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S1 Adjoint state integral computation at steady state 6

We assume that the system 7

ẋ = f(x(t,θ,u),θ,u), x(t0,θ) = x0(θ,u), (1)

has an exponentially stable steady state, which means that the real parts of the eigenvalues of the 8

Jacobian at the steady state (J(x∗(θ,u),θ,u)) are negative. The system 9

ṗ(t,θ,u) = −J(x∗(θ,u),θ,u)Tp(t,θ,u) (2)

has a steady state p = 0, which is then, as the real parts of the eigenvalues of J(x∗(θ,u),θ,u) are
negative, asymptotically stable in reverse time. Hence, on the interval [t′, t′′), where the system (1) is at
steady state,

pintegral

=

∫ t′′

t′
p(s,θ,u)ds

=

∫ t′′

t′
e−J(x∗(θ,u),θ,u)T (s−t′′)p(t′′)ds

= −
(
J(x∗(θ,u),θ,u)T

)−1
p(t′′)e−J(x∗(θ,u),θ,u)T (t′′−t′′)

+
(
J(x∗(θ,u),θ,u)T

)−1
p(t′′)e−J(x∗(θ,u),θ)T (t′−t′′)︸ ︷︷ ︸
=0

= −
(
J(x∗(θ,u),θ,u)T

)−1
p(t′′),

as
e−J(x∗(θ,u),θ,u)T (t′−t′′) = 0.

The computed pintegral value is used to compute the objective function gradient by

∂J
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ny∑
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∂hi
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∂hi
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−
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t0

p(t,θ,u)T
∂f

∂θk
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x(t,θ,u),θ,u

dt− p(t0, θ,u)T
∂x0

∂θk

∣∣∣∣
θ,u

.

S2 Conversion reaction example 10

In this section, we illustrate the proposed method on an exemplary conversion reaction

A
θ1−⇀↽−
θ2

B,

where reaction rate coefficients θ1, θ2 > 0. We perform the computations from Section “Methods, 11

Adjoint sensitivity analysis at steady state, Post-equilibration case” for this simple case. 12
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The ODE system describing these two reactions is{
ẋA = −θ1xA + θ2xB

ẋB = +θ1xA − θ2xB
.

The Jacobian of the system is

J(x(t,θ),θ) =

[
−θ1 θ2
θ1 −θ2

]
,

which is singular; hence, the proposed method is not directly applicable. 13

In this case it is easy to see that ẋA + ẋB = 0 and the conserved quantity is xA(t) + xB(t). The 14

system can be simplified to 15

ẋA = −(θ1 + θ2)xA + θ2xtotal, (3)

where xtotal = xA + xB. The Jacobian of this one-dimensional system is equal to −(θ1 + θ2) and does
not depend on xA. This system has one non-trivial equilibrium

x∗
A =

θ2xtotal

θ1 + θ2
,

which is exponentially stable as the only eigenvalue (−(θ1 + θ2)) is negative. 16

When the system (3) is at steady state, the adjoint state is the solution of

ṗ = (θ1 + θ2)p,

and is equal to
p(t) = e(θ1+θ2)(t−t′′)p(t′′).

In this case

pintegral

=

∫ t′′

t′
p(s)ds

=

∫ t′′

t′
e(θ1+θ2)(s−t′′)p(t′′)ds

=
1

θ1 + θ2
p(t′′)e(θ1+θ2)(t′′−t′′) − 1

θ1 + θ2
p(t′′)e(θ1+θ2)(t′−t′′)︸ ︷︷ ︸

=0

=
p(t′′)

θ1 + θ2
.

The computed pintegral value is used to compute the objective function gradient by S1. 17
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Accuracy of gradient computation 18

The objective function gradient values were computed using ssASA for sensitivities and standard ASA
for sensitivities. The values computed with the proposed ssASA method were considered accurate if the
error between the two methods was small, with error (∆) calculated as

∆ =

{∣∣vssASA
∣∣ vASA = 0

min
(∣∣vssASA − vASA

∣∣ , ∣∣∣vssASA−vASA

vASA

∣∣∣) vASA ̸= 0
,

where vASA and vssASA are the gradient values computed with the standard ASA or ssASA method for 19

sensitivities, respectively. 20

S3 AMICI implementation 21

The ASA at steady-state approach was implemented in the AMICI package. AMICI allows for forward 22

integration of differential equation models specified in SBML format or PySB, as well as for forward 23

sensitivity analysis, steady-state sensitivity analysis and ASA for likelihood-based output functions. 24

For ASA at steady-state, the user can choose between three options: 25

• only integration, which corresponds to numerical backward integration of the adjoint state ODE, 26

e.g. in the post-equilibration of the ODE 27

ṗ(t,θ,u) = −J(x(t,θ,u),θ,u)Tp(t,θ,u), (4)

on time intervals [t′′, tnt), [tnt , tnt−1), . . . , [t1, t0) with boundary values

p(tj,θ,u) = lim
t→t+j

p(t,θ,u)+

ny∑
j=1

∂hi

∂x

∣∣∣∣T
(x(tj ,θ,u),θ,u)

(ȳij − yi(tj,θ,u))

σ2
ij

+
∂hi

∂x

∣∣∣∣T
(x(tj ,θ,u),θ,u)

(ȳi∗ − yi(t
′′,θ,u))

σ2
ij

,

and
lim

t→t′′+
p(t,θ,u) = 0

• only ssASA method, which corresponds to solving the linear system

J(x∗(θ,u),θ,u)Tpintegral = −p(t′′,θ,u)

in the post-equilibration case, or system

J(x∗(θ,ue),θ,ue)Tpintegral = −p(t0,θ,u)

in pre-equilibration case. 28

• combined approach, where ssASA method is attempted first and, in case this fails, numerical 29

integration is used instead. 30

The alternative approaches are summarized in Fig S1. 31

S4



only integrationonly ssASA method integration if ssASA method fails 

Available steady-state adjoint sensitivities modes in AMICI

Try to compute by solving 
linear system of equations

yes

no

✔

yesyes

no

✔
✘

Worked?

Worked?

Try to compute by
numberical backward integration

of adjoint state ODE

Try to compute by solving 
linear system of equations

yes

no

✔

✘

Worked?

Try to compute by solving 
linear system of equations

yes

no

✔

no

✔
✘

Worked?

Worked?

Try to compute by
numberical backward integration

of adjoint state ODE

Fig S1. Available approaches for computing adjoint sensitivities at steady-state in the
AMICI package. For each of the three cases the top box represents the new approach introduced in
this study.

S4 Simulation during optimization with ssASA takes less 32

time 33

Fig S2 shows the comparison between cumulative simulation time required for optimization using 34

standard ASA (x-axis) or ssASA (y-axis) for sensitivities computation. 35
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Fig S2. Cumulative simulation time during optimization. Each scatter point shows the total
simulation time required for one multi-start optimization using standard ASA (x-axis) or ssASA
(y-axis) for sensitivities computation. Points on the diagonal correspond to multi-starts that have equal
simulation time with both approaches. (a) Blasi et al., 2016 model, (b) Zheng et al., 2012 model (c)
Fröhlich et al., 2018 model. (d) Computation speedup of simulation time during optimizations using
ssASA for sensitivities computation compared to using standard ASA for sensitivities. Each bar height
corresponds to a mean of multi-start local optimization computation speedups and each error bar
corresponds to the sample standard deviation.
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