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alignment of image-derived features between UKBB and NAKO. Cross-stu
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Objectives: The UK Biobank (UKBB) and German National Cohort (NAKO
are among the largest cohort studies, capturing awide range of health-related da
from the general population, including comprehensive magnetic resonance ima
ing (MRI) examinations. The purpose of this study was to demonstrate howM
data from these large-scale studies can be jointly analyzed and to derive compr
hensive quantitative image-based phenotypes across the general adult populatio
Materials and Methods: Image-derived features of abdominal organs (volum
of liver, spleen, kidneys, and pancreas; volumes of kidney hilum adipose tissu
and fat fractions of liver and pancreas) were extracted from T1-weighted Dix
MRI data of 17,996 participants of UKBB and NAKO based on quality-controll
deep learning generated organ segmentations. To enable valid cross-study analys
we first analyzed the data generating process using methods of causal discove
We subsequently harmonized data from UKBB and NAKO using the ComBat a
proach for batch effect correction.We finally performed quantile regression on ha
monized data across studies providing quantitative models for the variation
image-derived features stratified for sex and dependent on age, height, and weig
Results:Data from 8791 UKBB participants (49.9% female; age, 63 ± 7.5 year
and 9205 NAKO participants (49.1% female, age: 51.8 ± 11.4 years) were an
lyzed. Analysis of the data generating process revealed direct effects of ag
sex, height, weight, and the data source (UKBB vs NAKO) on image-derived fe
tures. Correction of data source-related effects resulted in markedly improv
Received for publication September 15, 2022; and accepted for publication, after revi-
sion, October 28, 2022.

From the *Empirical Inference Department, Max-Planck Institute for Intelligent Sys-
tems; †Medical Image and Data Analysis Lab, Department of Radiology, Univer-
sityHospital Tübingen, Tübingen, Germany; ‡Biomedical Image Analysis Group,
Department of Computing, Imperial College London, London, United Kingdom;
§Institute of Signal Processing and System Theory, University of Stuttgart, Stutt-
gart, Germany; ||Department of Brain Sciences, Imperial College London,
London, United Kingdom; ¶Institute of Diagnostic Radiology and Neuroradiol-
ogy, University Medicine Greifswald, Greifswald; #Institute for Medical Infor-
matics, Biometry, and Epidemiology, University Hospital of Essen, Essen; **De-
partment of Diagnostic and Interventional Radiology, University Hospital Augsburg,
Augsburg; ††Clinic for Diagnostic and Interventional Radiology, Heidelberg Uni-
versity Hospital, Heidelberg; ‡‡Institute of Social Medicine, Epidemiology and
Health Economics, Charité–Universitätsmedizin Berlin, Berlin; §§Institute of
Clinical Epidemiology and Biometry, University ofWürzburg,Würzburg; ||||State
Institute of Health, Bavarian Health and Food Safety Authority, Erlangen; ¶¶Ber-
lin Ultrahigh Field Facility, Max-Delbrueck-Center for Molecular Medicine in the
Helmholtz Association, Berlin; ##Institute of Epidemiology, Helmholtz Zentrum
München, German Research Center for Environmental Health, Neuherberg;
***Institute for Medical Information Processing, Biometry and Epidemiology,
Medical Faculty, Ludwig-Maximilians-Universität München, Munich; †††German
Diabetes Center (DZD e.V.—Partner site Munich), Neuherberg; ‡‡‡Max-
Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Molec-
ular Epidemiology Research Group; §§§Max-Delbrueck-Center for Molecular
Medicine in the Helmholtz Association, Biobank Technology Platform; ||||||Berlin

Investigative Radiology • Volume 58, Number 5, May 2023
analysis on harmonized data revealed comprehensive quantitative models f
the phenotypic variation of abdominal organs across the general adult populatio
Conclusions: Cross-study analysis of MRI data from UKBB and NAKO as pr
posed in this work can be helpful for future joint data analyses across cohorts linki
genetic, environmental, and behavioral risk factors to MRI-derived phenotyp
and provide reference values for clinical diagnostics.

Key Words: cohort study, MRI, deep learning, causality, cross-study analysis,
abdomen, segmentation, age, NAKO, UK Biobank
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T he UKBiobank (UKBB)1 conducted in the United Kingdom and th
German National Cohort (NAKO)2 conducted in Germany are 2

the largest ongoing population-scale cohort studies. Collecting awide a
ray of health-related information, includingMR imaging data, these stu
ies provide a unique level of individual phenotypic characterizatio
of participants.3

UKBB enrolls adults between ages 50 and 80 years, whereas NAK
enrolls participants between ages 20 and 70 years.1,2 This restriction natural
limits the generalizability of study results for each of these single studie
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TABLE 1. Demographic Characteristics of Study Populations
Included in This Analysis

UKBB NAKO Combined

No. participants 8791 9205 17,996
Sex (F/M) % 49.9% / 50.1% 48.4% / 51.6% 49.1% / 50.9%
Age (SD), y 63.0 (7.5) 51.8 (11.4) 57.3 (11.2)
Weight (SD), kg 77.1 (15.1) 79.5 (16.2) 78.3 (15.7)
Height (SD), cm 169.4 (9.4) 171.8 (9.5) 170.7 (9.5)
BMI (SD), kg/m2 26.7 (4.3) 26.8 (4.7) 26.8 (4.5)

UKBB, UK Biobank; NAKO, German National Cohort; F, female; M, male;
SD, standard deviation.
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Merging study data performing cross-study analyses may potential
overcome such limitations and in addition yield higher statistic
power, the opportunity to independently replicate results and improv
resource efficiency.4,5

Data compatibility among different studies however poses cha
lenges for proper merging. Recorded parameters and data structures mig
be substantially different with little overlap. From a statistical point of vie
the presence of distribution shifts, or biases, in the observed data due
differences in the data-generating processes can result in data misinte
pretation when data from different sources are merged.

Cross-study analyses of imaging data are particularly challen
ing due to additional sources of variation regarding the image acquis
tion process such as different scanner types, varying imaging protoco
and study-specific image processing algorithms. These factors can infl
ence image-derived biomarkers, especially whenmagnetic resonance im
aging (MRI) is used—a modality that is inherently difficult to standar
ize.6 The practical relevance of such biases has previously been reporte
on different medical image data sets.7,8

In the case of UKBB and NAKO, image acquisition protoco
are partially aligned with the strategic intention to potentially enab
cross-study analyses. Similarities cover an overall agreement on anatom
coverage and partial agreement on MRI sequences.9 Still, central aspects
MR acquisition protocols vary significantly including scanner models, ma
netic field strengths, sequence parameters,1,2 or the occurrence of artifacts.
Thus, it is unclear whether image-derived features from UKBB and NAK
can be pooled in a meaningful way for subsequent combined analyse

Aiming to overcome such challenges, several techniques for da
harmonization across studies have been proposed including model-base
approaches (eg, batch effect correction using ComBat11 [“Combinin
Batches”] and its modifications7,12–14). The advantage of model-base
data harmonization is the possibility to selectively correct for undesire
bias while preserving informative factors of variation.7 This has recent
been demonstrated also in a medical imaging context, mainly in a neur
imaging and oncological imaging context.7,12,13

The effective and valid application of such model-based data co
rection techniques requires detailed understanding of the data generatin
process. Usually, prior (common sense) knowledge about causal intera
tions among observed variables is used to harmonize data. As an exte
sion, methods of causal discovery15 may provide complementary info
mation about the data generating process and thus inform the applicatio
of data harmonization techniques. This can be of particular relevance
large-scale studies with complex data interactions.16

The purpose of this study is to demonstrate how imaging da
from large-scale studies such as UKBB and NAKO can be jointly an
lyzed and to derive comprehensive quantitative image-based organ ph
notypes across the general adult population.
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MATERIALS AND METHODS

Population Characteristics and Imaging Data
Datawere obtained fromUKBB andNAKO,which obtainedwr

ten informed consents from all subjects and approved our data analys
Analysis of anonymized data from these studies was approved by th
local institutional ethics committee.

This study reports findings from the first 20,000 data sets inclu
ing MRI data available to us from the 2 study cohorts (10,000 data se
per study). After exclusion of data samples withMRI acquisition artifac
and erroneous automated organ segmentations (see below), image da
and related demographic information (age, sex, body weight, and heigh
from 17,996 participants (8791 from UKBB and 9205 from NAKO
were used for further analysis. Summary statistics describing the stud
cohorts are provided in Table 1 and visualized in Figure 1. All image da
analyzed in this work have been part of a previously reported technic
work on deep learning–based abdominal organ segmentation,17 whic
2 www.investigativeradiology.com
was the technical foundation for this present work. There is no overla
in data analysis or reported results between these 2 studies.

Both UKBB andNAKO acquire whole-bodyMRI data on a su
set of participants using clinical MR scanners (UKBB: 1.5 T Sieme
Magnetom Avanto; NAKO: 3 T Siemens Magnetom Skyra, Sieme
Healthineers, Erlangen, Germany). In this study, whole-body T1-weighte
images obtained from dual-echo gradient echo imaging—which is availab
in UKBB and NAKO—were used. This includes 4 tissue contrasts p
participant and image volume (fat, water, in-phase, and opposed-phase
Although these image contrasts are comparable between the 2 studie
other acquisition parameters vary markedly. Notably, voxel size is high
in UKBB (2.23� 2.23� 3 mm3 to 2.23 � 2.23� 4.5 mm3) compare
with NAKO (1.2 � 1.2 � 3 mm3), which has a direct impact on spati
resolution, image signal, and image noise.2,9

Extraction of Image-Derived Features
This study focuses on the phenotypic characterization of abdomin

organs (liver, spleen, left and right kidneys, and pancreas). These target o
gans were automatically segmented on MRI scans of 10,000 data sampl
per study using a pretrained and publicly available deep learning mod
based on a 3D full resolution convolutional architecture (nnUNet9,18). R
sulting organ segmentation masks were visually inspected for the purpo
of quality control, and data samples with severeMR image artifacts or su
stantial automated segmentation errorswere excluded. This resulted in a t
tal of 17,996 data sets (8791 fromUKBBand 9205 fromNAKO) that we
used for further analysis in this study. This entire process of organ segme
tation and quality control is described in detail in previous work17 and w
the technical basis for this work.

In a subsequent postprocessing step, the segmentation masks
the kidneys were split into a parenchymal kidney mask and a kidney h
lum adipose tissue (AT) mask by applying a threshold of 0.5 to the re
ative signal of the fat image (=fat/[fat + water]). Thus, 7 segmentatio
masks were obtained per data set (5 organs + right and left kidney hilu
AT). The corresponding organ and tissue volumes were calculated fro
these segmentation masks by multiplying the respective voxel cou
with the voxel volume. In addition to volume features, proton densi
fat fractions (PDFFs) of liver and pancreas were estimated. To this en
mean fat-image and water-image voxel signal intensities were extracte
from liver and the pancreas segmentation masks, and relative fat signal i
tensities (=fat/[fat + water]) were computed as a measure for the relative o
gan fat content.19 Thus, 9 image-derived featureswere extracted in total (o
ganvolumes, kidney hilumATvolumes, and PDFFs of liver and pancreas

Analysis of the Data Generating Process
To acquire a comprehensive understanding of the data-generatin

process—a prerequisite for subsequent data harmonization—we com
bined prior knowledge with methods of causal discovery. Specifical
we used the knowledge that age was causally dependent on the da
© 2022 The Author(s). Published by Wolters Kluwer Health, Inc.
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source (UKBB vs NAKO) due to different inclusion criteria among the
studies. Based on common medical knowledge, we assumed that ag
and sex have a direct effect on height and weight, and that height h
a direct effect on weight.20 Finally, based on scientific literature, it
well-established that age impacts at least a subset of the observed imag
features, for example, organ sizes of individuals decrease with age.21–

Beyond these causal relations established by prior knowledg
we aimed to investigate further potential causal relations amon
image-derived features, observed demographic features, and the da
source. To this end, we used conditional independence testing as a metho
of causal discovery combined with the knowledge about the dire
tion of potential causal relation. Specifically, we assumed that o
served image features are purely children of a parent-child connectio
in the causal sense, whereas the data source has only a parent role
the causal sense.

To identify the causal graph,we performed nonparametric nonline
conditional independence testing by Invariant Environment Prediction pr
viously described by Heinze-Deml et al.24 Concretely, we implemented I
variant Environment Prediction using random forest classifiers/regresso
(depending on the type of target variable) that were trained with 100 tre
and 5-fold cross-validation. The predictive accuracies on the respective va
idation setswere statistically compared using nonparametricWilcoxon tes
ing with a significance value of 0.01 with Holm-Bonferroni correction
previously suggested for Invariant Environment Prediction.24 The null h
pothesis of statistical independence was rejected below this threshold.
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Data Harmonization
Before cross-study analysis, we aimed to reduce undesired bi

caused by differences in imaging protocols while preserving informativ
variation due to, for example, age-dependent biological effects. To th
end, we used the ComBat technique initially described by Johnson et al.
In summary, ComBat achieves batch effect correction by fitting a mod
to the observed data predicting the features that are to be corrected fro
the data source (in this case UKBB vs NAKO) and from observed cova
iates. Subsequently, the contribution of the data source is eliminate
obtaining corrected features.
FIGURE 1. Epidemiological cohort characteristics. Upper left, Different age
of height andweight in UKBB andNAKO separated by sex. Bottom left, Emp
Bottom right, Empirical joint densities of age and weight in UKBB and NAK
NAKO + female; green, NAKO + male).

© 2022 The Author(s). Published by Wolters Kluwer Health, Inc.
Formally, the value Yijf of a feature f of a participant j at site
is modeled as:

Y ijf ¼ α f þ γif þ bTf k j þ δif εijf

with αf being the feature mean, γif the site-specific deviation from th
mean, bf and kj regression coefficients and input variables of which th
(linear) effect should be preserved, and δif a site- and feature-depende
scaling factor for the residue εijf accounting for scaling effects. Harm
nized feature values are then computed as:

Y corr
ijf ¼ Y ijf − ba f −bγif − bb

T

f k j

bδif
þ bα f þ bb

T

f k j

preserving the influence of the input variables kj. As suggested in prev
ous studies,7,25 we used a quadratic age-term to also account for nonli
ear age-dependent feature variation.

We applied ComBat for harmonization of image features usin
the data source (UKBB vs NAKO) as the batch variable (of which th
effect should be corrected) and based on the previous analysis of th
data generating process using age, sex, height, and weight as covariat
(of which the effects should be preserved). For ComBat harmonizatio
we chose UKBB as the reference data set in this study (ie, γ̂if ¼ 0 an
δif = 1 for all image features from UKBB).

Cross-Study Analyses
Finally, we merged harmonized data fromUKBB and NAKO f

subsequent large-scale cross-study analyses. Specifically, we investigate
age-dependent changes in extracted imaging features and performe
multilinear quantile regression (with an additional quadratic age term a
counting for nonlinear effects of age) describing the impact of availab
demographic parameters on image-derived abdominal phenotypes.

Software
All analyses were performed in Python 3 using the packag

Scikit-learn (for random forest implementation, quantile regressio
and statistical testing) and neuroCombat (ComBat implementatio
distributions between UKBB and NAKO. Upper right, Empirical joint densities
irical joint densities of age and height in UKBB andNAKO separated by sex.
O separated by sex (red, UKBB + female; orange, UKBB + male; blue,

www.investigativeradiology.com 3
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FIGURE 2. Histograms of observed marginal distributions of image-derived features from UKBB (red) and NAKO (blue) before (A) and after (B) ComBat
feature harmonization.
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https://github.com/Jfortin1/neuroCombat). Graphs were created usin
the Seaborn package.

RESULTS

Demographic Data
Image data and related demographic information from a total

17,996 participants (8791 fromUKBB and 9205 fromNAKO) were i
cluded. Notably, due to different prospective inclusion criteria, partic
pants of UKBB were on average significantly older than NAKO parti
ipants with peaks between ages 60 and 70 years in UKBB and aroun
the age of 50 years in NAKO (Table 1, Fig. 1). Participant sex w
FIGURE 3. Causal view on the data generating process. ds indicates data so
imaging protocol; c, unknown confounder. Solid lines represent establishe
circles represent observed variables. Dashed circles represent unobserved v
exactly one image protocol, which is different from the other study. A, Caus
Causal graph based on prior knowledge and with additional results from ca
direct effect of the data source (the imaging protocol) on image features a
through an unknown confounder. However, the existence of an additional
excluded in principle.

4 www.investigativeradiology.com
largely balanced in both studies—a result of a balanced participa
recruiting process. We observed similarly shaped empirical joint dens
ties of body height and weight in participants from UKBB and NAK
stratified for sex (Fig. 1). Across data sets, a slight age-dependent d
crease in height was observable resulting in slightly lower averag
height of UKBB participants (Fig. 1).
Image-Derived Features
Overall, the observed marginal densities of image-derived fe

tures showed varying degrees of deviation between UKBB and NAK
(Fig. 2A). Organ volumes of liver, spleen, and the kidney showed
urce (UKBB vs NAKO); a, age; s, sex; h, height; w, weight; f, image features; p,
d causal relations; dashed lines represent possible causal relations. Solid
ariables. Note that ds and p are interchangeable in this case as each study has
al graph of the data generating process based solely on prior knowledge. B,
usal discovery (conditional independence testing). We were able to establish a
nd were able to exclude indirect effects mediated by height or weight
, unobserved confounder, beyond the different imaging protocols, cannot be

© 2022 The Author(s). Published by Wolters Kluwer Health, Inc.
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FIGURE 4. Exemplary visualization of the effect of data harmonization on cross-study analyses. A, Kernel density plot showing the change of liver proton
density fat fraction (PDFF) with age on the original data (UKBB, red; NAKO, blue). B, Kernel density plot showing the change of liver PDFF with age on
the harmonized data (UKBB, red; NAKO, blue). C, Kernel density plot showing the change of pancreas PDFF with age on the original data (UKBB, red;
NAKO, blue). D, Kernel density plot showing the change of pancreas PDFF with age on the harmonized data (UKBB, red; NAKO, blue). Dashed red and
blue lines represent 50% quantile regression separately for UKBB and NAKO data, respectively. Regression lines showed markedly better consistency
between studies after feature harmonization.

FIGURE 5. Kernel density plots showing age-dependent changes of image-derived features based on harmonized data for the liver, spleen, pancreas, left
(l) and right (r) kidney volume, kidney hilum adipose tissue (AT) volume, aswell as liver and pancreas protondensity fat fraction (PDFF). Red, UKBB; blue,
NAKO. Dashed line, 50% quantile regression line; dotted lines, 25% and 75% quantile regression lines.

Investigative Radiology • Volume 58, Number 5, May 2023 Cross-Study Analysis of Imaging Data
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FIGURE 6. Representative examples for phenotypic organ alterations with increasing age (A) and with increasing bodymass index (BMI) (B). A, Top row:
water contrast images; bottom row: relative fat signal images depicting decrease in left kidney volume, increase in left kidney hilum adipose tissue (AT)
(top), and increase in pancreatic fat content (bottom) in 6 representative participants (closest to the respective group median values) of increasing age
(from left to right: 20–30, 30–40, 40–50, 50–60, 60–70, and 70–80 years). Orange lines mark pancreatic organ borders and the left kidney hilum. B,
Top and bottom rows: relative fat signal images depicting increase in liver volume, liver fat content (top), and pancreas fat content (bottom) in 6
representative participants (closest to the respective group median values) of increasing BMI (from left to right: BMI of 15–20, 20–25, 25–30, 30–35,
and 35–40 kg/m2). Orange lines mark pancreatic organ borders; asterisks mark the liver parenchyma.
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tendency toward higher values in NAKO, whereas measured volum
of kidney hilar ATwere slightly higher in UKBB.

Analysis of the Data Generating Process
To further understand these observed feature distribution shift

we analyzed the data generating process using methods of causal di
covery. We were able to use prior knowledge about the causal relatio
among subsets of observed variables to formulate a partial causal mod
of the data generating process as a starting point (Fig. 3A).

Further, using nonparametric nonlinear conditional indepe
dence testing,24 we were able to uncover direct causal effects of se
(P < 0.0001), height (P < 0.0001), and weight (P < 0.0001) on observe
image features and, importantly, of the image source itself (UKBB
NAKO, P < 0.0001) on image features. In contrast, no causal effect
the data source could be observed on weight (P = 0.95) or heig
(P = 0.99) beyond the effect mediated by age (Fig. 3B). These resul
confirm a direct effect (bias) of the data source (NAKO vs UKBB) o
observed image features.

Data Harmonization
Image feature harmonization across studies resulted in a bett

alignment of empirical marginal feature densities between UKBB an
NAKO in a subset of features, particularly for pancreas volume and liv
PDFF (Fig. 2B). Interestingly, the above-described distribution shifts b
tween unharmonized features from UKBB and NAKO (Fig. 2A) we
slightly even further increased through harmonization in a subset of im
age features, most pronounced for pancreas PDFF and right kidney A
volume (Fig. 2B). Clearly, this was a result of preserving and enhancin
age-related effects through feature harmonization. As shown for liver an
pancreas PDFF in Figure 4, feature harmonization resulted in a marked
improved alignment of age-dependent empirical feature densities b
tween UKBB and NAKO and thus enhanced conspicuity of age-relate
changes in liver and pancreas PDFF.

In a supplemental analysis (Supplemental Material 1, http://link
lww.com/RLI/A787), we assessed the success of data harmonization b
predicting the data source (UKBB vs NAKO) based on image-derived fe
tures. The underlying rationale is that, after optimal data harmonizatio
identification of the data source should not be possible better than by ra
dom choice. We found that before data harmonization identification of th
data source based on image featureswas possible to a high degree, where
after data harmonization this classification accuracy was marked
TABLE 2. Coefficients of Median (50% Quantile) Regression of Image

Female

Interc. (%) Age2 (%/y2) Weight

Li PDFF (%) −5.80E-03 2.80E-06 2.40E-04
Pc PDFF (%) −7.40E-03 1.20E-05 8.60E-04

Interc. (mL) Age2 (mL/y2) Weigh

Li vol (mL) 6.60E+02 −2.10E-02 1.10E+01
Sp vol (mL) 9.20E+01 −1.10E-02 1.20E+00
Kd l vol (mL) 1.20E+02 −5.30E-03 4.10E-01
Kd r vol (mL) 1.20E+02 −4.60E-03 4.40E-01
Pc vol (mL) 8.40E+01 −3.50E-03 1.70E-01
Kd l AT vol (mL) −3.20E+00 1.90E-03 9.60E-02
Kd r AT vol (mL) −7.10E+00 1.80E-03 9.40E-02

The coefficients for the linear age term and the height term were 0 in all regres

Li, liver; Pc, pancreas; Sp, spleen; Kd l, left kidney; Kd r, right kidney; Kd l AT
proton density fat fraction; Interc., intercept.

© 2022 The Author(s). Published by Wolters Kluwer Health, Inc.
decreased, pointing to successful harmonization of image-derive
features (Supplemental Material 1, http://links.lww.com/RLI/A787

Cross-Study Analyses
Using merged harmonized data from UKBB and NAKO, w

assessed age-related changes of image-derived features over a wid
age range (20–80 years) than would have been possible for UKB
(50–80 years) or NAKO (20–70 years) alone.

Overall, we observed a marked, nonlinear decrease in organ vo
umes with age with the steepest volume decline between ages 40 an
80 years. In contrast, volumes of left and right kidney AT compartmen
increased substantially with agewith the steepest increase between ag
40 and 80 years (Figs. 5, 6).

Liver PDFF and pancreas PDFF both increased nonlinearly wi
age. This age-dependent increase in organ fat content was more pr
nounced for the pancreas. Regarding hepatic fat content, a slig
age-dependent increasewas observed, whereas a subpopulation of ind
viduals with markedly increased hepatic fat content appeared after th
age of approximately 40 years (Fig. 5).

Finally, joint analysis of harmonized data fromUKBB andNAK
allowed us to generate quantitative models of interactions between epid
miological variables and image-derived features. Using quantile regre
sion, we derived median feature values as well as 25% and 75% quanti
feature values as a function of age (including a quadratic age term
weight, and height separately for male and female subpopulations. Inte
estingly, only the quadratic age term and body weight had nonzero coe
ficients in the final models (Table 2, Supplemental Material 2, http
links.lww.com/RLI/A788). These models provide a unique characteriz
tion of the expected phenotypic range of abdominal organ volumes an
AT distributions in the investigated populations across a large age rang
Beyond age-related changes described previously, these quantitativ
models revealed a positive effect of body weight on organ volumes an
liver and pancreas PDFF of varying degree. Representative examples
abdominal organ phenotypes are shown in Figure 6.

DISCUSSION
In this study, we demonstrated joint, cross-study analysis of im

aging data fromUKBB andNAKO.We investigated the data generatin
process and corrected for undesired bias related to the data source. Aft
data harmonization, we performed cross-study analyses characterizin
abdominal organ phenotypes in the normal population across a wid
age range.
-Derived Features Separated by Sex

Male

(%/kg) Interc. (%) Age2 (%/y2) Weight (%/kg)

Li PDFF −1.50E-02 3.00E-06 3.90E-04
Pc PDFF −1.50E-02 1.90E-05 9.00E-04

t (mL/kg) Interc. (mL) Age2 (mL/y2) Weight (mL/kg)

Li vol 6.70E+02 −4.00E-02 1.30E+01
Sp vol 1.20E+02 −1.30E-02 1.40E+00

Kd l vol 1.00E+02 −3.80E-03 8.70E-01
Kd r vol 1.00E+02 −3.30E-03 8.50E-01
Pc vol 7.40E+01 −2.30E-03 3.90E-01

Kd l AT vol −4.30E+00 2.20E-03 1.40E-01
Kd r AT vol −1.20E+01 2.80E-03 1.80E-01

sion models and were thus omitted in this table.

, left kidney hilum adipose tissue; Kd r AT, right kidney hilum adipose tissue; PDFF,

www.investigativeradiology.com 7
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To understand data biases, we investigated the data generatin
process using a combination of prior knowledge and methods of caus
discovery. We found that the data source (UKBB vs NAKO) had a dire
effect on image-derived features beyond the effects of age, sex, heigh
and weight. This source-related bias is most likely the result of differenc
in the image acquisition process between the studies resulting in acquisitio
shift.16 Beyond the effects of different imaging protocols, however, it ca
not be excluded that unobserved confounders (eg, differences in ethnici
lifestyle, or nutrition between UKBB and NAKO participants) mediate a
ditional effects of the data source on image features. Overall, we expe
these unobserved effects to be far less significant compared with the dire
effects of different imaging protocols on image features.

Cross-study analysis of image features revealed how joint analys
of data from different sources enables a more comprehensive understan
ing of phenotypic variation. We were able to characterize age-relate
changes of abdominal organ phenotypes in a way that reflects the majo
ity of the adult population in the United Kingdom and Germany. Wh
has been previously reported for small cohorts with a focus on single o
gans was possible in this study on a large and representative data s
thanks to a combination of a unique large-scale data, automated featu
extraction using deep learning and cross-study analysis of harmonize
data, grounded in causal analysis of the data generating process. Wewe
thus able to provide quantitative models for abdominal organ volumes
well as abdominal AT distribution (liver PDFF, pancreas PDFF, kidne
hilum AT volume). This information can potentially be used for definin
normative and reference values also in clinical settings with diagnost
utility. To this end, however, the analysis of all data to be acquired
UKBB and NAKO as well as their joint interpretation with outcome da
will be required.

The observed ranges of organ volumes in this study are in acco
dancewith existing literature reports.26–31 Similarly, our findings on A
distribution are comparable to previous reports on liver PDFF,32 pancre
PDFF,33 and kidney hilum AT.34 In contrast to these previous studies, th
size of the underlying data combined with the wide age range of partic
pants in our study provide a much more comprehensive and general d
scription of parameter distribution.

This study has limitations. Most importantly, feature extractio
can be further improved for a subset of features by using dedicated im
age sequences available in UKBB and NAKO. For example, the anal
sis of dedicated multiecho sequences for estimation of liver and pa
creas PDFF may increase accuracy for these parameters. Furthermor
the addition of further nonimaging data will allow for a more detaile
understanding of the data generating process by considering inform
tion about, for example, lifestyle, patient history, or genetic predispos
tions. We will have to leave these analyses to future studies that can b
performed once data collection in UKBB and NAKO are completed.

ComBat normalization (and comparable methods), by design,
performed relative to a reference, which can be one of the included da
sets or their weighted combination. Without external calibration, th
choice of this reference is not well-defined. In this study, we cho
UKBB as the reference data set. The rational for this choice was the a
sumption that particularly signal intensity measurements are more r
bust and less prone to artifacts on a 1.5 T scanner with larger voxel si
due to higher field homogeneity and less noise or ghosting artifacts. T
resolve the question of the choice of reference more definitely, add
tional external calibration measurements (eg, multiecho acquisitio
available in UKBB for precise PDFF estimation) will be required
future studies.

In this study, we provided a blueprint of how cross-study anal
ses can be performed in the context of epidemiological cohort imagin
studies and demonstrated the remarkable potential of such analyses.

In conclusion, cross-study analysis of image-derived features fro
UKBB andNAKO is feasible and can provide unique, population-wide i
sights into imaging phenotypes and their relation to epidemiological dat
Data from UKBB and NAKO harmonized as proposed in this work ca
8 www.investigativeradiology.com
be helpful for future joint data analyses across cohorts linking genetic, e
vironmental, and behavioral risk factors to MRI-derived phenotypes an
provide reference values for clinical diagnostics.
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