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Abstract Accurate brain tissue extraction on magnetic resonance imaging (MRI) data is crucial 
for analyzing brain structure and function. While several conventional tools have been optimized 
to handle human brain data, there have been no generalizable methods to extract brain tissues 
for multimodal MRI data from rodents, nonhuman primates, and humans. Therefore, developing 
a flexible and generalizable method for extracting whole brain tissue across species would allow 
researchers to analyze and compare experiment results more efficiently. Here, we propose a domain-
adaptive and semi-supervised deep neural network, named the Brain Extraction Net (BEN), to 
extract brain tissues across species, MRI modalities, and MR scanners. We have evaluated BEN on 
18 independent datasets, including 783 rodent MRI scans, 246 nonhuman primate MRI scans, and 
4601 human MRI scans, covering five species, four modalities, and six MR scanners with various 
magnetic field strengths. Compared to conventional toolboxes, the superiority of BEN is illustrated 
by its robustness, accuracy, and generalizability. Our proposed method not only provides a general-
ized solution for extracting brain tissue across species but also significantly improves the accuracy of 
atlas registration, thereby benefiting the downstream processing tasks. As a novel fully automated 
deep-learning method, BEN is designed as an open-source software to enable high-throughput 
processing of neuroimaging data across species in preclinical and clinical applications.

Editor's evaluation
This article is an important contribution to the field of neuroimaging. The paper proposes a deep 
neural network for brain extraction and an approach to training the network that generalises across 
domains, including species, scanners, and MRI sequences. The authors provide convincing evidence 
that their approach works for a varied set of data, protocols, and species.

Introduction
Cross-species studies from mice, nonhuman primates (NHPs) to humans are important for studying 
evolution, development, and the treatment of neurological disorders. As an ideal non-invasive imaging 
tool, magnetic resonance imaging (MRI) provides high-resolution, multimodal whole brain imaging of 
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mice, NHPs, and humans. Brain tissue extraction on MRI data is a key processing step for the anal-
ysis of brain structure, function, and metabolism, as inaccurate brain extraction can not only lead to 
non-brain signal contamination or misleading registration, compromising the accuracy of downstream 
analyses, but also lead to cross-species comparison bias.

Currently, several brain extraction tools have been specifically designed for certain species or 
MRI modalities. These tools can be categorized into three groups based on their target species: 
(i) humans, (ii) NHPs, and (iii) rodents. Most well-established tools developed for humans, such as 
FreeSurfer (Fischl, 2012), Analysis of Functional NeuroImages (AFNI) (Cox, 2012), and the FMRIB 
Software Library (FSL) (Jenkinson et al., 2012), have been routinely used and integrated into stan-
dard preprocessing pipelines, for example, fMRIPrep (Esteban et al., 2019) and Data Processing and 
Analysis for Brain Imaging (DPABI) (Yan et al., 2016). In contrast, brain extraction in animals is far 
from being standardized or fully automated. Although a few atlas- or morphometry-based tools have 
been developed, for example, for NHPs (Beare et al., 2013; Lohmeier et al., 2019) and for rodents 
(Chang et al., 2021; Liu et al., 2020; Nie and Shen, 2013; Oguz et al., 2014), their performance is 
still limited.

Recently, deep learning (DL)-based algorithms have been developed to enable more accurate 
brain tissue segmentation in animals. For example, U-Net-based algorithms have been proposed to 
perform skull stripping automatically for NHPs (Garcia-Saldivar et al., 2021; Wang et al., 2021; Zhao 
et al., 2018; Zhong et al., 2021) and for rodents (De Feo et al., 2021; Hsu et al., 2020; Valverde 
et al., 2020). Although these DL-based approaches outperform traditional tools such as FreeSurfer 
or FSL in NHP and rodent brains, they have mostly been evaluated on a single species or a single MRI 
modality, and suffer severe performance degradation if they are applied to other species or modalities 
that differ from those represented in their training data. Despite the great diversity in neuroimaging 
studies in terms of species, MRI modalities, and platforms (e.g. different magnetic field strengths), 
accurately extracting brain tissue from images collected via multiple MRI modalities or platforms using 
a single tool remains very difficult, even without additionally attempting to cover various species 
comprising rodents, NHPs, and humans. In summary, a comprehensive and generalizable method to 
address these complex challenges is still lacking because current methods (1) are inflexible, which 
means that the available toolboxes are designed for certain species, modalities, or platforms and are 

eLife digest Magnetic resonance imaging (MRI) is an ideal way to obtain high-resolution images 
of the whole brain of rodents and primates (including humans) non-invasively. A critical step in 
processing MRI data is brain tissue extraction, which consists on removing the signal from the non-
neural tissues around the brain, such as the skull or fat, from the images. If this step is done incorrectly, 
it can lead to images with signals that do not correspond to the brain, which can compromise down-
stream analysis, and lead to errors when comparing samples from similar species. Although several 
traditional toolboxes to perform brain extraction are available, most of them focus on human brains, 
and no standardized methods are available for other mammals, such as rodents and monkeys.

To bridge this gap, Yu et al. developed a computational method based on deep learning (a type 
of machine learning that imitates how humans learn certain types of information) named the Brain 
Extraction Net (BEN). BEN can extract brain tissues across species, MRI modalities, and scanners to 
provide a generalizable toolbox for neuroimaging using MRI. Next, Yu et al. demonstrated BEN’s 
functionality in a large-scale experiment involving brain tissue extraction in eighteen different MRI 
datasets from different species. In these experiments, BEN was shown to improve the robustness and 
accuracy of processing brain magnetic resonance imaging data.

Brain tissue extraction is essential for MRI-based neuroimaging studies, so BEN can benefit both 
the neuroimaging and the neuroscience communities. Importantly, the tool is an open-source soft-
ware, allowing other researchers to use it freely. Additionally, it is an extensible tool that allows users 
to provide their own data and pre-trained networks to further improve BEN’s generalization. Yu et 
al. have also designed interfaces to support other popular neuroimaging processing pipelines and to 
directly deal with external datasets, enabling scientists to use it to extract brain tissue in their own 
experiments.

https://doi.org/10.7554/eLife.81217
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not suitable for cross-species, cross-modality, or cross-platform application and (2) lack automatic 
quality assessment to evaluate the segmentation results, which means labor-intensive manual curation 
is required when erroneous segmentation occurs.

To address these issues, we propose a domain-adaptive and semi-supervised deep neural 
network, named the Brain Extraction Net (BEN, Figure 1), to perform the challenging task of accu-
rately extracting brain tissues across different species (mouse, rat, marmoset, macaque, and human), 
across different MRI platforms with various magnetic field strengths (from 1.5T to 11.7T), and across 
different MRI modalities (structural MRI and functional MRI). Being flexible and generalizable, BEN is 
also considerably faster for brain extraction than using a traditional toolbox. Another feature of BEN 
is that it incorporates an uncertainty-based assessment module that allows it to autonomously control 
the quality of brain segmentation mask outputs. In contrast, when using a traditional toolbox, experts 
need to manually check hundreds of extracted brain scans which is very time-consuming. It is worth 
noting that this laborious manual inspection is not a one-time procedure; it must be repeated after 
making parameter changes when handling new data. We believe that an automated and generalizable 
brain extraction tool such as BEN can reduce intra- and interrater variability while also dramatically 
increasing throughput for the labor-intensive brain extraction task, hence facilitating many neuroim-
aging studies.

Results
Model design
In this study, we have collected 18 datasets (Appendix 1—table 1) to evaluate the generalizability 
of BEN, from different research institutions/cohorts worldwide, including 783 rodent MRI scans, 246 
NHP MRI scans, and 4601 human MRI scans, totaling over 900,000 images. To the best of our knowl-
edge, the datasets used in our study represent the largest-scale deep learning application of brain 
extraction reported to date in terms of the diversity in species, field strengths, and modalities.

Based on the complexity of our datasets, we designed a domain-adaptive and semi-supervised 
network (BEN, Figure 2A) to segment brain MRI volumes into brain and nonbrain tissues. The back-
bone of BEN is a U-shaped network with nonlocal attention architecture (NL-U-Net, Figure 2B). Unlike 

Figure 1. BEN renovates the brain extraction workflow to adapt to multiple species, modalities and platforms. The BEN has the following advantages: 
(1) Transferability and flexibility: BEN can adapt to different species, modalities and platforms through its adaptive batch normalization module and 
semi-supervised learning module. (2) Automatic quality assessment: Unlike traditional toolboxes, which rely on manual inspection to assess the brain 
extraction quality, BEN incorporates a quality assessment module to automatically evaluate its brain extraction performance. (3) Speed: As a DL-based 
method, BEN can process an MRI volume faster (<1 s) than traditional toolboxes (several minutes or longer).

https://doi.org/10.7554/eLife.81217


 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Yu et al. eLife 2022;11:e81217. DOI: https://doi.org/10.7554/eLife.81217 � 4 of 28

Figure 2. The architecture of our proposed BEN demonstrates its generalizability. (A) The domain transfer workflow. BEN is initially trained on the 
Mouse-T2-11.7T dataset (representing the source domain) and then transferred to many target domains that differ from the source domain in either the 
species, MRI modality, magnetic field strength, or some combination thereof. Efficient domain transfer is achieved via an adaptive batch normalization 
(AdaBN) strategy and a Monte Carlo quality assessment (MCQA) module. (B) The backbone of BEN is the nonlocal U-Net (NL-U-Net) used for brain 
extraction. Similar to the classic U-Net architecture, NL-U-Net also contains a symmetrical encoding and decoding path, with an additional nonlocal 
attention module to tell the network where to look, thus maximizing the capabilities of the model. (C) Illustration of the AdaBN strategy. The batch 
normalization (BN) layers in the network are first trained on the source domain. When transferring to a target domain, the statistical parameters in the 
BN layers are updated in accordance with the new data distribution in the target domain. (D) Illustration of the MCQA process. We use Monte Carlo 
dropout sampling during the inference phase to obtain multiple predictions in a stochastic fashion. The Monte Carlo predictions are then used to 
generate aleatoric and epistemic uncertainties that represent the confidence of the segmentations predicted by the network, and we screen out the 
optimal segmentations with minimal uncertainty in each batch and use them as pseudo-labels for semi-supervised learning.

https://doi.org/10.7554/eLife.81217
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previous approaches (Garcia-Saldivar et al., 2021; Zhao et al., 2018; Zhong et al., 2021; De Feo 
et al., 2021; Hsu et al., 2020; Valverde et al., 2020), the segmentation network of BEN is trained 
not from scratch but by leveraging domain transfer techniques achieved via two critical strategies: (i) 
an adaptive batch normalization (Li et al., 2018) (AdaBN, Figure 2C) strategy for adapting the statis-
tical parameters of the batch normalization (BN) layers in a network trained on the source domain 
to the new data distribution of the target domain and (ii) an iterative pseudo-labeling procedure for 
semi-supervised learning in which a Monte Carlo quality assessment (MCQA, Figure 2D) method is 
proposed to assess the quality of the segmentations generated by the present network and to select 
the optimal pseudo-labels to be added to the training set for the next iteration. These two strategies 
are fully automatic and do not require any human intervention. After being trained on a source domain 
with abundant available annotations, BEN incorporates above domain transfer modules to achieve 
high segmentation accuracy in each target domain while requiring zero or only a limited number of 
target-domain annotations. For a detailed explanation of each model component, refer to the subse-
quent section.

Experimental setup
Since T2WI is the most commonly used modality for rodent brain imaging and we have accumulated 
extensive brain scans with high-quality annotations in our previous research studies (Han et al., 2021; 
Yu et al., 2021), we first trained the model on the Mouse-T2WI-11.7T dataset, which served as the 
source-domain dataset, following the conventional fully supervised training strategy. Here, we used 
fivefold cross-validation with a training/testing split of 80%/20% (194/49 out of a total of 243 scans) to 
evaluate the performance of our trained model. The remaining 17 datasets serve as the target-domain 
datasets (one dataset corresponds to one domain). As shown in Appendix 1—table 2, BEN obtained 
a Dice score of 0.99 and a 95% Hausdorff distance (HD95) of 0.14 mm, outperforming other state-of-
the-art (SOTA) approaches. The success of BEN in the source domain ensures that it has the potential 
to excel at a variety of downstream tasks.

For fair and comprehensive comparisons, we execute BEN and two benchmark settings, namely, 
training from scratch (training the model only on the target-domain dataset) and fine-tuning (first 
pretraining on the source-domain dataset and then adjusting the parameters for the target domain), 
on three domain transfer tasks: across species, across modalities and across MRI scanners with various 
magnetic fields. Among these three tasks, cross-species domain transfer is the most challenging 
because of the large anatomical and structural variations between different species.

Transfer performance of BEN across species
We evaluated BEN’s transferability from mouse MRI scans to scans from four other species: rat, 
marmoset, macaque and human. Figure 3A–D shows that the segmentation performance (quantified 
in terms of the Dice score and HD95) improves as the amount of labeled data increases in each of 
the four target species domains, as expected. In particular, BEN requires only two labeled rat MRI 
volumes, three labeled human volumes, and five labeled marmoset or macaque volumes to reach 
a Dice score of 95%, indicating satisfactory segmentation performance. In contrast, the two base-
line methods, training from scratch and fine-tuning (Hsu et al., 2020; Wang et al., 2021), require 
a minimum of 10–15 labeled volumes in the rat, marmoset or macaque domain to reach the same 
threshold, i.e., almost five times as many labels as BEN. The only exception is human brain extraction, 
a relatively simple task compared to animal brain extraction, for which all three methods need only 
three labeled volumes to reach a Dice score of 95%. The more rapid progression to this perfor-
mance threshold indicates a lower annotation cost, which is achieved by BEN through more efficient 
transfer learning. Additionally, visual assessment of several representative segmented brain volumes 
(Figure 3E–H) illustrates that BEN’s segmentations are more consistent with the reference ground 
truth than those of other methods. For example, either training from scratch or fine-tuning often 
leads to false positive errors in the cranial and caudal regions of the brain, which could be caused by 
regional heterogeneity of the scans.

Transfer performance across modalities
We further evaluated BEN’s transferability across different MRI modalities, particularly between struc-
tural and functional modalities. Again, we used the structural Mouse-T2-11.7T dataset as the source 

https://doi.org/10.7554/eLife.81217
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Figure 3. Performance comparison of BEN with two benchmark settings on the task of cross-species domain transfer. (A - D) Curve plots representing 
domain transfer tasks across species, showing the variation in the segmentation performance in terms of the Dice score and 95% Hausdorff distance 
(HD95) (y axis) as a function of the number of labeled volumes (x axis) for training from scratch (black dotted lines), fine-tuning (black solid lines) and BEN 
(red lines). From top to bottom: (A) mouse to rat, (B) mouse to marmoset, (C) mouse to macaque, and (D) mouse to human (ABCD) with an increasing 
amount of labeled training data (n=1, 2, 3, …, as indicated on the x axis in each panel). Both the Dice scores and the HD95 values of all three methods 
reach saturation when the number of labels is sufficient (n>20 labels); however, BEN outperforms the other methods, especially when limited labels are 
available (n≤5 labels). Error bars represent the mean with a 95% confidence interval (CI) for all curves. The blue dotted line corresponds to y(Dice)=0.95, 
which can be considered to represent qualified performance for brain extraction. (E - H) 3D renderings of representative segmentation results (the 
number (n) of labels used for each method is indicated in each panel). Images with fewer colored regions represent better segmentation results. 
(gray: true positive; brown: false positive; blue: false negative). Sample size for these datasets: Mouse-T2WI-11.7T (N=243), Rat-T2WI-11.7T (N=132), 
Marmoset-T2WI-9.4T (N=62), Macaque-T1WI (N=76) and Human-ABCD (N=963).

Figure 3 continued on next page

https://doi.org/10.7554/eLife.81217
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domain, and we transferred the trained model to three other commonly used MRI modalities: EPI, SWI 
and ASL (Figure 3—figure supplement 1). Encouragingly, we found that even without labels, BEN 
could generalize well, with Dice scores of 0.93–0.95 on all three target domains, despite the different 
imaging sequences and parameters between these modalities (Figure 3—figure supplement 1A–C). 
This is an impressive result, as zero-shot learning is generally a challenging problem (Ma et al., 2021; 
Wang et al., 2019b). By comparison, a fine-tuning strategy with zero labeled volumes, that is, a direct 
evaluation of the source-domain-trained model on the target domains, can achieve Dice scores of 
only 0.40–0.77, significantly lower than those of BEN (p<0.001 using the Mann–Whitney test). Note 
that training from scratch is impossible to implement without available labels in the target domain. 
Similar to the case of cross-species domain transfer, with fewer than five labeled volumes, BEN can 
achieve Dice >0.95 in the target domains in these modality transfer tasks (two volumes for T2WI to 
EPI, one volume for T2WI to SWI and five volumes for T2WI to ASL).

Transfer performance across MR scanners with various magnetic field 
strengths
We also examined BEN’s transferability to MRI datasets acquired from multiple MRI scanners with 
various magnetic field strengths (Figure  3—figure supplement 2). The obtained image contrast 
varies depending on the magnetic field strength. Even with the same magnetic field strength, MRI 
scanners from different manufacturers can produce different image contrast, which further increases 
the complexity of the domain shift. Without domain transfer techniques, the direct application of a 
model trained on a certain source domain to a different target domain strongly suffers due to the 
differences in imaging contrast/quality produced by the different scanners; specifically, Dice scores of 
only 0.42, 0.81, and 0.61 are obtained for the 11.7 T to 9.4 T, 11.7 T to 7 T, and 9.4 T to 7 T transfer 
tasks, respectively. In comparison, without additional labeled data in the target domains, BEN outper-
forms these benchmarks by notable margins, with Dice scores of 0.97, 0.95, and 0.91, respectively. 
Apparently, BEN shows the capacity to generalize well to other domains without additional labeled 
data, while the baseline approaches overfit the source domain. With sufficient labeled data in the 
target domain, all three methods perform well, as anticipated.

Comparison with conventional neuroimage processing toolboxes
We compared BEN with several conventional SOTA toolboxes that are widely used in the neuroim-
aging research field, namely, AFNI, FSL, FreeSurfer, and Sherm (Liu et al., 2020), on all 18 datasets. 
Similar to the previous experiments, we used the Mouse-T2-11.7T dataset as the only source-domain 
dataset for BEN, with the remaining 17 datasets serving as the target-domain datasets. For each 
target domain, we used five labeled MRI volumes for the domain transfer task.

As shown in Figure  4, despite consistent performance on human MRI scans, the AFNI, FSL, 
and FreeSurfer toolboxes show large intra- and inter-dataset variations on the four animal species, 
suggesting that these methods are not generalizable to animals. Sherm, a toolbox that was specifically 
developed for rodent MRI, consequently achieves better results for mouse and rat scans but cannot 
be used for primates. In contrast, BEN is substantially superior to these conventional SOTA methods, 
and its performance remains consistent on both animal and human datasets, with median Dice scores 
of 0.97–0.99 for structural images (T2WI) (Figure  4A–E) and functional images (Figure  4—figure 
supplement 1) acquired at MRI scanners with various magnetic field strengths (Figure 4, Figure 4—
figure supplement 2). Better brain segmentation leads to a more accurate estimation of the brain 
volume: as shown in Figure 4F–J, BEN achieves almost perfect linear regression coefficients (LRCs) of 
approximately 1.00 (red lines) when compared to the corresponding expert-labeled brain volumes. In 
contrast, AFNI, FSL and Sherm exhibit poor consistency in animals (LRC = 0.06–0.10 for mouse scans, 

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Performance comparison of BEN with two benchmark settings on the task of cross-modality domain transfer.

Figure supplement 2. Performance comparison of BEN with two benchmark settings on the task of cross-platform domain transfer.

Figure supplement 3. BEN’s transferability is not dependent on specific source dataset.

Figure supplement 4. UMAP visualizes BEN’s transfer learning.

Figure 3 continued

https://doi.org/10.7554/eLife.81217
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Figure 4. BEN outperforms traditional SOTA methods and advantageously adapts to datasets from various 
domains across multiple species, modalities, and field strengths. (A - E) Violin plots and inner box plots showing 
the Dice scores of each method for (A) mouse (n=345), (B) rat (n=330), (C) marmoset (n=112), (D) macaque (n=134), 
and (E) human (n=4601) MRI scans acquired with different magnetic field strengths. The field strength is illustrated 

Figure 4 continued on next page

https://doi.org/10.7554/eLife.81217
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0.01–0.52 for rat scans, 0.41–0.48 for marmoset scans and 0.00–0.59 for macaque scans). Addition-
ally, in Bland–Altman plots (Figure 4K–N), BEN shows higher agreement between the predicted and 
manually annotated volumes than the other toolboxes. The error maps further confirm that BEN has 
better performance compared to other methods (Figure 4—figure supplement 3). The only excep-
tion is for human MRI data, with AFNI and FSL achieving excellent agreement with the ground truth on 
three human datasets, namely, the ABCD, UK Biobank and ZIB datasets (with LRC around 1.00). This 
is not surprising, as these conventional tools are well designed for human brain extraction. Encourag-
ingly, BEN also exhibits comparable or even better performance for the human brain (Figure 4E, J, O), 
with an accelerated speed of 0.6 s per scan on average. This speed is two orders of magnitude greater 
than that of conventional toolboxes (several minutes on average) and three orders of magnitude 
greater than that of manual annotation (an average of 20–30 min; Figure 4—figure supplement 4), 
suggesting the potential of applying BEN in high-throughput studies. Taking into consideration that in 
practice, UK Biobank and Human Connectome Project (HCP) use more time-consuming registration-
based approaches in their preprocess pipelines, which further emphasize the requirement for a fast 
and robust brain extraction toolbox.

In addition, we also compared BEN with published DL-based SOTA brain extraction methods 
(Chou et al., 2011; Hsu et al., 2020; Wang et al., 2021) as well as non DL-based methods (RATS 
(Oguz et al., 2014), Sherm (Liu et al., 2020), AFNI, FSL, and FreeSurfer), on two public datasets, 
CARMI (https://openneuro.org/datasets/ds002870/versions/1.0.0) and PRIME-DE (https://fcon_1000.​
projects.nitrc.org/indi/indiPRIME.html). As shown in Appendix 1—table 3, the segmentation perfor-
mance of BEN, as evaluated using Dice score and the Hausdorff distance, surpasses other methods.

BEN improves the atlas-to-target registration and brain volumetric 
quantification
Accurate brain extraction is a key component of many neuroimaging pipelines, facilitating subsequent 
procedures in longitudinal or cohort analyses. We therefore designed experiments to demonstrate 
BEN’s application for downstream processing and analysis in neuroimaging studies of rodents and 
humans (Figure 5 and Figure 5—figure supplement 1), including atlas registration (Figure 5) and 
volumetric quantification (Figure 5—figure supplement 1). The registration quality was evaluated in 
terms of the Dice scores between the brain structural segmentations of the warped MRI brain images 
and the atlas. Figure 5B, F, J plot the workflow of atlas registration, in which mice are registered to 

with different markers above each panel, and the results for each method are shown in similar hues. The median 
values of the data are represented by the white hollow dots in the violin plots, the first and third quartiles are 
represented by the black boxes, and the interquartile range beyond 1.5 times the first and the third quartiles 
is represented by the black lines. ‘N.A.’ indicates a failure of the method on the corresponding dataset. (F - J) 
Comparisons of the volumetric segmentations obtained with each method relative to the ground truth for five 
species. For better visualization, we select magnetic field strengths of 11.7T for mouse scans (F), 7T for rat scans 
(G), 9.4T for marmoset scans (H), and 3T for both macaque (I) and human (J) scans. Plots for other field strengths 
can be found in Figure 4—figure supplement 2. The linear regression coefficients (LRCs) and 95% CIs are 
displayed above each graph. Each dot in a graph represents one sample in the dataset. The error bands in the 
plots represent the 95% CIs. (K - O) Bland–Altman analysis showing high consistency between the BEN results and 
expert annotations. The biases between two observers and the 95% CIs for the differences are shown in the tables 
above each plot. Δvolume = predicted volume minus annotated volume. Each method is shown using the same 
hue in all plots (gray: AFNI; blue: FSL; green: FreeSurfer; purple: Sherm; red: BEN). Different field strengths are 
shown with different markers (●: 11.7T; ×: 9.4T; ◆: 7T; ★: 4.7T; +: 3T; ▲: 1.5T). The Dice scores compute the overlap 
between the segmentation results and manual annotations.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. BEN outperforms traditional SOTA methods in functional MRI scans acquired from multiple 
species on different magnetic field strengths.

Figure supplement 2. Linear regression coefficients and Bland–Altman analysis demonstration of the rest 
datasets.

Figure supplement 3. Error maps of BEN and SOTA methods.

Figure supplement 4. Execution time comparison of BEN with other methods.

Figure 4 continued

https://doi.org/10.7554/eLife.81217
https://openneuro.org/datasets/ds002870/versions/1.0.0
https://fcon_1000.projects.nitrc.org/indi/indiPRIME.html
https://fcon_1000.projects.nitrc.org/indi/indiPRIME.html
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Figure 5. BEN improves the accuracy of atlas registration by producing high-quality brain extraction results. (A) The Dorr space, (E) the SIGMA space 
and (I) the MNI space, corresponding to the mouse, rat and human atlases, respectively. (B, F, J) Integration of BEN into the registration workflow: 
(i) Three representative samples from a mouse (n=157), a rat (n=88), and human (n=144) in the native space. (ii) The BEN-segmented brain MRI volumes 
in the native space as registered into the Dorr/SIGMA/MNI space using the Advanced Normalization Tools (ANTs) toolbox, for comparison with the 
registration of AFNI-segmented/original MRI volumes with respect to the corresponding atlas. (iii) The warped volumes in the Dorr/SIGMA/MNI spaces. 

Figure 5 continued on next page

https://doi.org/10.7554/eLife.81217
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Dorr (Dorr et al., 2008), rats to SIGMA (Barrière et al., 2019), and humans to MNI (Evans et al., 
2005). Quantitative evaluations of two critical brain structures, the thalamus and hippocampus 
(Figure 5C, D, G, H, K, L), demonstrate that BEN can tremendously enhance the registration quality; 
registration with AFNI achieves a Dice score of only 0.2–0.6, which can be improved to approximately 
0.8 when using BEN for brain extraction (p<0.001).

As the next step, we examined the contribution of BEN to brain volumetric quantification in rodent 
longitudinal studies. Two longitudinal MRI datasets, representing adult mice (8, 12, 20, and 32 weeks 
old, Figure 5—figure supplement 1A) and adolescent rats (3, 6, 9, and 12 weeks old, Figure 5—
figure supplement 1C), were collected. As shown in Figure 5—figure supplement 1B, after regis-
tration with BEN, atlas-based morphometry analysis showed that the volumes of two representative 
brain regions, the thalamus and hippocampus, remained stable for the adult mice from 8 weeks old 
to 32 weeks old (purple lines). In contrast, calculating the volumes of these brain regions without 
BEN led to unreliable quantifications (green lines) due to poor atlas registration resulting in the prop-
agation of error to the volumetric quantifications. Similarly, BEN improved brain volumetric quanti-
fication in adolescent rats and yielded a plausible pattern of growth from 3 weeks old to 12 weeks 
old (Figure 5—figure supplement 1D, purple boxes), suggesting rapid development of these two 
critical brain regions during this period, consistent with findings in the literature (Calabrese et al., 
2013; Hamezah et al., 2017). In comparison, the atlas-based segmentations were poor when without 
BEN, and no obvious trend in the volumetric statistics was apparent (green boxes). These results indi-
cate that BEN not only is able to tremendously improve the registration accuracy and contribute to 
routine brain MRI processing but also is critical for longitudinal MRI studies, as it improves volumetric 
quantification.

BEN represents interrater variations in the form of uncertainty maps
Due to different levels of annotation experience, disagreements or disputes between human annota-
tors remain a problem. To quantitatively assess the bias of interrater disagreements, we carried out a 
case study of the annotation of brain functional MRI images from mice, rats, marmosets, and macaques. 
A total of 9 raters participated in the experiments: two senior raters (defined as having >5 years of 
experience) and seven junior raters (defined as having 1–2 years of experience). The consensus region 
of the two senior raters’ annotations was taken as the ground truth (reference) for comparison with 
the annotations of the seven junior raters. BEN generated an uncertainty map through Monte Carlo 
sampling during the inference process, without additional adjustment of the network structure.

As shown in Figure  6, the segmentations produced by BEN match the ground truth very well 
across different species. The attention maps and uncertainty maps display complementary informa-
tion about the brain morphology; specifically, the attention maps focus on the image signal within 
the brain tissue in MRI images (Figure 6C), while the uncertainty maps provide information on the 
boundaries between the brain and nonbrain tissues (Figure 6D). Interestingly, for each rater’s annota-
tions, disputes always occur at the brain boundaries (Figure 6E), similar to BEN’s uncertainty map. The 
concurrence between the projections of BEN’s uncertainty maps and the rater disagreement maps 
(Figure 6—figure supplement 1) further demonstrates that BEN has the potential to interrogate its 
own predictions and that its uncertainty measure can be deemed an alternative proxy for rater diver-
gence. From an intra-observer perspective, the nature of the slice-wise approach potentially impacts 
the consistency of attention maps for human scans with isotropic spatial resolution. One ideal solution 
is to extend BEN to the 2.5D method or use 3D convolution kernels for these imaging cohorts.

Furthermore, to evaluate the annotation variability between different raters in a more quantitative 
fashion, we calculated the Dice scores and found that none of them was higher than 0.96 across the 

(iv) Error maps showing the fixed atlas in green and the moving warped volumes in magenta. The common areas where the two volumes are similar 
in intensity are shown in gray. (v) The brain structures in the warped volumes shown in the atlas spaces. In our experiment, BEN significantly improves 
the alignment between the propagated annotations and the atlas, as confirmed by the improved Dice scores in the (C, G, K) thalamic and (D, H, L) 
hippocampal regions (box plots: purple for BEN, green for w/o BEN; volumes: n=157 for the mouse, n=88 for the rat, n=144 for the human; statistics: 
paired t-test, n.s.: no significance, *p<0.05, **p<0.01, ***p<0.001).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Atlas registration with BEN benefits brain volumetric quantification in longitudinal studies.

Figure 5 continued

https://doi.org/10.7554/eLife.81217
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Figure 6. BEN provides a measure of uncertainty that potentially reflects rater disagreement. (A) Representative EPI images from four species (in each 
column from left to right, mouse, rat, marmoset, and macaque). (B) BEN segmentations (red semi-transparent areas) overlaid with expert consensus 
annotations (red opaque lines), where the latter are considered the ground truth. (C) Attention maps showing the key semantic features in images as 
captured by BEN. (D) Uncertainty maps showing the regions where BEN has less confidence. The uncertainty values are normalized (0–1) for better 
visualization. (E) Annotations by junior raters (n=7) shown as opaque lines of different colors. (F) Bar plots showing the Dice score comparisons between 
the ground truth and the BEN segmentation results (red) as well as the ground truth and the junior raters’ annotations (gray) for all species (gray: raters, 
n=7, red: Monte Carlo samples from BEN, n=7; statistics: Mann–Whitney test, **p<0.01). Each dot represents one rater or one sample. Values are 
represented as the mean and 95% CI. (G) Correlation of the linear regression plot between the Dice score and the normalized uncertainty. The error 
band represents the 95% CI. Each dot represents one volume (species: mouse; modality: T2WI; field strength: 11.7T; n=133; r=−0.75).

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. BEN’s uncertainty is consistent with interrater' disagreement.

Figure 6 continued on next page

https://doi.org/10.7554/eLife.81217
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four species (Figure 6—figure supplement 2). Specifically, the Dice scores between each junior rater 
and the ground truth provided by the senior raters are between 0.92 and 0.94 for the four species, 
and these are surpassed by BEN, with Dice scores of 0.96–0.97 (p<0.01) (Figure  6F). In addition 
to animal studies, we performed a parallel experiment to verify BEN’s predictions for human brain 
MRI. As shown in Figure 6—figure supplement 3, similar to the animal segmentation results, BEN 
produces attention and uncertainty maps to support interpretation of BEN’s robustness compared 
with conventional toolboxes.

We further examined the correlation between BEN’s uncertainty and segmentation quality. As 
shown in Figure 6G, the estimates of uncertainty at the volume level are negatively correlated with 
the Dice score (r=–0.75), suggesting that BEN’s uncertainty measure can be considered as an alterna-
tive metric for assessing the quality of segmentations at the time of inference, when the Dice score 
cannot be computed because the ground-truth segmentation is not available.

Discussion
In this study, we introduce BEN, a generalized brain extraction tool for MRI data from rodents, NHPs, 
and humans. Our results demonstrate BEN’s transferability across different species, modalities, and 
platforms thanks to several key modules: an AdaBN module, a semi-supervised learning module, 
and an uncertainty estimation module (the contribution of each module refers to ablation study in 
Appendix 1—tables 4 and 5). To facilitate BEN’s usage, we also provide interfaces to make BEN 
compatible with several popular toolboxes, including AFNI, FSL, and FreeSurfer, and therefore easy 
to integrate into conventional neuroimage processing pipelines.

Transferability
By virtue of its modules for domain adaptation and transfer learning, BEN is capable of handling 
the heterogeneity in MRI contrast associated with different subjects, MRI scanners, and imaging 
sequences. It is worth noting that the source domain for BEN can be freely chosen. In this study, 
we switched the source domain for BEN’s deployment from a mouse dataset to a human dataset 
(Figure 3—figure supplement 3). Similar to the successful transfer of BEN from mouse data to human 
data (Dice scores of 0.96 with only 3 labeled scans, Figure 3), BEN can also achieve an impressive 
Dice score higher than 0.95 when only 1 labeled volume is used for transfer from human data to 
mouse data. This dual transferability between mouse and human data demonstrates that BEN can 
take advantage of the semantic features extracted from one domain and transfer the corresponding 
learned information to the other domain despite the enormous gap in brain morphometry between 
the two species. This also indicates that the source domain could be represented by any brain MRI 
dataset from any other species. On the project website, we have released trained model weights for 
five species (mouse, rat, marmoset, macaque, and human) to allow users to start domain transfer from 
the closest species to those of interest to them with minimal or even zero additional annotations.

To interpret how transfer learning affects network performance, we used uniform manifold approx-
imation and projection (UMAP) (McInnes et al., 2018) to visualize the feature distributions before and 
after domain transfer (details are described in the Materials and methods section). Figure 3—figure 
supplement 4 shows a representative cross-modality transfer task from Mouse-T2WI-11.7T to Mouse-
EPI-11.7T, which shows substantial perceptual differences. Although the semantic features are sepa-
rated by the network in the source domain (Figure 3—figure supplement 4A), they are intermingled 
in the target domain without transfer learning (Figure 3—figure supplement 4B). In contrast, only 
after BEN’s transfer modules are those features again separated in the target domain (Figure 3—
figure supplement 4C), demonstrating the importance of using the domain transfer strategy.

Automatic quality assessment and ‘virtual’ annotation
Just as divergences always exist among human annotators, the quality of neural-network-generated 
segmentations may also vary greatly among diverse sample data due to the inherent data distribution 

Figure supplement 2. Interrater disagreement.

Figure supplement 3. BEN provides a measure of uncertainty that potentially reflects the disagreement of conventional toolboxes in human data.

Figure 6 continued

https://doi.org/10.7554/eLife.81217
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or noise (Baumgartner et al., 2019; Hüllermeier and Waegeman, 2021; Zeng et al., 2021). However, 
the uncertainty of a network’s decisions regarding its generated segmentations can be assessed via 
Monte Carlo sampling in many medical image analyses (Jungo et al., 2018; Mehrtash et al., 2020; 
Wang et  al., 2019a). This is also the basis of BEN’s uncertainty assessment module. Our results 
demonstrate that BEN’s uncertainty map represents the expected interrater variations and that the 
uncertainty linearly increases as BEN’s performance decreases. Based on the previously presented 
rater experiment (Figure 6), BEN generates segmentations that are comparable to the consensus 
segmentations of two senior experts with high consistency, indicating that BEN can apply consistent 
labeling rules alongside automatic quality assessments when constructing large datasets to prevent 
subjective bias in large-scale research.

In addition, BEN is able to produce uncertainty-guided pseudo-labels with high confidence by 
using a semi-supervised learning strategy. Note that on the ABCD human dataset, BEN achieves 
competitive or even superior performance with fewer than 5 labels, nearly perfectly delineating thou-
sands of scans (n=3250; Figure 4E and J & O); this further demonstrates that BEN can propagate 
annotations from limited labeled data to unlabeled data and produce a larger set of ‘virtual’ labels for 
training, suggesting that it can be easily applied to large-scale datasets with limited annotations for 
rapid automatic deployment. Nevertheless, one limitation of our model is that BEN’s quality assess-
ment may result in deviations when the MRI images are of poor quality, such as motion artifacts and 
low signal-to-noise ratios (SNRs). In future work, this procedure may be updated by incorporating 
conditional random fields (Xie et al., 2021) or heuristic algorithms.

Compatibility with other toolboxes and deployment
BEN was developed in Python and is equipped with well-designed interfaces to support most types 
of software encountered in existing traditional pipelines (Appendix 1—table 6), including FSL, AFNI, 
FreeSurfer, Advanced Normalization Tools (ANTs), and statistical parametric mapping (SPM). We also 
provide tutorials and demo examples to flatten the learning curve and lower the entry barrier for 
researchers deploying our new algorithm. Moreover, BEN was built under the open-source paradigm 
from the beginning and has already been tested on various types of MRI data from many imaging 
centers. We have released packaged interfaces for BEN and source codes, including the imple-
mentations for domain transfer, semi-supervised training and quality control. Additionally, we have 
distributed the model weights trained on five species (mouse, rat, marmoset, macaque and human). 
Applications to other target domains can also benefit from our pretrained models, requiring the addi-
tion of zero or only a small number of labeled images to update the model.

For the introduction of a new dataset, we suggest that the user do as follows. (1) First, use 
BEN to load the pretrained weights for the closest corresponding species. (2) Run unsupervised 
domain adaptation on the user’s dataset. The customized weight will be updated and saved auto-
matically, and the user will then use it to execute BEN on their data. (3) Consider labeling several 
scans to fine-tune the model if the self-configuring weights do not yield satisfactory performance, 
or the target species is beyond the scope of our datasets. The domain transfer procedures will be 
performed automatically, without human intervention. (4) If BEN is deployed to an external image 
domain/cohort, retraining the BEN might be required. In addition, there are two options to improve 
BEN’s generalizability. (1) The scans selected for retraining or fine-tuning BEN should be represen-
tative of target cohorts, taking into consideration field bias and brain injury (if any). (2) Pre- and 
post-processing steps are simple to execute yet effective, and these could be easily integrated 
into the BEN pipeline. For example, we have already provided largest connected region selection, 
orientation detection, conditional random field optimization, etc. as plug-and-play functions in our 
pipeline.

When dealing with external datasets, there could be a couple of reasons that cause suboptimal 
performance using a pretrained BEN. On the one hand, domain generalization is a challenging task 
for deep learning. Although BEN could adapt to new out-of-domain images without labels (zero-shot 
learning) when the domain shift is relatively small (e.g. successful transfer between modalities and 
scanners with different MR strengths), the domain gap existing in different cohorts might compromise 
the performance. In this case, additional labeled data and retraining are indeed necessary for BEN 
to perform few-shot learning. On the other hand, users can provide their own data and pretrained 
network as a new source domain to take advantage of BEN’s flexibility, which does not bind to a fixed 

https://doi.org/10.7554/eLife.81217
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source domain, therefore facilitating domain generalization by reducing the domain gap between the 
new source and target domains.

BEN is designed as an extensible toolbox and follows the open-access paradigm, allowing users 
to save their updated models and share their weights for use by the neuroimaging community. The 
accumulation of additional imaging data will further improve the performance and generalization of 
BEN and support the exploration of complex neuroimaging research.

Conclusion
In summary, we have demonstrated the superiority of BEN in terms of accuracy, robustness and 
generalizability in a large-scale study involving eighteen different MRI datasets. BEN improves the 
robustness of atlas-to-target registration and brain volumetric quantification in neuroimaging. BEN 
is an open-source and modularly designed toolbox that provides uncertainty maps to quantify the 
confidence of the network’s decisions and to model interrater variability. We believe that BEN has 
great potential to enhance neuroimaging studies at high throughput for both preclinical and clinical 
applications.

Materials and methods
Datasets
We conducted experiments to evaluate BEN on eighteen datasets covering five distinct species, 
namely, mouse, rat, marmoset, macaque, and human; four MRI modalities, namely, T1- and 
T2-weighted imaging (T1WI/T2WI), echo-planar imaging (EPI), susceptibility-weighted imaging 
(SWI) and arterial spin labeling (ASL); and six MRI platforms spanning a wide range of magnetic field 
strengths, namely, 1.5T, 3T, 4.7T, 7T, 9.4T, and 11.7T. Each dataset contains 14–3250 scans acquired 
from different research institutions/cohorts worldwide, including China, the United States, the United 
Kingdom, France, Canada, and the Netherlands. Partial rodent MRI data collection were approved by 
the Animal Care and Use Committee of Fudan University, China. The rest rodent data (Rat-T2WI-9.4T 
and Rat-EPI-9.4T datasets) are publicly available (CARMI: https://openneuro.org/datasets/ds002870/​
versions/1.0.0). Marmoset MRI data collection were approved by the Animal Care and Use Committee 
of the Institute of Neuroscience, Chinese Academy of Sciences, China. Macaque MRI data are publicly 
available from the nonhuman PRIMatE Data Exchange (PRIME-DE) (https://fcon_1000.projects.nitrc.​
org/indi/indiPRIME.html; Milham et  al., 2018). The Zhangjiang International Brain Biobank (ZIB) 
protocols were approved by the Ethics Committee of Fudan University (AF/SC-03/20200722) and 
written informed consents were obtained from all volunteers. UK Biobank (UKB) and Adolescent Brain 
Cognitive Development (ABCD) are publicly available. Detailed information on each dataset is shown 
in Appendix 1—table 1 and summarized below:

1.	 Mouse: includes seven datasets consisting of 453 scans (14,358 slices), namely, Mouse-T2WI-
11.7T (243 scans), Mouse-T2WI-9.4T (14 scans), Mouse-T2WI-7T (14 scans), Mouse-EPI-11.7T 
(54 scans), Mouse-EPI-9.4T (20 scans), Mouse-SWI-11.7T (50 scans), and Mouse-ASL-11.7T (58 
scans).

2.	 Rat: includes four datasets consisting of 330 scans (11,264 slices), namely, Rat-T2WI-11.7T (132 
scans), Rat-T2WI-9.4T (55 scans), Rat-T2WI-7T (88 scans) and Rat-EPI-9.4T (55 scans).

3.	 Marmoset: includes two datasets consisting of 112 scans (4,060 slices), namely, Marmoset-
T2WI-9.4T (65 scans) and Marmoset-EPI-9.4T (50 scans).

4.	 Macaque: includes two datasets consisting of 134 scans (22,620 slices), namely, Macaque-T1WI 
(76 scans) and Macaque-EPI (58 scans).

5.	 Human: includes three datasets consisting of 4,601 scans (87,3453 slices): Human-ABCD (3,250 
scans), Human-UKB (963 scans) and Human-ZIB (388 scans).

Backbone network architecture
The backbone of BEN is based on a U-shaped architecture (Ronneberger et  al., 2015), as is 
commonly used for biomedical volumetric segmentation (Isensee et al., 2021). We use 2D convolu-
tion kernels rather than 3D kernels here to accelerate the execution speed and reduce the demand 
for GPU memory. In addition, most rodent and NHP scans have an anisotropic spatial resolution, so 
3D convolution is not appropriate. As shown in Figure 2B, the backbone network consists of five 

https://doi.org/10.7554/eLife.81217
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symmetrical pairs of encoding and decoding blocks, which perform contraction and expansion opera-
tions, respectively, during the data feedforward process. Each encoding/decoding block is composed 
of two convolutional layers with 3*3 convolution kernels, followed by a BN layer, an exponential linear 
unit (ELU) function and a 2*2 max-pooling operation with stride 2. The first encoding block results 
in 16 feature channels, and every subsequent encoding block doubles the number of channels. Each 
decoding block is symmetric with respect to the encoding block at the corresponding level, except 
that the max pooling layer is replaced with transposed convolutional layers to upsample the feature 
map. In the last decoding block, we add a 1*1 convolutional layer with a 3*3 kernel size and a sigmoid 
activation function to map the 16 feature channels to a binary probability map that softly assigns each 
pixel to the brain and nonbrain tissue classes.

Additionally, we add a self-attention mechanism in the bottom layer of the U-Net to yield higher 
accuracy and smoother boundaries. A self-attention block (Wang et al., 2017) is used to improve 
the model performance for various domain tasks. Concretely, we use a nonlocal attention layer in the 
bottleneck of the network to model long-range and global contextual dependencies over feature 
representations. This attention mechanism calculates a weighted saliency map at each position in the 
feature map that accounts for the global contextual response, thus better assisting the network in 
distinguishing brain and nonbrain tissue in specific domains with different contrast characteristics and 
distributions.

The model takes preprocessed MRI images as input (for details, refer to the subsection titled ‘Model 
input preprocessing’) and merges successive mask slices to reconstruct the original 3D volumes. Here, 
we mainly focus on the structure and components of the model as well as the training and evaluation 
procedures in the source domain. The pretrained model weights will be retained for the transfer 
learning and domain adaptation stages, which are discussed in the next section.

Adaptive batch normalization (AdaBN)
To mitigate the domain shift problem encountered when DL models are applied to different domains, 
we adopt the AdaBN strategy (Li et al., 2018). Standard BN layers use fixed statistical descriptors 
for multiple domains, thus damaging the generalization ability of the trained model. In contrast, in 
AdaBN, the statistical descriptors are updated in accordance with the specific target domain during 
deployment, resulting in better model generalization. Concretely, when deployed to target domains, 
we first freeze all network layers other than batch normalization layers, and then perform forward 
propagation using target domain data without labels being present. The differences in intensity distri-
butions that exist between the source and target domains will be captured via batch normalization 
layers, and biased statistical descriptors (mean and variance) will be corrected. For our brain segmen-
tation task, AdaBN can help the model to automatically adapt to the different MRI intensity distribu-
tions associated with different species, modalities and platforms without requiring modifications to 
the model architecture or model hyperparameters.

Semi-supervised learning with pseudo-labels using Monte Carlo quality 
assessment (MCQA)
Although AdaBN facilitates domain transfer, it alone cannot completely solve the challenging problem 
of transfer learning between species, as the gap between different species lies not only in the MRI 
intensities but also in the brain structure and geometry. In this case, additional supervision is still 
necessary to guide the model to achieve highly accurate brain segmentation in the new species. 
Instead of common approaches such as training from scratch for fine-tuning, we propose a novel semi-
supervised learning strategy for BEN. In addition to sparsely labeled data in the target domain, we 
make use of abundant unlabeled data by means of an iterative pseudo-labeling process (Figure 2D): 
we first evaluate the model on all unlabeled data and then select predictions that are associated 
with the lowest uncertainty (highest confidence) based on MCQA (detailed in subsequent sections). 
The predictions selected through quality screening are taken as pseudo-labels and are added to the 
training set in the next iteration. More specifically, we use a hybrid loss function:
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is an important parameter that balances the relative contributions of true labels and pseudo-labels 
in the algorithm: we set this parameter to zero in the first several iterations, as our initial model is 
not good enough to make confident predictions, and then to a hyperparameter ‍λ‍ from iteration 

‍Tsl‍ onward. The whole semi-supervised training procedure can be summarized as follows: The total 
number of training epochs is denoted by ‍Tepoch‍ , and the current epoch is denoted by ‍t‍. During the 
first phase (‍0 < t < Tsl‍), the network is trained directly on the target domain using labeled data. Then, 
in the next phase (‍Tsl ≤ t ≤ Tepoch‍), unlabeled data with pseudo-labels additionally participate in the 
semi-supervised learning process by contributing to the loss function as determined by the balance 
coefficient ‍α

(
t
)
‍. Empirically, we set ‍Tsl = 20‍, ‍λDice = 1‍, ‍λsl = 0.5‍, and ‍ς ‍ is the minimal uncertainty value 

in each minibatch.

Model training implementation
The model was trained with the Dice loss function using the adaptive moment estimation (Adam) opti-
mizer for 50 epochs with a batch size of 16 and learning rates of 10-4 and 10-5 in the source domain and 
all target domains, respectively. For training and testing on each domain, a separate cross-validation 
process was performed to assess the final performance of our method, with progressively larger 
numbers of observations (n=1, 2, 3,…) assigned to the training set while the rest of the samples were 
assigned to the test set. The mechanisms for domain transfer and semi-supervised learning have been 
described in previous sections.

Model input preprocessing
To lessen the variation across individual scans, we applied the following processes on all datasets. First, 
we applied the N4 algorithm (Tustison et al., 2010) to remove bias fields in the MRI scans. Second, 
we normalized each image as follows (with ‍Vnorm‍ denoting the normalized MRI volume and ‍V1‍ and ‍V99‍ 
denoting the 1st and 99th percentiles, respectively, of the intensity values in the input volumes):

	﻿‍
Vnorm = V − V1

min
V99

max − V1
min ‍�

(3)

For all functional MRI data, our model can process each time-point image and produce a corre-
sponding binary mask. For consistency with the structural modalities, we used the results computed 
for the 5th time point to calculate the performance metrics.

The processed volumes were then fed into the network as input, slice by slice, after being resized 
or cropped to a matrix with dimensions of 256*256 for compatibility with the network. In addition, 
data augmentation was employed to empower the network to learn invariant characteristics from 
data exhibiting variations among different subjects and protocols. For each input slice, the following 
transformations were implemented: random rotation (±10), random scaling (90–110%) and random 
translation (up to ± 10 pixels along each axis). For example, the rotation and translation operators 
can imitate conditions in which the subjects are represented in diverse coordinate systems and have 
different head orientations. For the case of inconsistent voxel sizes across different sites and even for 
the lifespan of one individual during brain maturation, scaling can simulate corresponding image data.

Model output postprocessing for uncertainty estimation and quality 
assessment
To understand the intrarater divergences as represented in BEN and provide valuable insights into 
model interpretability for clinicians, we utilize dropout layers in the network to obtain uncertainty 
measures for the model-generated segmentations.

There are two principal types of prediction uncertainties for deep neural networks: aleatoric uncer-
tainty and epistemic uncertainty (Hüllermeier and Waegeman, 2021; Kwon et al., 2020). Aleatoric 
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uncertainty captures the potential inherent noise of the input test data, and therefore, this type of 
uncertainty is unlikely to be lessened by increasing the amount of training data. In contrast, epistemic 
uncertainty refers to the uncertainty in the model parameters, which represents the lack of knowledge 
of the best model. In DL networks, epistemic uncertainty can be caused by a lack of training data 
in certain areas of the input domain and will decrease with increased diversity of the training data 
distribution.

In our study, approximate Bayesian inference was used to estimate uncertainty. Specifically, 
keeping the dropout layers active in the inference phase, we collected N independent samples for 
each subject. The pixelwise uncertainties of each sample are given by the following formula:

	﻿‍

Uncertainty =

���� 1
T

T∑
t=1

pt
(
1 − pt

)

� �� �
aleatoric

+

���� 1
T

T∑
t=1

(
pt − p̄

)2

� �� �
epistemic ‍�

(4)

where ‍pt‍ denotes the sigmoid probability output in the final layer of the network in the inference 
stage and ‍

−p‍ is the average prediction for all inferences. In this work, we chose ‍T = 10‍, which offers a 
good trade-off between the reliability of uncertainty estimation and the time consumed for Monte 
Carlo sampling, except in the human expert disagreement study, for which we set ‍T = 7‍ for consis-
tency with the number of clinical raters.

Based on these estimated uncertainty observations, we can filter out relatively unreliable predic-
tions (usually those with high uncertainty values) based on the guidance obtained through statis-
tical analysis, thereby realizing quality assessment. Moreover, relatively convincing predictions can be 
further utilized as pseudo-labels to guide the semi-supervised learning process.

Baseline methods and traditional toolbox settings
To demonstrate the utility of domain transfer, we additionally tested two baseline methods of training 
the BEN model: training from scratch and fine-tuning. These methods share the same network archi-
tecture, learning rate, batch size and number of training epochs. For training from scratch, the weights 
of the layers in the network are randomly initialized, and then all weights are adjusted based on the 
training set. In the second baseline method, the training process is initialized on the source domain, 
and the weights are then fine-tuned to the new task in accordance with the target-domain dataset.

We also compared BEN with four widely used tools FSL (Jenkinson et  al., 2012), AFNI (Cox, 
2012), FreeSurfer (Fischl, 2012), and Sherm (Liu et al., 2020) representing SOTA processing pipe-
lines in their respective research fields. We adjusted the parameters provided by these traditional 
toolboxes to adapt to the different domain datasets to achieve better performance; however, for 
situations in which the demands were beyond the scope of the capability of the tools, the default 
parameters were used instead. The detail parameter settings for these four methods are shown in 
Appendix 1—table 7.

Ground-truth generation
The ground-truth brain and nonbrain regions for each domain dataset were manually annotated by 
two experts in the field of brain anatomy. Discrepancies were addressed through consensus. In addi-
tion, the labels for the macaque dataset were provided by a previous study (Wang et al., 2021), and 
we made no further modifications. The human brain masks of the ABCD, UKB, and ZIB datasets used 
in this work were obtained from efforts and contributions reported in previous literature (Peng et al., 
2021; Alfaro-Almagro et al., 2018; Casey et al., 2018; Gong et al., 2021; Miller et al., 2016). All of 
the labels have been visually inspected.

Evaluation metrics
The following two metrics are used to quantitatively compare the segmentation performance. The 
Dice score measures the overlap between the segmentation results and the ground truth. The defini-
tion of this measure is formulated as follows:

	﻿‍
Dice = 2|S ∩ G|

|S| + |G| ‍�
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where ‍S‍ and ‍G‍ denote the predicted and ground-truth label maps, respectively. Higher scores 
indicate better consistency. The 95% Hausdorff distance (HD95) measures how far the segmentation 
results and ground truth for a metric space are from each other as given by the following equation:

	﻿‍
HD95

(
S, G

)
= max

(
E95th

s∈∂
(

S
) min

g∈∂
(

G
)
{
∥s − g∥

}
, E95th

g∈∂
(

G
) min

s∈∂
(

S
)
{
∥s − g∥

})
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where ‍∂
(
·
)
‍ represents the boundary of the set and 

‍
E95th

s∈∂
(

S
)
‍
 and 

‍
E95th

g∈∂
(

G
)
‍
 are the 95th percentiles of 

the Euclidean distances between pixels in ‍S‍ and ‍G‍, respectively.

Statistics
Statistical analyses were performed using SciPy (version 1.3.3) in Python (version 3.6.10).

The exact sample values and results of statistical tests, including the Mann–Whitney test and paired 
t-test, are provided in the figure captions or within the figure panels themselves. Differences are 
considered statistically significant when p<0.05.

Code availability
We release BEN and pretrained models via https://github.com/yu02019/BEN (Yu, 2023).
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The following previously published datasets were used:
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Cerri DH, Walton L, 
Broadwater M, Lee 
S-H, Shih YI
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Appendix 1

Appendix 1—table 2. Performance comparison of BEN with SOTA methods on the source domain 
(Mouse-T2WI-11.7T).
Dice: Dice score; SEN: sensitivity; SPE: specificity; ASD: Average Surface Distance; HD95: the 95-th 
percentile of Hausdorff distance.

Method Dice SEN SPE ASD HD95

Sherm 0.9605 0.9391 0.9982 0.6748 0.4040

AFNI 0.9093 0.9162 0.9894 1.9346 0.9674

FSL 0.3948 1.0000 0.6704 20.4724 5.5975

BEN 0.9859 0.9889 0.9982 0.3260 0.1436

Appendix 1—table 3. Performance comparison of BEN with SOTA methods on two public datasets.
Dice: Dice score; Jaccard: Jaccard Similarity; SEN: sensitivity; HD: Hausdorff distance.

CARMI dataset * (Rodent)

T2WI

Methods Dice Jaccard SEN HD (voxels)

RATS (Oguz et al., 2014) 0.91 0.83 0.85 8.76

PCNN (Chou et al., 2011) 0.89 0.80 0.90 7.00

SHERM (Liu et al., 2020) 0.88 0.79 0.86 6.72

U-Net (Hsu et al., 2020) 0.97 0.94 0.96 4.27

BEN 0.98 0.95 0.98 2.72

EPI

Methods Dice Jaccard SEN HD (voxels)

RATS (Oguz et al., 2014) 0.86 0.75 0.75 7.68

PCNN (Chou et al., 2011) 0.85 0.74 0.93 8.25

SHERM (Liu et al., 2020) 0.80 0.67 0.78 7.14

U-Net (Hsu et al., 2020) 0.96 0.93 0.96 4.60

BEN 0.97 0.94 0.98 4.20

PRIME-DE † (Macaque)

T1WI

Methods Dice Jaccard SEN HD (voxels)

FSL 0.81 0.71 0.96 32.38

FreeSurfer 0.56 0.39 0.99 42.18

AFNI 0.86 0.79 0.82 25.46

U-Net (Wang et al., 2021) 0.98 - - -

BEN 0.98 0.94 0.98 13.21

*https://openneuro.org/datasets/ds002870/versions/1.0.0.
†https://fcon_1000.projects.nitrc.org/indi/indiPRIME.html.

Appendix 1—table 4. Ablation study of each module of BEN in the source domain.
(a) training with all labeled data using U-Net. The backbone of BEN is non-local U-Net (NL-U-Net). 

https://doi.org/10.7554/eLife.81217
https://openneuro.org/datasets/ds002870/versions/1.0.0
https://fcon_1000.projects.nitrc.org/indi/indiPRIME.html
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(b) training with 5% labeled data. (c) training with 5% labeled data using BEN’s semi-supervised 
learning module (SSL). The remaining 95% of the unlabeled data is also used for the training. Since 
this ablation study is performed on the source domain, the adaptive batch normalization (AdaBN) 
module is not used. Dice: Dice score; SEN: sensitivity; SPE: specificity; HD95: the 95-th percentile of 
Hausdorff distance.

Method

Scans used Metrics

Labeled Unlabeled Dice SEN SPE HD95

aU-Net 243 0 0.9773 0.9696 0.9984 0.2132

aBackbone 243 0 0.9844 0.9830 0.9984 0.0958

bU-Net 12 0 0.9588 0.9546 0.9945 1.1388

bBackbone 12 0 0.9614 0.9679 0.9970 0.7468

cBackbone +SSL 12 231 0.9728 0.9875 0.9952 0.2937

Appendix 1—table 5. Ablation study of each module of BEN in the target domain.
(a) training from scratch with all labeled data. The backbone of BEN is non-local U-Net (NL-U-
Net). (b) training from scratch with 5% labeled data. (c) fine-tuning (using pretrained weights) with 
5% labeled data. (d) fine-tuning with 5% labeled data using BEN’s SSL and AdaBN modules. The 
remaining 95% of the unlabeled data is also used for the training stage. Dice: Dice score; SEN: 
sensitivity; SPE: specificity; HD95: the 95-th percentile of Hausdorff distance.

Method Pretrained

Scans used Metrics

Labeled Unlabeled Dice SEN SPE HD95

aBackbone
(from scratch)

132 0 0.9827 0.9841 0.9987 0.1881

bBackbone
(from scratch)

7 0 0.8990 0.8654 0.9960 4.6241

cBackbone ✓ 7 0 0.9483 0.9063 0.9997 0.6563

cBackbone +AdaBN ✓ 7 0 0.9728 0.9875 0.9952 0.2937

dBackbone +SSL ✓ 7 125 0.9614 0.9679 0.9970 0.7468

dBackbone +AdaBN + SSL ✓ 7 125 0.9779 0.9763 0.9986 0.2912

Appendix 1—table 6. BEN provides interfaces for the following conventional neuroimaging 
software.

Name Link

AFNI https://afni.nimh.nih.gov/

ANTs http://stnava.github.io/ANTs/

FSL https://fsl.fmrib.ox.ac.uk/fsl/fslwiki

FreeSurfer https://freesurfer.net/

SPM http://www.fil.ion.ucl.ac.uk/spm

Nipype https://pypi.org/project/nipype/
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