 360×360 pixels be-
fore use to train a second Convolutional Neural Network (CNN) (see section
2.4), and also to enlarge the 3000-image hand-crafted dataset by artificially
generating images similar to the raw images.
3

2.2. Metrics

To evaluate the performance of themodel for the detection ofAlternaria,
multiple metrics were selected.

Because the selected network operates at pixel level, during training we
used the pixel accuracy and the unweighted mean Intersection over Union
(IoU), also called Jaccard Index (Minaee et al., 2020).

While the pixel accuracy metric informs us about the percentage of
pixels that are correctly classified in each image, the information is
distorted by the fact that most pixels represent empty space or particles
other than Alternaria, overestimating the actual performance of the
model. The IoU, on the other hand, looks only at the True Positives and
ignores the True negatives (mostly background pixels), whichwould inflate
the performance when looking just at the Alternaria class. As a measure
of performance when using the model to get the number of events of
Alternaria spores detected per image we used the recall, precision and F1
score metrics.

Results were True positive (TP) if an image contained an Alternaria
spore and the model detected it. If instead another non-Alternaria particle
was classified as an Alternaria spore this was considered a false positive
(FP). If the algorithm missed an Alternaria spore this was considered a
false negative (FN). The true negatives were not computed because most
images and particles are True negatives (background and junk). The
goodness-of-fit metrics were calculated as:

IoU score ¼ TP
TPþ FPþ FNð Þ

Precision ¼ TP
TPþ FPð Þ
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Recall ¼ TP
TPþ FNð Þ

F1 score ¼ 2 ∗ precision ∗ recall
precisionþ recallð Þ

Because the classes present in the datasets are highly imbalanced, with
the Alternaria class having the least number of pixels over the dataset (37 ∗
105, 1 %) compared to other particles (70 ∗ 105, 2 %) and background (5 ∗
106, 97 %), the use of weights is required when training to prioritize the
Alternaria class over the others.

2.3. Data augmentation

When using deep CNNs, the size of the training set is one of the most
important parameters that will influence the performance of the model.
To alleviate the problem of not having enough samples, data augmentation
approaches can be used to create “new” images from the ones we already
had and therefore, to avoid overfitting (Boldeanu et al., 2022; Krizhevsky
& Sutskever, 2012; Shorten and Khoshgoftaar, 2019).

In our work, the generation of new training samples was split into two
main types: i) augmenting the hand-picked images by applying randomly
the classical transformations of changing the position, the brightness or
applying a deformation to the images (Fig. 2-A) and ii) creating artificial
synthetic samples by compositing images from elements of the Auxiliary
dataset to generate images similar in size and complexity to real ones
(Fig. 2-B). Classical techniques were also applied randomly to these artifi-
cially generated images during the training step.

2.4. Selected architecture and post-processing results

The U-net network architecture is widely used for the task of segmenta-
tion in the medical and biological fields (Ronneberger et al., 2015), due to
its ability to learn complex patterns that enable users to do class segmenta-
tion on complex images or image-related datasets.

Several strategies were employed to find the best training approach,
alternating images with and without data augmentation techniques:
i) training with only raw images to get a baseline, ii) training with aug-
mentation on the raw images, iii) training with augmentation on the
artificially-generated samples, iv) doing a mixed training of real images
with augmentations + artificially-generated images with augmenta-
tions. For every combination, the training dataset was split into training
(80 %), validation (10 %) and test (10 %) sets.
Fig. 2. Types of data augmentation applied to the training set. A) Classical image tra
transform augmentations. B) Synthetic image generation with BAA500 detected particle

4

During training, regularization was used to constrain the magnitude of
the weights (Bishop, 1996). Because the data was highly imbalanced
(many more non-Alternaria than Alternaria particles, as mentioned above),
sample weight masks were used to make the model focus on the Alternaria
patches in the image. The model was evaluated after each epoch of training
with the validation set.

Since the U-net is a fully convolutional network, where the output is a
segmentation mask with pixel-level classification (Fig. 3), some post-
processing is required.

The post-processing method consisted of cropping around the de-
tected Alternaria masks and passing them through a second convolution-
based model, a modification of the VGG-19 architecture (Simonyan and
Zisserman, 2015), to confirm that the mask was actually an Alternaria,
thus reducing eventual FPs. This second CNN was trained with images
from the Auxiliary dataset, thus containing one particle, and able to
discriminate up to 19 classes (18 pollen types+ Alternaria spores). Finally,
we used a connected componentsmethod to count the number of patches of
Alternaria spores within every image.

For additional technical details, see Boldeanu et al. (2022). The code of
both the U-net and the CNN can be made available on request.

2.5. U-net + CNN testing and implementation

The feasibility and outcome of the U-net + CNN were evaluated along
four step-wise operations in theworkflow. In the first stepwe optimized the
performance of the algorithm on the training dataset.

In the second step we validated the model using data from different
locations of the ePIN network, also to detect any possible data drift between
the different BAA500 devices and to ensure that themodel generalizedwell
without overfitting over the training dataset. Two tests were conducted
(Test 1 and Test 2), taking as input two sub-samples of images with no
annotations from the ePIN database.

First, we tested the network with 1000 random images from each of the
eight stations of the ePIN network. All images were from the 10th of July,
from any year in the 2018–2020 range (Test 1). The date was randomly
selected among summer days with confirmed presence of Alternaria in the
atmosphere, allowing evaluation of the model. Secondly, we took 2000
random images from the eight ePIN locations in Bavaria from different
days and years, to confirm there was no bias due to the choice of the train-
ing set (compiled mainly of images from the months of July and August)
(Test 2). The output of all test images was manually checked by experts.

A third additional step (Test 3) was to evaluate the ability of the model
to count spores, compared to the classical manual method (mean of four
Hirst traps, the standard instrument for pollen monitoring). Validation
nsformations: position transform, deformation transform and brightness/contrast
s (pollen grains, inorganic particles, fungal spores).



Fig. 3.Output examples of the U-net for Alternaria spores. A-F Left: black and white synthetic images, produced by the BAA500 software that are used as input for the U-net.
In these, ground truth Alternaria spores are marked with a yellow circle. A-F Right: output of the U-net, Alternaria spores detected marked as yellow patches.

Table 1
Metrics' results on Training and Tests of the Alternaria detector algorithm.

U-net training (6189 images; Jul-Aug; all ePIN stations)

ALT TP FP FN Precision Recall F1 score

TOTAL 478 452 41 26 0.92 0.95 0.93
% 100 94.6 8.6 5.4

Test 1 (8000 images; 10th July; all ePIN stations)

ALT TP FP FN Precision Recall F1 score

TOTAL 219 193 22 26 0.9 0.88 0.89
% 100 88.1 10 11.9

Test 2 (2000 images; random dates; all ePIN stations)

ALT TP FP FN Precision Recall F1 score

TOTAL 133 107 12 26 0.92 0.84 0.88
% 100 80.5 9 19.6

Test 3 (5725 images; 01.06.21–14.07.21; AICa Munich)

ALT TP FP FN Precision Recall F1 score

TOTAL 716 656 61 60 0.92 0.92 0.92
% 100 91.6 8.5 8.4

Table 1. Output evaluation parameters of the U-net algorithm. Different stages of
training (with known images) and tests and validation (with unknown images)
are shown. All images used for evaluation were 100 % hand-scored for Alternaria
spp. and belonged to the automatic pollen monitoring network of Bavaria,
Germany (ePIN database). ALT: Total Alternaria spores present in the images; TP
(true positives): Alternaria spores detected by the U-net; FP (false positives): Other
particles classified as Alternaria; FN (false negatives): manual labeled Alternaria
spores not detected by the U-net. Precision: TP/(TP + FP); Recall: TP/(TP + FN);
F1 score: 2* (precision*recall)/ (precision + recall).

a AIC: EUMETNETAutoPollen-COST ADOPT intercomparison campaign, Munich
(Germany) (Maya-Manzano & et al., 2022).
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was carried out using data from the ‘EUMETNET AutoPollen-COST ADOPT
intercomparison campaign 2021 (AIC)’, which took place inMunich as part
of the EUMETNET Autopollen project (Clot et al., 2020). This campaign
was held during the spring season of 2021 to evaluate all available auto-
matic monitors and compare them to data from manual Hirst pollen
traps. Although their accuracy is debated, particularly at low atmospheric
concentrations, Hirst-type traps are still considered the reference device
in airborne pollen and spore monitoring (Oteros et al., 2017; Tummon
et al., 2021b). The campaign ran from 3.03.2021 to 15.07.2021 and the
BAA500 was run in parallel to four Hirst-type pollen traps whose mean
was taken as a reference to validate the results of our algorithm.

The last step was to actually use the model on a large dataset (from the
eight ePIN stations, over the years 2018–2021) to obtain Alternaria time
series since 2018, data that was previously analyzed by an algorithm not
able to recognize Alternaria.

3. Results

3.1. Training results on dataset

To obtain the best training strategy and best performing model, differ-
ent experiments were done with and without data augmentation. The com-
bination of raw images with artificial-generated images, applying classical
data augmentation techniques, gave the best model performance scores,
with a precision of 0.91, a recall of 0.94, a F1 score of 0.93 and a validation
mean IoU value of 0.95 (Table 1).

The accuracy metric for all the training strategies was at 0.99. These
results are an example of why accuracy alone is not a good metric when
doing segmentation of imbalanced classes.

3.2. Results from Test 1 and Test 2

The reslts of all images from Test 1 were manually checked and yielded
a precision=0.9, recall=0.88 and F1 score=0.89 (Table 1). After Test 2,
5
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400 (20%) of the output imagesweremanually checked. The results of Test
2 were a precision = 0.92, recall = 0.84, and F1 score = 0.88 (Table 1).

3.3. Results of Test 3, data validation during the ‘EUMETNET AutoPollen-COST
ADOPT Intercomparison Campaign (AIC)’ – 2021

In the third validation step we evaluated both the performance of the
algorithm and its correlationwith themanualHirst counts. First, we studied
the U-nets performance when detecting Alternaria spores. A total of 5725
images (7 %) of the AIC were manually evaluated by experts. The selected
images included all images with Alternaria events (725) plus 1000
‘Alternaria-empty images' chosen randomly from each month of the cam-
paign (February to June). We obtained a score of 0.92 in all parameters
evaluated: precision, recall and F1 score (Table 1).

Afterwards we compared the BAA500 Alternaria counts versus the
Hirst data. Two experienced technicians had manually counted
Alternaria spores as hourly values in the Hirst trap's samples for the period
01.06.2021–14.07.2021. Spore concentrations were calculated consider-
ing the area of the slide sampled, the microscopic field and by applying a
correction factor for the flow according to flow measurements during the
AIC, to assure a 10 L/m2

flow rate as is recommended by the standards
(Galán et al., 2014; Triviño et al., 2022; Maya-Manzano et al., 2022). The
manual counts from the Hirst trap data (Fig. 4-A) were aggregated into
three-hour periods to compare the series with the Alternaria data from the
BAA500 (Fig. 4-B).

The algorithm detects events from the images not concentrations. To
obtain the concentration of spores in the air (spores/m3) we multiplied
the raw counts (events) by a 5.5 concentration factor, calculated from the
flow, impact surface of particles and percentage of the surface sampled by
the BAA500 camera, (i.e. flow calculation, not a scaling factor). The result-
ing correlation between BAA500 and the mean of the four Hirst traps was
R2 = 0.78 (Fig. A.1).

3.4. Results from the historical ePIN dataset

After the validation of the algorithm against the Hirst traps during the
AIC, we re-analyzed the historical ePIN database for Alternaria levels in
Bavaria since the installation of the automatic devices (2018–2022). Here
we present the distribution of Alternaria spores over Bavaria for the year
Fig. 4. Time series ofAlternaria spore concentrations during the EUMETNET AutoPollen-
1.06.2021–14.07.2021. A) Time lines (3 h resolution) of Alternaria spore concentration
traps. B) Time series (3 h resolution) of Alternaria spore concentrations of the mean of t
centration factor of 5.5, (counted events to concentration) of the BAA500 values measu
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2021 in the ePIN network as this was a complete year with data from all
eight stations.

Fig. 5-A shows the annual sum of daily mean concentration ofAlternaria
spores (ASIn) (Galán et al., 2017) in Bavaria. Start-and-end dates of the
spore season for each location, if data were available for that site, were
calculated with two different methods, the 95 % method (Goldberg et al.,
1988) (Fig. 5-B) and the clinical method (Fig. 5-C), considering the thresh-
old as of 100 spores/m3 in three consecutive days (Pfaar et al., 2017;
Twaroch et al., 2015).

4. Discussion

In this studywe present a U-net trained from scratch for the detection of
Alternaria spores in BAA500 images. The BAA500, a fully automatic pollen
monitor, overcomes the limitation of manual Hirst traps and comes close to
real-timemonitoring, providing datawith a delay of 1 to 3 h instead of up to
7 days. This is desirable as the prevalence of pollinosis, a significant health
problem, has increased steadily over the last decades and thus interest in
current and real-time airborne concentrations has increased.

Up-to-date data allowmedical doctors to make a more accurate diagno-
sis for patients that arrive for consultation with allergy symptoms and assist
them to better cope with their disease. In addition, spore monitoring also
benefits other fields, such as agriculture, where prompt knowledge of
spore levels can help farmers to control pests in crops and thus avoid high
economic losses (Iglesias et al., 2007), or climate change monitoring,
which uses airborne spore levels as bioindicators (Hanson et al., 2022;
Rojo et al., 2021), among others.

Since fungi depend on climatic conditions rather than photoperiod for
their life cycle, the airborne behavior of their spores is even more likely
to vary with climate change than other aerobiological particles (Cecchi
et al., 2010; Gehrig and Clot, 2021). Shifts in the spore season related to
climate change will impact allergic patients. For instance, the presence of
spores and pollen matches the increase of allergic asthma episodes
(Canova et al., 2013). Therefore, the completion and continuation of time
series will allow a better study of spore trends and enable the establishment
of health policies as elaborating forecasts (Grinn-Gofroń et al., 2019;
Tomassetti et al., 2009).

Although some studies show a slight decrease in fungal spore produc-
tion (Damialis et al., 2015a, 2015b), there has been an increase inAlternaria
COST ADOPT intercomparison campaign 2021, Munich (Germany), over the period
s measured by each of the four Hirst traps (A,B,C,D) and the mean of the four Hirst
he four Hirst traps (grey shadow) versus the BAA500 values (black line) with a con-
red with the U-net.



Fig. 5. Results of the re-analysis of the ePIN database. A) Map of Bavaria (Germany, Europe) representing the Annual Spore Integral (ASIn) for the eight stations of the ePIN
network for the year 2021. B) Start-and-end dates represented as day of the year of the Alternaria spore season for each location and year sampled, calculated by the 95 %
method (Goldberg et al., 1988) or C) the same but calculated according to a clinical definition for allergy symptoms (Pfaar et al., 2017). The vertical line is for orientation
between start and end date.
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sensitization, thus public alerts can prevent Alternaria allergy sufferers from
being exposed to the airborne fungal allergens. Having long time series is
important to being able to identify these trends, more importantly in cities,
where pollution levels tend to be higher; pollutants such as diesel exhaust
particles have been described to be allergen carriers as well (Knox et al.,
1997).Alternaria shows peaks of airborne spores during summer, when pol-
lutants that can exacerbate symptoms are present in higher concentrations
due to favorable weather conditions, i.e. elevated ozone levels resulting
from photochemical smog processes that irritate the respiratory tract. How-
ever, studies showing significant allergen-pollutant relations are still incon-
clusive (Bartra et al., 2007; Grewling et al., 2019; Lam et al., 2021).

The BAA500's image-based technology enables the storage of raw data
and re-use of these data to develop new identification algorithms, widening
its capabilities. Nonetheless, during the training step of the Alternaria
classifier we encountered some technical problems, such as the lack of a
large enough training data set or the occlusion of Alternaria spores (when
particles are attached or behind other particles and segmentation algo-
rithms have difficulties to find the particles of interest, i.e. Alternaria hiding
in “junk”).

The commonproblemof obtaining representative and large enough sam-
ples to train an algorithm for specific real-world applications (Khanzhina
et al., 2022) was worsened by the fact that the Alternaria genus presents
both a wide variety in morphology depending on the species, and within-
species morphological changes along the maturation stages, resulting in
the compilation of fewer examples per species in each maturation stage.
We solved the problem by sampling randomly direct fromnature (i.e. images
from BAA500 from environmental samples all over Bavaria during the
whole season) and by applying data augmentation techniques, as explained
in the Materials and Methods section (Fig. 2) to avoid overfitting. This is a
common technique when small datasets are used to train deep networks
(Minaee et al., 2020). Data augmentation improved the detection algorithm
from IoU = 0.93 to IoU = 0.95 when compared to the use of just raw
images.

Some potential sources of bias and errors were also controlled. To in-
crease efficiency when creating the Alternaria dataset, most of the examples
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were taken during the summer months (July and August) when Alternaria
levels are higher. While this could conceivably have biased the dataset,
results in Test 2 (Table 1) showed that the algorithm performed well also
in other months of the year across the eight different locations from the
ePIN network.

Most of the surface of images photographed by the device are back-
ground pixels (97 %). This fact could have added another bias when
assigning a class to each pixel in the image (background, Alternaria or
other particle), but the problem was solved by giving higher weights to
the Alternaria pixel-class (Minaee et al., 2020). Although there is room for
improvement, results are promising. ‘Internal tests’ have achieved a preci-
sion, recall and F1 score of 0.92, 0.84 and 0.88, respectively.

Neural networks can extract features that may not be apparent to
human vision. Conversely, some features that are clearly identifiable by
humansmay be difficult to detect by computers. Hence, we decided to scru-
tinize individual FP and FN cases in a random subsample of images to try to
gain a better understanding of the network's hurdles. We encountered the
common problem of occlusion (Ren et al., 2016). Although many spores
attached to other particles were correctly detected (Fig. 3), some FN errors
occurred when Alternaria spores were ‘occluded' or attached to other parti-
cles, usually to inorganic particles or dust (Alternaria spores hidden in
“junk”). Also, particles that look similar to Alternaria spores were confused
by the algorithm. For example, half of the FP (4.2%)were other spores such
as Bipolaris, Stemphylium, Pleospora or Triposporium. All of them present
longitudinal or transverse septae or have a similar shape (Fig. 6-A). Errors
occurred also with elongated particles, usually fragments of vegetal tissues
or hairs (Fig. 6-B).

Another repeated misclassification was found with the air vesicles of
Pinus grains (Fig. 6-C), which usually appears aroundMaywhen pine grains
have a peak. While human vision can easily tell them apart, the algorithm
could not. It may be that the grey colour-scheme or pixel organization con-
fused the algorithm. However, despite clear cases of confusion, the misclas-
sification was limited and accounted in our datasets to 8.4 % for FP.

As previously mentioned, the Hirst-type trap is considered the only
current reference in pollen and spore monitoring, although it has some



Fig. 6. Some examples of false positive U-net classifications (8.4 % of all
classifications). A-C Left: input images of the BAA500. A-C Right: output of the U-
net, falsely identified Alternaria spores (yellow patches). A) another spore,
Triposporium, B) particle of vegetal origin, C) air vesicle of a Pinus pollen grain.
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limitations. For instance, if the BAA500 reports different counts for a parti-
cle than a Hirst-type trap, we cannot be certain which instrument reports
the correct values because to date it is not possible to calibrate instruments
using any type of biological particle, including pollen and spores. The AIC
aimed at evaluating the capabilities for the new automatic air monitoring
devices and whether they diverge from Hirst traps' counts.

Although results from this campaign show peak counts of BAA500 and
Hirst-type traps that correlated well (R2 = 0.78), total counts were differ-
ent. While a non-homogeneous distribution of pollen and spores over the
sampling site could have potentially caused this divergence, a difference
in capturing efficacy between Hirst and BAA500 is a more likely explana-
tion, as the variability between the same Hirst traps is about 25 % but the
difference between Hirst and BAA500 is larger. It is possible that the
BAA500 does not capture all Alternaria spores present in ambient air, but
this is difficult to assess. Perhaps the large size of Alternaria spores and
their elongated shape might impact the sampling efficacy, as BAA500 has
a more convoluted impactor than the Hirst traps. Or maybe the algorithm
encounteredmore difficulties on recognizing Alternaria spores in early mat-
uration stages than technicians, resulting in detecting lower concentrations.

Nevertheless, the correlation between Hirst-type and BAA500 is good,
and the results of the analysis of the ePIN database show similar behavior
to the historical presence of Alternaria spores, taking as an example the
data from the city of Munich and thus, enabling the calculation of a scaling
factor (factor to match Hirst-type counts) (Maya-Manzano et al., 2022;
Smith et al., 2022). Although normally for pollen no scaling factor is used
for BAA500 data, contrary to other automatic pollen monitors (Crouzy
et al., 2016; Maya-Manzano et al., 2022), here due to probably the large
size (sometimes >50 μm) and elongated shape of Alternaria spores as com-
pared to the rounded shape of pollen grains, a scaling factor is needed. It is
important to note that a scaling factor was different from a concentration
factor. The concentration factor is used to convert the counted events
(number of Alternaria spores) to concentration using the flowrate and
photographed surface of the BAA500.
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Some studies use a scaling factor tomatch the automatic counts tomanual
counts. This factor can be calculated as the 95th percentile of manual counts
divided by the 95th percentile of the automatic counts (Maya-Manzano et al.,
2022), which in our case is 1.92 for Alternaria. When this scaling factor was
applied to the BAA500 data from the AIC, the total counts fitted well with
the Hirst results (Fig. A.2). However, since Hirst-type traps themselves have
limitations (Tummon et al., 2021b), adjusting counts alone might not solve
the problem of obtaining real airborne spore concentrations. Nevertheless,
it still enables us to draw continuous historical timelines. Thus, we have
used the new algorithm to obtain Alternaria relative airborne levels since
the installation of the automatic devices (2018) as if they would have been
reported by Hirst-type traps (i.e. used the scaling factor).

In Fig. 5-A, the annual spore index (ASIn) over Bavaria is shown for the
year 2021. This year was chosen since 2021 had data for the complete year
from all stations. Although there are still not enough years of data to carry
out a robust statistical analysis and to account for inter-annual variability,
differences in the ASIn can be observed. Lower levels are seen towards
the south, as expected, due to colder weather because of the proximity to
the Alps and higher values in the warmer north of Bavaria.

5. Limitations and conclusion

We present a new algorithm able to detect airborne Alternaria spores,
thus widening the functionality of the ePIN network. This is one of the
first times a historical database from an automatic device is re-analyzed
to get outputs of a fungal spore at the genus level (Alternaria). Our approach
may have some limitations: the algorithm has difficulties when multiple
Alternaria spores are stuck together (the occlusion problem), which is tech-
nically a challenging task to split into individual particles; but wewere able
to compute the number of False negatives for the validation set. It is feasible
to validate a large dataset manually, by checking a small subset of images,
in order to find undetected spores (false negatives), or false positives.

In spite of these limitations, Alternaria spores were correctly detected.
The algorithm was applied to the complete time series (2018–2022),
which might improve the diagnosis of allergies to Alternaria, an important
health problem. The Alternaria time series can also be used in other fields
such as climate change monitoring or pest control, in agriculture. Despite
a high recognition rate of 0.92, the accuracy of this algorithm can neverthe-
less still be improved. Furthermore, this methodology could be adapted for
other interesting taxa since itmakes the BAA500 softwaremoreflexible and
capable of adjusting to different bio-geographical areas with different
species of interest.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2022.160180.
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