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Assessment of Prediction Uncertainty
Quantification Methods in Systems Biology

Alejandro F. Villaverde, Elba Raimúndez, Jan Hasenauer, and Julio R. Banga

Abstract—Biological processes are often modelled using ordinary differential equations. The unknown parameters of these models
are estimated by optimizing the fit of model simulation and experimental data. The resulting parameter estimates inevitably possess
some degree of uncertainty. In practical applications it is important to quantify these parameter uncertainties as well as the resulting
prediction uncertainty, which are uncertainties of potentially time-dependent model characteristics. Unfortunately, estimating prediction
uncertainties accurately is nontrivial, due to the nonlinear dependence of model characteristics on parameters. While a number of
numerical approaches have been proposed for this task, their strengths and weaknesses have not been systematically assessed yet.
To fill this knowledge gap, we apply four state of the art methods for uncertainty quantification to four case studies of different
computational complexities. This reveals the trade-offs between their applicability and their statistical interpretability. Our results
provide guidelines for choosing the most appropriate technique for a given problem and applying it successfully.

Index Terms—Computational methods, Dynamic models, Nonlinear systems, Observability, Prediction error methods, State
estimation, Uncertainty.
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1 INTRODUCTION

THE dynamics of many biological systems can be de-
scribed by nonlinear ordinary differential equations

(ODEs). As these models usually have a number of un-
known parameters, it is necessary to calibrate them using
experimental data [1]. Most models are partially observed,
i.e. only a subset of their state variables – or functions
thereof – are measured. In practice, these measurements are
noisy, which complicates the model calibration task. Once
parameter estimates are available, the dynamic behavior of
the biological systems can be simulated by integrating the
ODEs. This calculation yields the time courses of the model
states, which are usually concentrations or other measures
of abundance of biochemical species.

Calibrated models are frequently employed in prediction
tasks [2], [3]. A prediction can in principle be any quantity or
result derived from model simulations, including state vari-
ables. As parameter uncertainties can result in prediction
uncertainties, a comprehensive uncertainty quantification is
essential. Figure 1 provides a graphical illustration of the
problem.

Uncertainty quantification is related to the concepts of
observability and identifiability. Broadly speaking, a model
is observable (respectively, identifiable) if it is possible to
infer its state trajectories (respectively, parameters) from
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knowledge about the time course of its observables. Struc-
tural and practical observability (identifiability) analysis
methods are available for the assessment of this charac-
teristic [4]. The former take into account only the model
equations, and inform about the theoretical possibility of
determining the unknowns. Therefore, these methods can
reveal deficiencies of the model structure, such as symme-
tries. The latter also take into account the data available for
model calibration. Hence, these methods inform about the
confidence/credibility of parameter estimates and predic-
tions. In this manuscript, we consider practical observability
problems arising from practical identifiability issues, re-
spectively prediction uncertainties resulting from parameter
uncertainties.

Uncertainty quantification for a specific combination of
model and datasets is a non-trivial task. The extent to which
the uncertainty is propagated from parameters to predic-
tions depends not only on the practical identifiability, but
also on the sensitivity of the model to its parameters. Key
challenges are nonlinearity and dimensionality of models
considered in the field of computational biology, as well
as the computational complexity required for simulation.
Several numerical uncertainty quantification approaches
have been proposed and a general overview is provided,
e.g., in [5]. Some methods for the assessment of prediction
uncertainty are discussed in [6], [7], [8]. Kaltenbach et al.
[6] explicitly mention lack of scalability as one of the open
issues.

While various approaches are available and applied, a
systematic assessment of strengths and weaknesses of the
state of the art methods is missing. In a previous study we
analysed three methods [9]: a local method based on the
Fisher Information Matrix (FIM) [10], a Bayesian method
based on Markov chain Monte Carlo sampling (SAM) [11],
and an ensemble modelling approach (ENS) based on opti-
mization results [12]. We applied these methods to two case

This article has been accepted for publication in IEEE/ACM Transactions on Computational Biology and Bioinformatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2022.3213914

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2

time t

ob
se

rv
ab

le
 y

(t)

Experimental data

Mathematical model

·x = f (x, θ, t)
y = h(x, θ, t)

pa
ra

m
et

er
 θ

2

parameter θ1

Objective function landscape & 
parameter uncertainties

confidence 
region of 

parameters

ob
je

ct
iv

e 
fu

nc
tio

n

Predictions &  
prediction uncertainties

time t

S
ta

te
 v

ar
ia

bl
e 

x(t
)

confidence  region of 
model predictions

Fig. 1. Illustration of the general uncertainty quantification concept. (Left:) A mathematical model of a biological system usually has unknown
parameters θ. (Center:) These parameters are estimated by fitting the model to experimental measurements of functions y(t) of a subset of the
states, x(t). The resulting uncertainties in the estimated parameters can be described by confidence regions. (Right:) In turn, these uncertainties
translate to uncertainties in the model predictions z; in this work we focus on predictions about the time course of the state variables, i.e. z = x(t).

studies with a small number of parameters. In the present
work we address two important limitations of the aforemen-
tioned paper: (1) we consider prediction profile likelihood
(PPL) [13], and (2) we enlarge the set of case studies to allow
for a deeper evaluation of the performance of the methods,
revealing the trade-offs between computational cost and
statistical rigor. We are particularly interested in identifying
methods which provide reliable estimates of the prediction
uncertainty and scale well with model size (both in number
of parameters and states). Based on these requirements,
several types of existing methods were ruled out, includ-
ing basic Monte Carlo sampling methods [6] and methods
based on polynomial chaos expansions [14], which follow
a rigorous approach with a sound mathematical basis, but
currently can only be applied to small problems. We remark
that in this work we consider the prediction uncertainty that
results from propagation of parametric uncertainty. We do
not take into account the possible uncertainty about the
model structure. However, the methods considered here
can also account for this type of uncertainty, by encoding
alternative topologies as parameterized relationships in the
ODEs.

The article is structured as follows: In Section 2, we
describe the four selected methods, the metrics used for
their evaluation, and the implementation details. In Section
3, we apply the methods to four case studies of increasing
complexity, and evaluate their performance. In Section 4, we
discuss the most relevant methodological aspects in view
of the results. Finally, we present the conclusions of the
comparison and provide guidelines for the application of
the methods in Section 5.

2 METHODS

Modeling framework and notation
We consider ODE models,

ẋ = f (x, θ, t) , x(t0) = x0(θ),

y = g(x, θ, t),
(1)

in which x(t) ∈ Rnx is the vector of state variables at time
t, y(t) ∈ Rny is the vector of observables at time t, and

θ ∈ Rnθ is the vector of unknown parameters. The vector
field f : Rnx × Rnθ × R 7→ Rnx and the mappings g :
Rnx × Rnθ × R 7→ Rny and x0 : Rnθ 7→ Rnx are possibly
nonlinear.

The calibration of ODE models requires the estimation of
θ from measurements of y(t) at nt times, ti = t1, t2, . . . , tnt .
The number of measurements is nt × ny . In the application
examples, the measurement noise follows a normal distribu-
tion, εk,i ∼ N (0, σ2

k,i), where k = 1, . . . , ny and σk(ti) is the
standard deviation. Thus, a noise-corrupted measurement
of the kth observable is ỹk,i = yk(ti) + εk,i. We denote the
set of all measurement data as D. The maximum likelihood
estimate of the vector of unknown parameters for a given
dataset D can be found by minimizing the negative log-
likelihood function:

Jnll =
1

2

ny∑
k=1

nt∑
i=1

[
log
(
2πσ2

k,i

)
+

(
ỹk,i − yk(ti)

σk,i

)2
]

(2)

For the maximum a posterior estimate, the negative log-
posterior is minimized, Jnlp = Jnll − Jnp, in which the Jnp
denotes the negative logarithm of the prior evaluated at θ.
The search space for θ is usually constrained, e.g. by lower
and upper bounds, yielding θL ≤ θ ≤ θU .

Predictions of the models are denoted by

z = h(x, θ, t), (3)

in which h : Rnx×Rnθ×R 7→ Rnz represents a possibly non-
linear mapping. In this study, we focus on the assessment
of the uncertainties in the time-dependent state variable,
meaning that z = x. Yet, the considered analysis approaches
are more flexible, which is why we provide the equations for
generic functions h.

In Sections 2.1–2.4, we describe the four considered
methods for the quantification of prediction uncertainties
(Figure 2). For each method, we provide a definition of its
prediction, xpj (ti), and of its uncertainty estimates, epj (ti).
Here, j indexes for the state variables (j = 1, . . . , nx) and
i indexes the time points (i = 1, . . . , nt) (which do not
necessarily have to be aligned with the time points of the
observations). In Section 2.5, we define the metrics used to
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Fig. 2. Illustration of the employed uncertainty analysis methods. All methods seek to estimate the uncertainty in the time courses of state variables
that results from uncertainties in the parameter estimations. Each method quantifies uncertainty in a different way, as defined by equations (8),
(12), (15) and (18). Briefly, FIM approximates the prediction uncertainty as the standard deviation calculated from the square root of the prediction
covariance matrix (8). SAM considers the credibility region as the distance between the 0.5th- and the 99.5th-percentile of the prediction samples,
which are obtained by integration with the parameter samples drawn from the posterior distribution (12). PPL also approximates the confidence
region as the width of the 99th percentile, and obtains the upper and lower levels by solving an optimization problem constrained by the prediction
values (15). ENS adopts a similar approach, but builds the confidence region with those vectors explored during parameter estimation that yield an
objective function below a certain threshold (18).

quantify the performance of the methods. In Section 2.6, we
provide descriptions on the implementation.

2.1 Approximation approach based on Fisher Informa-
tion Matrix (FIM)

For many decades parameters uncertainties were predomi-
nately analyzed using methods based on asymptotic statis-
tics. These methods are based on the assessment of the
variability of the parameter estimates θ̂, given different
replicates of the measurements. For globally identifiable
models, the variability of the point estimates is described
by the Fisher information matrix (FIM),

FIM(θ) =
nt∑
i=1

ny∑
k=1

1

σ2
k,i

(
∂yk(ti)

∂θ

)(
∂yk(ti)

∂θ

)T
, (4)

in which ∂yk(ti)
∂θ denotes the sensitivity of the k-th observ-

able with respect to the parameters θ, evaluated at the
measurement time point ti and the parameter estimates θ̂.

As the sensitivity is the first order derivative, it provides
information about the effect of small changes.

The Cramér-Rao theorem [15] states that, if θ̂ is an
unbiased estimate of θ (i.e. E(θ̂) = θ̄), the inverse of the
FIM provides a lower bound of the covariance matrix,

Cov[θ̂] = E

[(
θ̂ − θ̄

)(
θ̂ − θ̄

)T ]
≥ FIM−1(θ̂), (5)

in which θ̄ is the true parameter vector. The parameter co-
variance matrix informs about the individual and pairwise
variability of parameter estimates along different realiza-
tions of the experimental data.

The parameter covariance matrix (and hence the FIM)
can be used to estimate the uncertainty in predictions. To
this end, the first order Taylor series expansion of the map-
ping h is used to propagate variability from the parameters
to the predictions [16]. This yields the prediction covariance
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matrix:

Cov[z(t)] =

(
∂h

∂x

∂x

∂θ
+
∂h

∂θ

)
Cov(θ̂)

(
∂h

∂x

∂x

∂θ
+
∂h

∂θ

)T
,

(6)
with all derivatives being evaluated at time t for parameter
θ̂ and corresponding state x(t).

The covariance matrices of θ and z(t) can only be
approximated using the inverse of the FIM if the FIM is
invertible. If a single parameter is locally non-identifiable,
this is not the case. In principle, this would preclude the
application of this approach to unidentifiable models. A
solution is to approximate the inverse with the Moore-
Penrose pseudoinverse, as e.g. in [17].

The assessment of the predictions using the FIM yields
for zj at time t, the point estimate

zpj (t) = hj(x(t, θ̂), θ̂, t), (7)

which is the evaluation of model simulations with the opti-
mal parameter vector θ̂. The uncertainty of the prediction as
measured by the standard deviation is

epj (t) =
√

Covjj [z(t)], (8)

in which Covjj [xp(ti)] is the jth diagonal element of
Cov[xp(ti)]. This approximate assessment is here denoted
as FIM-based approach, but was in previous studies also
referred to as Linear Covariance Analysis (LCA) (see [10]).

2.2 Bayesian approach: sampling the posterior predic-
tive distribution (SAM)
In systems biology, measurements are often scarce and the
application of asymptotic approaches arguable. Therefore,
a broad spectrum of Frequentist and Bayesian uncertainty
quantification methods have been introduced. In Bayesian
statistics, the uncertainty of parameters is studied using the
posterior distribution

p(θ|D) =
p(D|θ)p(θ)
p(D)

, (9)

in which p(D|θ) denotes the likelihood of the data D given
the parameters θ, p(θ) denotes the prior distribution of θ,
and p(D) denotes the marginal probability.

The posterior p(θ|D) encodes the available information
about the parameters. Hence, it also describes the uncer-
tainty about the parameters θ taking into account the avail-
able experimental data, D, and the prior belief, p(θ). Like-
wise, one can define the posterior predictive distribution
p(z|D), which is obtained by integrating over the latent
variables, simply speaking:

p(z|D) =

∫
p(z|θ)p(θ|D)dθ. (10)

The posterior distributions are usually not available in
closed-from. In most cases their properties are assessed
using sampling procedures such as Markov chain Monte
Carlo methods (MCMC). Since these procedures are compu-
tationally expensive, it is crucial to use an efficient sampling
technique. The adaptive parallel tempering algorithm com-
bines the sampling from tempered posterior distributions
with a local adaptation to improve sampling efficiency.

The algorithm provides ns samples from the posterior
distribution for the parameters, {θ(s)}nss=1, which can be
used to quantify parameter uncertainties. The correspond-
ing samples from the posterior predictive distribution are
obtained by simulating the model for the sampled parame-
ters, {z(s) = h(x(θ(s), t), θ(s), t)}nss=1. These samples are then
used to calculate the mean predictions and their associated
uncertainties. The computationally demanding step is the
sampling of the parameter posterior distribution. Once it
has been computed, the calculation of the parameter and
prediction uncertainties is efficient.

The mean prediction for zj at time point ti is

zpj (ti) =
1

ns

ns∑
s=1

z(s)(ti), (11)

yet in many applications the prediction obtained for the
maximum a posterior estimate might be preferred. To quan-
tify the prediction uncertainty, the sample-based approxi-
mation of the marginal distribution is considered, common
choices are the highest posterior density interval and the
equal-tailed interval. Here, we choose the latter for a credi-
bility level of 99%, meaning that the prediction uncertainty
is the distance between the 0.5th- and the 99.5th-percentile
of the samples of the prediction, z0.5j (ti) and z99.5j (ti), which
yields

epj (ti) = z99.5j (ti)− z0.5j (ti). (12)

2.3 Frequentist approach: Prediction Profile Likelihood
(PPL)

In contrast to sampling-based methods used in Bayesian
statistics, frequentist approaches for uncertainty quantifica-
tion often use profile likelihoods. Profile likelihoods provide
a maximum projection of the likelihood on the parameter of
interest,

PLθl(c) = max
θL≤θ≤θU
θl=c

p(D|θ). (13)

The profile likelihood value PLθl(c) is the maximum value
of the likelihood function attainable for θl = c. The def-
inition of statistical significance levels, e.g. based on the
likelihood ratio test (relating to the χ2-distribution), yields
the parameter confidence intervals.

Following this concept, Kreutz et al. [13] introduced the
concept of prediction profile likelihoods (PPLs),

PPLx(θ)(c) = max
θL≤θ≤θU
x(θ)=c

p(D|θ). (14)

Conceptually, the PPL provides the highest possible likeli-
hood value for a specific value of the (parameter dependent)
prediction. This translates to a optimization problem with
an equality constraint for the value of the prediction. Yet,
to avoid problems related to nonlinear equality constraints,
a reformulation that relies on artificial data points has been
presented [13]. Additionally, integration based techniques
that are more efficient for the analysis of uncertainties of
state trajectories have also been proposed [18].

For PPLs to provide information about the prediction
uncertainties, it is necessary to define a statistical threshold.
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We choose a confidence level of α = 0.01 related to the
likelihood ratio test, which yields the uncertainty measure

epj (ti) = zmax
j (ti)− zmin

j (ti), (15)

in which zmin
j (ti) and zmax

j (ti) are the minimal and maximal
values of c for which PPLzj(ti)(c)/p(D|θ̂) > exp(−∆α/2),
respectively. The threshold parameter ∆α is the α percentile
of the χ2-distribution. As in the FIM-based method, the PPL
state prediction is the model simulation with the optimal
parameter vector θ̂,

zpj (ti) = hj(x(t, θ̂), θ̂, t) (16)

2.4 Ensemble modelling approach (ENS)

The frequentist and Bayesian methods have more recently
been complemented by ensemble modelling approaches.
These approaches exploit that parameter optimization has
already explored the parameter space [12]. The parameter
vectors encountered during the optimization process which
meet a certain quality criteria, e.g. reasonable log-likelihood
values compared to the optimal point, are considered as an
ensemble.

In practice, a diverse ensemble of parameter vectors is
obtained by performing several optimizations with different
random seeds and initial points. From the set of parame-
ter vectors found during the optimizations, those with an
objective function value smaller than a given threshold are
included in the ensemble. Statistical interpretability is en-
sured by using a threshold according to the likelihood ratio
test (as for parameter and prediction profile likelihoods). We
use a confidence level of α = 0.01. The resulting ensemble
provides an envelope for parameter and model predictions.
As the envelope is not pushed towards the boundaries (as
done in profile calculation), the resulting parameter and pre-
diction envelopes provide inner approximations compared
to profile likelihood-based approaches.

The ensemble prediction is the average prediction of the
predictions by the ensemble,

zpj (ti) =
1

nm

nm∑
m=1

zmj (ti), (17)

with zmj (ti) denoting the prediction zj at time ti for the
mth model parameterisation in the ensemble, and nm is
the number of parameter vectors in the ensemble. While in
principle the full range of the ensemble-based envelop could
be used, previous works filter extreme results. Similar to the
Bayesian method, the width of the 99th-percentile interval
of the ensemble (12) was employed,

epj (ti) = z99.5j (ti)− z0.5j (ti). (18)

with zperj (ti) denoting the per-th percentile of the ensemble
simulations.

2.5 Performance metrics

In this work we perform a comparative study based on
published parameter problems. To facilitate a comprehen-
sive assessment we used synthetic data with the same
characteristics as the published datasets for the considered

problems. Furthermore, we used as predictions of interest
the complete set of state variables.

To assess the performance of the methods we used the
three metrics:

Computational cost
We use the CPU time of all the calculations performed to
solve a particular problem. We set a computational budget,
i.e. a maximum time for each problem per method, of 1350
hours (somewhat less than two months).

Agreement between predictions and true states
We assessed the agreement of changes in the predicted
value xpj (ti) and true value xj(ti) of the state variable xj at
time ti. Therefore, we subtracted from both their averages
over all time points, xpj and xj . To obtain a dimensionless
quantity between -1 and 1, we normalize with the respective
variability. This yields the performance metric

ρxj =

∑nt
i=1(xpj (ti)− x

p
j )(xj(ti)− xj)√∑nt

i=1(xpj (ti)− x
p
j )

2
∑nt
i=1(xj(ti)− xj)2

, (19)

for which a value of 1 indicates that the prediction and true
values are perfectly aligned up to an offset and a scaling
constant. The time grid used for the predictions was defined
so as to resemble the original experimental data points,
whenever available. The overall value of the performance
metric for a model, ρx, is the average of the performance
metrics of the state variables, ρx = 1

nx

∑nx
j=1 ρxj .

The equation of the performance metric is identical to
the equation of the Pearson’s correlation coefficient, yet, a
statistical interpretation is potentially problematic.

Agreement between uncertainty estimates and observed er-
ror
We assessed the agreement of changes in the predicted un-
certainty epj (ti) and the actual error ej(ti) = |xpj (ti)−xj(ti)|
for state variable xj at time ti. Therefore, we subtracted from
both their averages over all time points, epj and ej . To obtain
a dimensionless quantity between -1 and 1, we normalize
with the respective variability. This yields the performance
metric

ρej =

∑nt
i=1(epj (ti)− e

p
j )(ej(ti)− ej)√∑nt

i=1(epj (ti)− e
p
j )

2
∑nt
i=1(ej(ti)− ej)2

. (20)

As before, a value of 1 indicates a good agreement of
predicted uncertainties and actually errors, meaning that in
the case of large predicted uncertainties also the error is
large. The overall performance metric for a model, ρe is the
average of the performance metrics of the state variables,
ρe = 1

nx

∑nx
j=1 ρej .

2.6 Implementation and availability
Parameter optimization tasks were performed using the
MATLAB version of the enhanced scatter search (eSS)
method included in the MEIGO optimization toolbox [19],
combined with the MATLAB version of AMICI [20] for
model simulation. The initial parameters were generated
using latin hypercube uniform sampling.
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For the PPL method we used an optimization-based
approach [21], and for SAM we used an adaptive par-
allel tempering algorithm [11]. We used the implemen-
tation of both methods available in the MATLAB tool-
box Data2Dynamics [22]. For numerical integration,
Data2Dynamics and AMICI rely on the SUNDIALS solver
CVODES [23]. For initialization of the algorithms, we used
the optimal parameter vector found by the eSS method.

We implemented in-house MATLAB scripts for the
FIM and ENS analyses, as well as for the evaluation
of the MCMC samples to obtain the prediction pos-
terior samples. In the FIM analyses of the unidentifi-
able models (all but the α-pinene) we used the Moore-
Penrose pseudoinverse as a replacement of the inverse of
the FIM. When computing the pseudoinverse of a ma-
trix A, singular values smaller than a threshold given
by max(size(A))*eps(norm(A)) were treated as zero,
where eps is Matlab’s floating point accuracy. The complete
implementations of the case studies analysed in this work
(including the MATLAB code, computational results and the
respective version of the used toolboxes) are available on
ZENODO (doi:10.5281/zenodo.5995941).

FIM and ENS results were obtained in a multi-core PC
running Windows 7 64-bit with 16 GB RAM and 12 cores,
Intel Xeon 2.30 GHz with MATLAB version R2017b. SAM
and PPL results were obtained in a multi-core HPC cluster
running Fedora 25 64-bit in a computing node using up to 16
cores allocating 300 MB of memory per core with MATLAB
version R2017b. Both environments have similar – but not
identical – computing power. To allow a fair comparison,
we have scaled their CPU times according to the result of
the LINPACK 100 benchmark1, which is a common measure
of computational performance. To this end we used the C
version of the LINPACK benchmark. Executing this test on
both computers yielded 2301.46 MFLOPS in the Windows
system and 3922.43 in the HPC cluster, i.e. a ratio of 1.70.
Thus, we divided the CPU times of the Windows system by
1.70 and reported them in Fig. 3.(A).

3 CASE STUDIES AND RESULTS

To assess the performance of the four uncertainty analysis
methods described in the preceding section, we applied
them to four case studies of increasing complexity. They
possess in the order of 101, 102, 103, and 104 predictions;
these numbers represent number of state variables times
number of time points.

The main characteristics of the four case studies are
shown in Table 1. In the following, we describe the appli-
cation of the methods to each case study.

3.1 Isomerization of α-pinene
As a first case study and a sanity check of the different meth-
ods, we considered a fully observed model for isomerization
of α-pinene [24]. It describes the thermal isomerization of α-
pinene to dipentene and allo-ocimene, which in turn yields
pyronene and a dimer. There are thus five state variables
in the model, all of which can be measured at nine time
points, including the initial conditions. Assuming first order

1. https://netlib.org/utk/people/JackDongarra/faq-linpack.html

TABLE 1
Main features of the case studies used in this paper: number of

unknown parameters (nθ), state variables (nx), measured observables
(ny), time points (nt), and predictions (np = nx × nt).

nθ nx ny nt np
α-pinene 5 5 5 9 45
EGF 48 28 6 12 336
JAK/STAT 27 25 20 128 3 200
BM1 383 104 5 105 10 920

kinetics, the model has five rate constants that are the
unknown parameters.

All parameters of this model were practically identifiable
and the FIM could be inverted. For the ENS method we
built an ensemble with 4000 parameter vectors through
optimization. We found that this number could be obtained
with a low computational cost, and adding more vectors
did not alter the results. For the SAM method we created a
Monte Carlo chain with 100 000 samples. Identifiability led
to low dispersion in the parameter values included in the
ensemble and in the SAM samples, as seen in Fig. 4.

All approaches were applicable and computation times
were in the order of minutes for all methods (Fig. 3A).
Furthermore, all methods achieved good agreement of pre-
dicted and true state (Fig. 3B) as well as predicted uncer-
tainty and error (Fig. 3C). The prediction uncertainties were
relatively small (Fig. 5).

3.2 EGF signaling

As a second case study, we considered a model [25] that
describes the nerve growth factor (NGF)-induced differenti-
ation of neuronal cells. It models the effect of two growth
factors, NGF and the mitogenic epidermal growth factor
(EGF), in rat pheochromocytoma (PC12) cells. NGF an EGF
phosphorylate extracellular regulated kinase (Erk) through
different signaling pathways. The resulting model has 28
states, six of which are measured at twelve time points, and
48 unknown parameters. Thus, this model was larger than
the model for isomerization of α-pinene, and only partially
observed. This hampered parameter identifiability, which
led to a large uncertainty in the values of the parameters.
Indeed, for some parameters a wide range of values allowed
for a good fit to the data (Fig. 4). The results for the ENS
method are based in 2 400 parameter vectors and the results
for the SAM method on 38 000 samples.

For the experimental designs used in [25], the consid-
ered model for EGF signalling was locally practically non-
identifiable. Due to this, the FIM is not invertible; hence, as
mentioned in Subsection 2.1, we calculated the FIM-based
uncertainties using the Moore-Penrose pseudoinverse. Non-
identifiability, in turn, led to a decrease in the accuracy of the
predictions. That said, all methods were able to obtain good
predictions (Fig. 3.B); however, accuracy of the estimate of
the prediction errors decreased for most methods (Fig. 3C).
The performance degradation was particularly notable in
FIM, for which the agreement decreased roughly from 0.8 to
0.5. While the decrease of PPL was not as pronounced, this
method only calculated uncertainty estimates for approxi-
mately 35% of the predictions before reaching the compu-
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Fig. 3. (A) Approximate computation times, in hours, needed by each method and case study. Since the results were obtained using two different
computing environments, the CPU times reported for FIM and ENS have been scaled to ensure a fair comparison, as explained in Section 2.6.
For the FIM method, the computation time corresponds to the optimization used to obtain the optimum. For the ENS method it includes all the
optimization runs used to obtain the parameter vectors in the ensemble. For SAM it includes the sampling time, which was performed with adaptive
parallel tempering. We set a maximum CPU time per problem of 1350 hours (slightly less than two months); calculations with PPL hit this limit
for all but the smallest model: for EGF and JAK-STAT, PPL completed 35% and 2% of the calculations in the allowed time, respectively. For the
largest case study (BM1) PPL was deemed as not applicable (therefore shown in black). (B–C): Agreement between predictions and true states
(19) and between prediction uncertainty quantified by each state and actual prediction error (20), for all methods and case studies. The prediction
uncertainties are those of the 95% percentile. Results for 99% and 68% were also calculated but are not shown here, since they do not vary for the
FIM method and the differences are relatively small for SAM and ENS, showing that the metric is robust with respect to the choice of the confidence
level. The values shown are the mean ± the standard deviation for each state. For all but the smallest model (α-pinene) the PPL method only
produced results for a fraction of the predictions before exceeding the computation time limit. The percentage of predictions that could be calculated
is shown with an asterisk. For the most computationally expensive model (BM1) this method was not applicable, which is noted as N/A.

tation time limit. Fig. 6 shows the results of the different
methods for this case study for a representative subset of 10
of the 28 model state variables.

3.3 JAK/STAT signalling
As a third case study, we considered a model for
JAK2/STAT5 signaling [26]. The purpose of the model is to
elucidate the role of two transcriptional feedback regulators
in erythropoiesis. The response to erythropoietin stimula-
tion first activates receptor and JAK2 phosphorylation, and
then phosphorylates the latent transcription factor STAT5.
This model has 25 states and a relatively large number of
outputs (20), but only a few of them are direct measurements
of state variables, while most of them are functions of a
subset of the states. Therefore, they do not provide as much
information as it might seem at first sight. This model
shared many characteristics with the model for EGF sig-
nalling, but the number of experimental conditions was sub-
stantially higher, resulting also in an ten-fold larger number
of predictions. As before, the FIM was not invertible and the
Moore-Penrose pseudoinverse was applied for FIM-based
uncertainty quantification. Furthermore, the PPL calculation
finished within the considered time constraints only for 2%
of predictions.

The computations times for FIM, SAM and ENS meth-
ods were comparable (Fig. 3A). Furthermore, all methods
achieved a good agreement between predicted and true
state variables (ρx > 0.9), but lower than for the two preced-
ing case studies (Fig. 3B). The agreement between predicted
uncertainty and actual error were ρe > 0.75 except for
PPL, which falls to 0.372. Fig. 7 depicts the predictions and
uncertainties estimated by all methods for a representative
subset of states.

3.4 Insulin signaling (BM1)
As a fourth case study, we considered a model for insulin
signaling in mice [27]. It also considers the interaction of

insulin signaling with oxidative stress, and it includes tran-
scriptional feedback through the FOXO transcription factor,
which controls long-term adaptation. Thus, the model con-
sists of several interconnected modules, with over one hun-
dred states and almost four hundred parameters. However,
only five states are measured. This was by far the largest and
most computationally demanding model. Indeed, the PPL
method – which already struggled with the two previous
problems – did not complete any calculations within the
allowed computation time. The performances of the other
three methods were comparable to their performances on
the two previous problems, albeit with a higher computa-
tional cost. Fig. 3 and Fig. 8 show the results of the different
methods for this case study.

4 DISCUSSION OF METHODOLOGICAL ASPECTS

4.1 Approximation approach based on Fisher Informa-
tion Matrix (FIM)
The FIM-based method is computationally cheap, but it
has a number of limitations. First, it is strictly local, being
calculated from a single parameter vector. In the presence of
non-identifiability, the true vector can be very different from
the estimated (optimal) one, affecting the results. Second,
the confidence intervals estimated from the FIM are always
symmetric, which might violate constraints (e.g. positivity
bounds). Third, this method relies on a linearisation, and
can be overly optimistic if nonlinearities are present. For the
finite sample case, it is expected to give inaccurate results
in the presence of strong nonlinearities. Our computational
results have confirmed this theoretical expectation. Finally,
if the model has non-identifiability issues, the FIM cannot be
inverted and a pseudoinverse has to be used [17]. This was
the case for three of the four case studies analysed here, and
it is a very common scenario in systems biology models.
However, to calculate the pseudoinverse it is necessary to
specify a threshold, which may affect the results.
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Fig. 4. Dispersion of the parameter values. For ENS and MCMC, we show the values of the parameter vectors included in the ensemble and in the
MCMC samples, respectively. For FIM, we draw parameters from a normal distribution using the standard deviation calculated from the inverse of
the FIM. For PPL, we show the optimal parameter vectors calculated at each step of the profile.

4.2 Bayesian approach: sampling the Posterior predic-
tive distribution (SAM)
The Bayesian approach enables the assessment of uncertain-
ties in a comprehensive manner. Yet, the posterior distribu-
tion needs to be approximated at first. This step tends to
be computationally challenging, especially for increasingly
complex models where MCMC methods tend to suffer from
convergence issues. For the model of JAK/STAT signalling
we found that the predictions for the state variables were
“shifted” when compared to the ground truth (Fig. 7). This
probably implies that the MCMC chain did not properly
sample from the posterior distribution. Yet, this was not the
case for the other models. Therefore, one should make sure
that the samples are converged to the posterior distribution
before further analyses.

4.3 Frequentist approach: Prediction Profile Likelihood
(PPL)
Unlike the Bayesian approach, the use of PPLs require
individual calculations for each model prediction. This ren-
ders the methods computationally demanding if a large
number of predictions needs to be assessed. This has been
reflected in the EGF, JAK-STAT and BM1 model, as only a
fraction of the predictions were covered in the computation

time limit considered. In this regard, it must be noted
that the high performance computing infrastructure used
in the present study had a time limit of 48 hours for each
job. Possibly, longer run times for individual jobs could
allow more calculations to finish. We considered the use of
advanced integration-based PPL calculation implemented
in Data2Dynamics, but did not succeed. Hence, while pro-
viding stringent statistical guarantees, the use of PPLs is
challenging.

4.4 Ensemble modelling approach (ENS)
As the ENS method exploits the results of parameter opti-
mization, it is applicable even for high-dimensional models.
Furthermore, if proper thresholds are used, the results can
be interpreted as inner approximations to the confidence
intervals obtained using PPLs. Yet, we encountered a num-
ber of open questions. First, the appropriate size for the
ensemble is unclear. Unlike in the other methods, there is
no clear-cut criterion to determine the number of parameter
vectors that should be included in it. A practical solution
is (1) allocate an affordable computational budget to the
optimizations used to obtain the parameter vectors, (2) build
test ensembles of increasing size, and (3) stop when adding
more vectors does not change the ensemble predictions. If
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Fig. 5. Results of the different approaches for the α-pinene example. The solid black lines are the predictions of the state trajectories, and the
dashed red lines the true states. The grey areas show the percentiles of the predictions calculated with each method (dark grey: 68.27%, light grey:
95.45%, lighter grey: 99%).

Fig. 6. Results of the different approaches for 10 representative states of the EGF signaling pathway example. The solid black lines are the
predictions of the state trajectories, and the dashed red lines the true states. The grey areas show the percentiles of the predictions calculated with
each method (dark grey: 68.27%, light grey: 95.45%, lighter grey: 99%). Note that, for this case study, PPL only produced results for a subset of the
states within the allowed computation time.
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Fig. 7. Results of the different approaches for 10 representative states of the JAK-STAT example. Only the simulations corresponding to the first
three experimental conditions are shown, to improve visualization. The solid black lines are the predictions of the state trajectories, and the dashed
red lines the true states. The grey areas show the percentiles of the predictions calculated with each method (dark grey: 68.27%, light grey: 95.45%,
lighter grey: 99%). Note that in the x1 case the Y axis scale is different for each method.

Fig. 8. Results of the different approaches for 10 representative states of the BM1 example. The solid black lines are the predictions of the state
trajectories, and the dashed red lines the true states. The grey areas show the percentiles of the predictions calculated with each method (dark
grey: 68.27%, light grey: 95.45%, lighter grey: 99%).

the maximum ensemble size attainable in this way is too
small, more optimizations can be performed. This is the
approach followed in the present work. Second, the criteria
for including a parameter vector in the ensemble is unclear.
It would be particularly interesting to know if a relaxation
of the threshold would provide better approximations to
the confidence intervals obtained using PPL methods (while
sacrificing that a strict inner bound is obtained). Third, it
remains open if additional criteria should be used (in the
optimization process) to enforce diversity of the vectors in
the ensemble and how this would effect the results. If the
ensemble does not contain sufficient diversity, there is a
risk of underestimating uncertainty. The way in which these

choices affect the results is worthy of further investigation.

5 CONCLUSIONS

In this paper we have compared four different approaches
for uncertainty quantification in dynamic biological models:
FIM, SAM, ENS, and PPL. These four methods estimate
the uncertainty of the time-dependent state variables. We
found that several factors should be taken into account
when choosing a method for a specific problem.

In regard to accuracy of the uncertainty estimates, the
four methods showed good agreement for the α-pinene
model. This is the simplest of the case studies considered,
since it is the smallest one, linear, and fully observed. For
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the larger and more complex (nonlinear) models, more dif-
ferences appeared, as expected. For those three case studies,
SAM and ENS yielded more accurate estimations of the
uncertainty of the predictions than FIM. Yet, the confidence
intervals often did not cover the true trajectory. This might
be due to conceptual limitations or technical problems (e.g.
convergence of the MCMC sampler for SAM). PPL calcu-
lations did not outperform FIM due to computation time
limitations.

In regard to statistical interpretability, Bayesian and Fre-
quentist approaches have arguably the most rigorous foun-
dations. ENS is arguably the technique with less theoret-
ical justification, although, since we have used it with an
uncertainty metric defined in the same way as that of
SAM, it could be regarded as a low-cost approximation
of a Bayesian approach. ENS may also be considered as
an inner approximation of PPL, which provides a lower
bound on the uncertainty estimates, since by construction its
envelopes are narrower than those obtained with a working
PPL method.

Another key consideration is computational cost. The FIM-
based method is the cheapest one, since it only requires one
successful optimization in order to find an optimal param-
eter vector. The most expensive one is the PPL approach,
which can become very expensive – and even inapplicable
– for large models. The computational costs of ENS and
SAM are in the same order of magnitude (although ENS
is generally cheaper than SAM) and they are intermediate
between FIM and PPL.

Parallelization is a way of reducing the wall clock time of
the computations. In this regard, it should be noted that
PPL is easily parallelizable, while other approaches such
as FIM and ENS are not. Yet, the most computationally
demanding step of these methods is the parameter opti-
mization, which can be performed with different techniques.
In principle, parallelizable strategies such as multistart op-
timization could be used to this end [28]; however, in the
present work this step was performed with a metaheuristic
optimization method that is less amenable to parallelization.
SAM methods are generally more difficult to parallelize, but
there are also approaches to exploit computation resources
[29].

Our results suggest a trade-off between computational
scalability, on the one hand, and accuracy and statistical
rigor on the other. At one end of the trade-off there is the
FIM-based method, which should be chosen only if the other
approaches are computationally too expensive for the prob-
lem under consideration. At the other end there is the PPL
method, whose computational cost hampers its application
to high-dimensional problems. ENS and SAM lie between
both extremes; while ENS has a lower computational cost,
SAM provides a clearer statistical interpretation.

In this studies we did not assess the flexibility of the
different uncertainty analysis approaches. While the four
methods are generally applicable to every nonlinear ODE
model, a difference may exist if not only the parameter
values but also the model structure is uncertain. While in the
present work we have not considered this possibility, such
uncertainty can easily be taken into account in the ENS and
the SAM framework by building an ensemble of models
with different structures. For PPL and the FIM-based ap-

proach one could encode the existence of different possible
structures using additional “on/off” parameters, turning
the parameter estimation to a mixed-integer optimization
problem. In general the topic is related to model averaging.

We note that in this study a specific set of state-of-the-
art optimization, profile calculation and sampling methods
was used. This selection influences the results. Yet, we made
an effort to select efficient and robust approaches within the
respective classes, based on previous benchmarking studies
(e.g. [28], [30]) and own experiences. We expect that the
qualitative findings are robust to the choice of the methods
as well as models. Accordingly, we expect this assessment
to be of broad relevance.
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