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Abstract
In recent years, it became clear that super-spreader events play an important role,
particularly in the spread of airborne infections. We investigate a novel model for
super-spreader events, not based on a heterogeneous contact graph but on a random
contact rate:Many individuals become infected synchronously in single contact events.
We use the branching-process approach for contact tracing to analyze the impact of
super-spreader events on the effect of contact tracing. Here we neglect a tracing delay.
Roughly speaking, we find that contact tracing is more efficient in the presence of
super-spreaders if the fraction of symptomatics is small, the tracing probability is
high, or the latency period is distinctively larger than the incubation period. In other
cases, the effect of contact tracing can be decreased by super-spreaders. Numerical
analysis with parameters suited for SARS-CoV-2 indicates that super-spreaders do not
decrease the effect of contact tracing crucially in case of that infection.

Keywords Contact tracing · Super-spreader · Epidemic process · Branching process

Mathematics Subject Classification Primary 92D30 · Secondary 60J80

1 Introduction

A visit to a restaurant, attending a church service, practicing a choir: The common
feature of these occasions is that they all may lead to so-called super-spreader events.
We start to understand the role of super-spreader events in the dynamics of an out-
break (Lloyd-Smith et al. 2005). Depending on the transmission characteristics of a
pathogen, the number of secondary cases per individual might be rather uniform, or
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disperse. In the disperse case, the majority of infecteds do not pass the infection at all,
while some individuals become super-spreaders and infect many persons in their envi-
ronment. That heterogeneity might be caused by differences in the immune response:
Some individuals have a weak immune response and a high pathogen load. They are
highly infectious. Another cause can be a heterogeneous contact network, where some
individuals form highly connected hubs. These two aspects can bemodeled by a static,
heterogeneous contact graph. Another mechanism causing super-spreaders is based
on a dynamic contact network. If a person is infectious but still in his/her incubation
period and visits a restaurant, he/she might infect many individuals. If he/she stays at
home during this decisive time interval, then only few or no further persons will be
infected. The contact rate and contact structure is a major reason for the dispersion in
the distribution of the individual reproduction number.

Super-spreaders attract attention in the recent literature. Data clearly indicate the
existence for super-spreaders for several infections, as tuberculosis (Walker et al.
2013; Andre et al. 2007; Melsew et al. 2019), SARS (Lloyd-Smith et al. 2005; Al-
Tawfiq and Rodriguez-Morales 2020), SARS-CoV-2 (Liu et al. 2020; Al-Tawfiq and
Rodriguez-Morales 2020), among others (Lloyd-Smith et al. 2005). The scientific
community develops models to describe super-spreaders. There are as simple models
as deterministic dynamical systems of an SIR-type with different classes of infecteds
(Mkhatshwa and Mummert 2011). Several models are based on the heterogeneity of
contact graphs as small-world-networks (Small et al. 2006), or aim to address social
structure in an individual-basedmodel (Duan et al. 2013). The seminal work by Lloyd-
Smith et al. did highlight the importance of super-spreading for infection dynamics
and control (Lloyd-Smith et al. 2005).

The present study aims to investigate the effect of super-spreading on contact tracing
(CT). Often, CT is modeled by individual or agent based models (e.g. Tian et al. 2011;
Liu et al. 2015; Kiss et al. 2007). These models allow to include many effects, e.g. a
detailed social contact graph, or the implementation of sophisticated tracing protocols.
The draw-back is the fact that they are investigated by simulations only, such that the
dependencies of the outcome on parameters are not clearly visible. It is also difficult
to obtain more general rules from this approach. Often, these models are used to
investigate a given infection in a given situation. A second approach is based on pair
approximation (e.g. Keeling 1999; Eames and Keeling 2002; Huerta and Tsimring
2002;House andKeeling 2010)—a stochastic, individual basedmodel is approximated
by a system of ordinary differential equations (ODE’s). The advantage of this method
is that it is based on first principles, but the number of ODE’s necessary in pair
approximation is roughly the squared number of the states an individual can assume,
and in this, the resulting ODE’s are high dimensional and hard to analyze analytically.
Numerous simple ODEmodels for CT aim at a more handy structure (de Arazoza and
Lounes 2002; Hsieh et al. 2010; Heffernan and Dunningham 2009). However, as these
models are based on ad hoc assumptions and not at first principles, it is in general
rather difficult to relate the results to CT on a micro scale. The present study follows
the branching-process approach proposed in (Müller et al. 2000; Ball et al. 2011). The
tree of infecteds is investigated: The nodes of this tree are the infected individuals, an
directed edge goes from infector to infectee. If an individual is diagnosed, it becomes
an index case. The neighboring nodes have probability p to be traced. All persons
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who are detected go in quarantine and are assumed not to be infectious any more.
This approach allows for an analytical treatment, though the resulting mathematical
structure is not as handy as the ODE models mentioned above. Therefore, Browne
et al. (2015) take up this approach and formulate an approximate ODE model based
on these ideas.

Close to the analysis of super-spreader events on the effect of CT is the analysis
of the interplay between the heterogeneity in the contact graph and CT (Eames 2007;
House and Keeling 2010). Particularly the nice simulation study by Kiss et al. (2007)
focuses on assortatively and disassortatively mixing contact graphs, which resembles
the consideration of dispersion in the contact structure. In the same spirit, Okolie and
Müller (2020) formulate the branching process approach on a random tree, where
also the influence of the variance in the degree structure is discussed. Eames and
Keeling (2003) find a formula for the critical tracing probability, and note that this
formula is valid under many circumstances, also for super-spreading. Hyman et al.
(2003) use a deterministic model to conclude that CT is more efficient to find super-
spreaders than screening. This finding is confirmed in Kojaku et al. (2020), where
a branching process on a network is considered analytically; the authors show the
stronger conclusion that CT even is superior to acquaintance sampling. However, the
two paper do not compare the effect of CT in presence and absence of supers-spreading
events. Klinkenberg et al. (2006) argue that large infection events can be readily
detected, and in this, CT is effective also in this case. The paper Reich et al. (2020)
formulates a small-world-network allowing for super-spreader events for SARS-CoV-
2, and assesses control strategies using the model. All in all, most of the studies about
CT and super-spreaders published so far prescribe a contact graph, and in that, assume
implicitly that the properties of given individuals (as the heterogeneity in the immune
system or the heterogeneity in the contact structure) cause super-spreader events.

In contrast, the present paper rather focuses on the hypothesis that any person may
become a super-spreader, just by chance (the famous visit of a birthday party or of a
restaurant). The main difference to the heterogeneous-network-approach is that many
individuals are infected at the very same time. SinceCT is based on subtle timing (a race
between infection and detection), we expect that this aspect might be of importance.
In our model, the population and the contact structure is homogeneous, but the contact
rate is assumed to be random. We extend the branching process approach for CT to
cover contact rates that are random functions of a certain class. The theory developed is
used to investigate quantitatively the effect of dispersion/super-spreader events on the
efficiency of CT. We find that CT might be more or less efficient for super-spreader
events, depending on the parameters. Moreover, the mechanism that allows CT to
control an infection is different for the two cases: without super-spreader events, it
rather is based on preventing further infection, while in super-spreader events it ismore
based on the diagnose of part of the persons infected in the event. For SARS-CoV-2
we can show that the influence of super-spreader events on the efficiency of CT only
is gradual and will not be decisive in the fight against the infection.
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2 Model

We focus on the onset of an outbreak in a large, homogeneous population and consider
an S(E)I∗ model, where ∗ represents any non-infectious state, as R or S. As usual in
this setting, it is appropriate to formulate the model as a branching process (Ball
and Donnelly 1995). Direct interaction between infected individuals or infected and
recovered individuals can be neglected.

An infected person recovers spontaneously (without diagnosis) at rate μ(a), and
develops symptoms and becomes diagnosed at rate σ(a), where a denotes the age
(time) since infection (a.s.i.). An infectious person has contacts at rate β(a). Usually,
β(a) is a deterministic function, that is, the number of infectious contacts in the
interval [0, a] follows a Poisson distribution with expectation

∫ a
0 β(τ) dτ . In order

to model super-spreader events, we divide the contact rate in a deterministic part
(“deterministic contacts”) β0(a) and a random part. The deterministic part works as
usual. For the random part (“random contacts”), we define a Poisson process with
arrival times (Ti )i∈N and corresponding counting process Ya = #{Ti < a}. This
Poisson process is homogeneous with rate λ. Super-spreader events may take place
on these time points Ti : The number of secondary cases produced at those discrete
time points follows a Poisson distribution with expectation β1(Ti )/λ. As we will find
out, the scaling of β1(a) by 1/λ yields a reproduction number which is independent
of λ. Let Z(u), Za(u) ∼ Pois(u), where Z(u), Za(u) and Za′(u) are independent
(for a �= a′). If an individual is infectious in the a.s.i-interval [0, a0], the number of
secondary cases produced in that interval is given by

Z

(∫ a0

0
β0(a) da

)

+
∞∑

i=1

ZTi (β1(Ti )/λ)1(Ti < a0)= Z

(∫ a0

0
β0(a) da

)

+
∫ a0

0
Za(β1(a)/λ)dYa .

(1)

We assume μ(a), σ (a), βi (a) ∈ C0(R+,R+), and that there are ε, a > 0 s.t. μ(a) +
σ(a) ≥ ε for a > a. For convenience, we introduce the random function β(a)

β(a) = β0(a) +
∞∑

i=1

ZTi (β1(Ti )/λ) δTi (a), (2)

with the understanding thatβ(a) indicates the number of contacts for a given individual
as given by Eq. (1). Here, δT (a) refers to a Dirac delta (point mass) at a = T . As β(a)

is the direct generalization of the infection rate to the situation at hand, we will also
call β(a) the “infection rate”.

The (random) contact rateβ(a) and the removal rateμ(a)+σ(a) define a branching
process (Athreya and Ney 1972). This branching process, in turn, defines the tree of
infecteds: The nodes are infected individuals, a directed edge goes from infector to
infectee. Note that each infector has its own realization of the contact process β(a),
independently of all other individuals in the tree of infecteds. The tree rather is a
forest, as recovered individuals leave this tree. Particularly, we assume that recovered
individuals never form index cases for CT. Index cases are individuals who show
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Fig. 1 Sketch of the concept for CT

symptoms and are diagnosed. The infectious contacts, that is, the neighbors of the
index case in the tree of infecteds, have probability p to be traced (see Fig. 1). In
the present paper, we do not take a tracing delay into account (find in Müller and
Koopmann 2016 results for the tracing delay without random contacts). In one-step
tracing, only the direct neighbors can be traced. In recursive tracing, the detected
persons also become index cases, and snowballing is triggered. We call this family of
processes “branching-tracing processes”.

2.1 Distribution of Rind

A central aspect of the present study is the investigation of the dispersion factor and
its effect on CT. Therefore, we first investigate the distribution of Rind without CT,
where Rind ∈ N0 denotes the random variable of the number of secondary infect-
eds for the different individuals. Accordingly, the reproduction number is defined by
R0 = E(Rind). The dispersion factor describes the heterogeneity of Rind . If all indi-
viduals behave similar, we expect the distribution of the number of secondary cases
to be geometric (constant parameters, exponentially distributed infectious period) or
Poissonian (constant infection rate, infectious period is fixed).While the expectation is
R0, the variance is R0(1+ R0) (for the geometric distribution) or R0 (for the Poisson
distribution). In case of super-spreader events, the variance is increased. Following
(Lloyd-Smith et al. 2005), we take a negative Binomial distribution as background,
and define the dispersion factor k by the relation between variance and expectation of
Rind ,
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var(Rind) = R0(1 + R0/k). (3)

Hence, k = ∞ for the Poisson distribution, and k = 1 for the Geometric distribution.
If the variance is even higher, k becomes smaller. That is, the smaller k, the larger the
variance, and the higher the variability among the number of secondary cases produced
by an individual. However, it is to mention that Eq. (3) simply is a definition for k,
and that there are different definitions to characterize dispersion.

Definition 2.1 The dispersal factor k for Rind is defined by

k = R2
0

var(Rind) − R0
. (4)

Note that for our model, we always have var(Rind) > R0. In case of constant param-
eters, this inequality is a consequence of Proposition 2.3.

Theorem 2.2 Let A be an R+-valued random variable with P(A > a) =
e− ∫ a

0 μ(τ)+σ(τ) dτ . With the notation introduced above,

Rind = Z

( ∫ A

0
β0(a) da

)

+
∫ A

0
Za(β1(a)/λ) dYa

and

R0 = E(Rind) =
∫ ∞

0
(β0(a) + β1(a)) e− ∫ a

0 μ(τ)+σ(τ) dτ da.

Proof If we consider a given individual, his/her infectious period is distributed accord-
ing to the random variable A. The formula for Rind is a direct consequence of the way
how we did construct the contact process. We take the expectation of Rind . According
to the law of iterated expectations, we have R0 = E(E(Rind |A)), and therewith we
obtain

R0 =
∫ ∞

0
E

(

Z

(∫ a

0
β0(τ ) dτ

)

+
∫ a

0
Zτ (β1(τ )/λ) dYτ

)

(μ(a) + σ(a)) e− ∫ a
0 μ(τ)+σ(τ) dτ da

= −
∫ ∞

0

[ ∫ a

0
β0(τ ) dτ + 1

λ
E

( ∫ a

0
β1(τ ) dYτ

)]
d

da
e− ∫ a

0 μ(τ)+σ(τ) dτ da

=
∫ ∞

0
β0(a) e− ∫ a

0 μ(τ)+σ(τ) dτ da

+ 1

λ
E

( ∫ ∞

0
β1(a) e− ∫ a

0 μ(τ)+σ(τ) dτ dYa

)

.

We recall that the probability density of Ti is given by λ
(i−1)! (λt)

i−1e−λt for t ≥ 0,
and proceed

1

λ
E

( ∫ ∞

0
β1(a) e− ∫ a

0 μ(τ)+σ(τ) dτ dYa

)

= 1

λ

∞∑

i=1

E

(

β1(Ti ) e
− ∫ Ti

0 μ(τ)+σ(τ) dτ

)
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= 1

λ

∞∑

i=1

∫ ∞

0
β1(a) e− ∫ a

0 μ(τ)+σ(τ) dτ λ (λa)i−1

(i − 1)! e−λada

=
∫ ∞

0
β1(a) e− ∫ a

0 μ(τ)+σ(τ) dτ da.

	

Next we aim at an explicit expression for the dispersion coefficient in case that

the parameter functions μ, σ , β0, and β1 are independent of a (are constant), s.t.
Rind = Z(β0A) + ∫ A

0 Za(β1/λ)dYa .

Proposition 2.3 In case of constant parameter functions, we have

var(Rind) = R0(1 + R0) + β2
1

λ (μ + σ)
.

Proof In order to obtain the variance of Rind we use Eve’s law: For two random
variables X and Y we have var(X) = var(E(X |Y ))+ E(var(X |Y )). We start with (let
a ∈ R+ be given, fixed)

var

( Ya∑

i=1

Zi (β1/λ)

)

= var

(

E

( Ya∑

i=1

Zi (β1/λ)

∣
∣
∣
∣Ya

))

+E

(

var

( Ya∑

i=1

Zi (β1/λ)

∣
∣
∣
∣Ya

))

= var(Ya)(β1/λ)2 + E(Ya)(β1/λ) = β2
1 a/λ + aβ1.

Therewith,

E(var(Rind |A)) = E

(

var

(

Z(β0A) +
∫ A

0
Za(β1/λ)dYa

∣
∣
∣
∣A

))

= E

(

β0 A + var

( YA∑

i=1

Zi (β1/λ)

∣
∣
∣
∣A

))

= E

(

A(β0 + β1) + β2
1 A/λ

)

= R0 + β2
1

λ (μ + σ)
.

The last ingredient is the computation of var(E(Rind |A)),

var(E(Rind |A)) = var((β0 + β1)A) = R2
0 .

Hence Eve’s law yields the desired result. 	

In the next corollary, we state the dispersion factor for the special case of our model

(recall that R0 = (β0 + β1)/(μ + σ)).
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Corollary 2.4 If the rates are constant, the dispersion factor for Rind is given by

k =
(

1 + β2
1

(β0 + β1)2

μ + σ

λ

)−1

. (5)

Particularly if λ becomes large, the events of the Poisson process become frequent.
If the time between two subsequent superspreader events in the contact rate typically is
much shorter than the infectious period (μ+σ � λ), the discrete events are practically
averaged out (as in a moving average), and the model approximates a situation with an
effective deterministic contact rate β0 + β1, and k tends to 1. Only if λ is distinctively
smaller than μ + σ , single (and w.r.t. the time scale of the infectious period) seldom
super-spreader events take place. In this case, k becomes small.

We proceed to investigate the distribution of Rind in the case of constant parameters.

Theorem 2.5 If all parameters are independent of a, the probability generating func-
tion of Rind reads

ϕRind (s) = μ + σ

μ + σ + (
1 − e(s−1)β1/λ

)
λ + (1 − s)β0

.

Proof Let again A ∼ Exp(μ + σ) denote the infectious period of a focal individual.
If we condition on A = a, then the number of concactees from the deterministic part
(rate β0) follows a Poisson distribution with expectation β0a and generating function
ϕ0(s; a) = e(s−1)β0a . The number of contactees due to the random part can be written
as

Ya∑

i=1

Zi

where Ya is the counting process for the Poisson process, and Zi ∼ Pois(β1/λ). That
is, we have a compound random variable. The generating function is a concatenation
of the generating function for Ya and for Zi , s.t. the generating functions of that part
reads

ϕ1(s; a) = e(e(s−1)β1/λ−1)λa .

As the two processes to generate infectees are independent if we condition on A, the
generating function of the sum is the product of ϕ1(s) and ϕ2(s). All in all, we obtain

ϕRind (s) =
∫ ∞

0
ϕ0(s; a) ϕ1(s; a) (μ + σ)e−(μ+σ)a da

= μ + σ

μ + σ + (
1 − e(s−1)β1/λ

)
λ + (1 − s)β0

.
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Remark 2.6 We find that

lim
λ→0

ϕRind (s) = μ + σ

μ + σ + (1 − s)β0

and

lim
λ→∞ ϕRind (s) = μ + σ

μ + σ + (1 − s)(β0 + β1)

where the convergence is pointwise. The probability for a major outbreak (if we start
with one infected individual) does only weakly depend on the random contact events
if λ is small, while for frequent random events, the probability for extinction is given
by the fixed point of the generating function (we have a Galton–Watson-Process), that
is, by 1/R0 (in case of R0 > 1).

For λ → ∞, the model approximates a situation without superspreading and a total
contact rate β0(a) + β1(a). That is in line with our expectations, as in this case the
random “superspreader events” are tiny but frequent, and in that, resembles the way
usually contacts are modeled.

Particularly interesting is the fact that the random events do contribute to R0 (and
also influence the exponential growth rate of the epidemic in the onset), but in the limit
λ → 0, the probability for extinction q∗ is given by (μ + σ)/β0 (if this expression
is less than 1), such that β1 does not play a role. We can understand this finding
intuitively. If λ is close to zero, the random contact events are that seldom, that in the
initial time interval of the outbreak (which is decisive for the dichotomy: to die out
or to generate a major outbreak) it is very, very unlikely that a random contact event
takes place. Therefore, these events practically do not play a role in the probability
of a major outbreak. Mainly the deterministic part of the contact structure determines
this probability, though the random and the deterministic part of the contact structure
contribute equally to the reproduction number. That is an important finding, as we will
rediscover this phenomenon below in the investigation of backward tracing.

3 CT—model analysis

In the present section we aim to analyze the tracing-branching process. The approach
is based on the computation of the marginal probability that a given individual is
infectious at a certain age of infection. In a computational approach, we would run
the stochastic process very often, select a certain focal individual (e.g. the primary
infected person), and determine the fraction of realizations in which this individual
is still infectious at age a of infection. This probability is a marginal probability—
we average over the state of all other individuals. In that, we remove most of the
correlations that make the analysis difficult or even intractable. As we will see, we
are nevertheless able to work out the expected effective reproduction number of our
focal individual (how many individuals in average our focal individual did infect).
However, as different generations are not independent, as it is the case for a standard
branching process, the usual argument via the embedded Galton-Watson process to
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obtain a threshold theorem (reproduction number smaller 1 will lead to the extinction
of the process a.s., if the reproduction number is larger one, we have persistence of
the process with a positive probability) is not feasible. Therefore, we add at the end
of the present section a discussion the relevance of our findings.

3.1 Preliminaries

Beforewe startwith the analysis of the tracingmodel,we aim to clarify how to compute
expectations in certain transition models with rate constants that are random variables
in themselves.

Let Y1, Y2 be independent, exponentially distributed random variables, Yi ∼
Exp(μi ) for i = 1, 2. Consider a particle that is in state A at time t = 0, and jumps to
state B depending on Y1 and/or Y2 (see below). Let furthermore Xt = 1 if the particle
is in state A, and Xt = 0 if it is in state B (at time t).

If the particle jumps at time Y1, then

d

dt
P(Xt = 1) = −μ1P(Xt = 1).

If the particle jumps at time Y2, we find similarly

d

dt
P(Xt = 1) = −μ2P(Xt = 1).

If the particle jumps at Y1 or Y2 (which time is earlier), then

d

dt
P(Xt = 1) = −(μ1 + μ2)P(Xt = 1).

Now we introduce a random variable η, independent of Yi , and P(η = 1) = P(η =
2) = 1/2. If the particle jumps at Yη (we select Y1 and Y2 at equal probability), what
is the right equation? Clearly,

P(Xt = 1) = 1

2
e−μ1t + 1

2
e−μ2t .

If we consider μ = μη as a random rate, we may write

P(Xt = 1) = Eμ

(

e−μt
)

.

Now we change the game slightly. In each time interval Δt , we start with probability
βΔt a clock. All time intervals are handled independently, and all clocks follow
(independently) an exponential distribution with rate μ. A clock that rings will trigger
the transition of the particle with probability p. We can reformulate the model at hand
as an immigration-death process (or an M/M/∞ queue), where immigrants arrive

123



Contact tracing & super-spreaders in the branching-process model Page 11 of 37 24

independently at rate β, die at rate μ, and a death event is observed with probability
p. Xt is 1 until the first observed death event of an immigrant happens.

Assume that no clock did ring before t . The probability that a clock was started in
[c, c + Δt] and rings in [t, t + Δt] is then given by

βΔt e−μ (t−c) μΔt .

In order to obtain P(Xt+Δt = 1) in terms of the history of Xt , we consider the process
on a grid with step width Δt (below we will sum over all grid points c with c ≤ t),
and take the limit Δt → 0 afterwards. We obtain

P(Xt+Δt = 1)

= P(Xt = 1) − P( a clock rings and is successful |Xt = 1) P(Xt = 1) + O(Δt2)

= P(Xt = 1) −
( ∑

c≤t

p βΔt e−μ (t−c) μΔt

)

P(Xt = 1) + O(Δt2)

⇒ d

dt
P(Xt = 1) = −

∫ t

0
pβe−μ (t−c) μ dc P(Xt = 1)

= −
∫ t

0
pβ

d

dc
e−μ (t−c) dc P(Xt = 1)

It is obviously possible to simplify the integral. Instead, we use two types of clocks
(type Y1 and type Y2) and decide (independently) at each time point if we start a clock
(probability βΔt) and—if we start a clock—which type of the clock we want to use. If
both types have the same chance to be used, we have (recall that μ = μη is a random
variable)

d

dt
P(Xt = 1) = −

∫ t

0
pβ

d

dc
Eμ(e−μ (t−c)) dc P(Xt = 1)

⇒ P(Xt = 1) = exp

{

−
∫ t

0

∫ s

0
pβ

d

dc
Eμ(e−μ (s−c)) dc ds

}

Last, we also convert β into a random variable. Then,

P(Xt = 1) = Eβ

(

exp

{

−
∫ t

0

∫ s

0
pβ

d

dc
Eμ(e−μ (s−c)) dc ds

})

. (6)

For our analysis below it is important to note that the expectation w.r.t. β is outside
of the exponential function, while the expectation w.r.t. μ is inside the exponential
function.

3.2 Backward tracing

Following the papers (Müller et al. 2000; Müller and Koopmann 2016; Müller and
Hösel 2007; Okolie and Müller 2020), we first distinguish between backward tracing
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Fig. 2 Sketch of the concept for backward tracing. Only if an infectee (in gray) becomes an index cases,
the focal individual can be traced

(a person can be only traced via his/her infectees, Fig. 2), forward tracing (a person
is only traced by his/her infector, Fig. 3), and full tracing, where tracing via infector
and infectee is possible (Fig. 1). We start with backward tracing.

We allow for age-dependent rates β0(a), β1(a), μ(a) and σ(a) and define

κ̂(a) = exp

(

−
∫ a

0
μ(τ) + σ(τ) dτ

)

.

In the analysis, we need to be clear about dependencies, particularly dependencies
w.r.t. the contact process. In Fig. 2, each individual has his/her own i.i.d. copy of the
contact process. The number of infectees depend on the contact rate of an infector.
As we consider backward tracing, also a focal individual’s probability to be infectious
at a given age-of-infection is influenced by its own contact process. For the realized
infectees, however, the probability to be infectious at a.s.i. a does not depend on the
infector’s contact process.

In order to better express this fact in the analysis, we distinguish in the proof below
between κ−

0 (a), that is the probability of a focal individual to be infectious at a.s.i. a,
given the realizations of its own contact process, and κ−

0 (a), where we average over
all possible realizations of the contact process, κ−

0 (a) = E(κ−
0 (a)).

Proposition 3.1 For recursive tracing, we find

κ−
0 (a) = κ̂(a) E

(

exp

{

− p
∫ a

0

∫ s

0
β(a − c) (−κ−

0
′(c) − μ(c)κ−

0 (c)) dc ds

})

.

(7)
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Proof We first look at one given realization of all contact rates. Only afterwards, we
take the appropriate expectations.WithoutCT, an individual is infectious at a.s.i. awith
probability κ̂(a). This probability is decreased by CT. Only infectees cause tracing,
hence the probability to be infectious at a given a.s.i. a has the same expectation for
infector and infectee. As the realization of the contact rate for each infectee may be
different, we add a tilde to their survival probabilities. Note that each infectee with
different a.s.i. is another individual, with his/her own (independent) set of contact
realizations. In backward tracing, the location of an individual in the tree of infecteds
does not matter. In this sense, the recovery rate of an infectee is given by the hazard
rate

−κ̃−
0

′(b)
κ̃−
0 (b)

.

This hazard rate includes the rate of spontaneous recovery μ(a), the rate of direct
observationσ(a), but also the removal rate due toCT.The rate to be detected (indirectly
or directly) is given by

−κ̃−
0

′(b)
κ̃−
0 (b)

− μ(b).

The focal individual (for which we compute κ−(a)) produces during his/her complete
infectious time span [0, a] infectees. When he/she has had age c ∈ [0, a], the expected
number of secondary cases per time interval was β(c) (here we condition on the
infector’s Poisson process (Ti )i∈N). The probability that the infectee is now (infector
has age a) still infectious is κ̃−

0 (a − c). The rate of direct or indirect observation of

an infectee with a.s.i. a − c is
−κ̃−

0
′(a−c)

κ̃−
0 (a−c)

− μ(a − c). A detected individual triggers

a successful tracing event with probability p. Hence, the contribution of the removal
rate of our focal individual due to tracing rate is given by

p
∫ a

0
β(c) κ̃−

0 (a − c)

(−κ̃−
0

′(a − c)

κ̃−
0 (a − c)

− μ(a − c)

)

dc.

We find for the given realization of the contact rates

d

da
κ−
0 (a) = −κ−

0 (a)

{

μ(a) + σ(a)

+p
∫ a

0
β(c) κ̃−(a−c)

(−κ̃−
0

′(a − c)

κ̃−
0 (a − c)

− μ(a − c)

)

dc

}

, κ−
0 (0)=1.

Therefrom we obtain

κ−
0 (a) = κ̂(a) exp

{

− p
∫ a

0

∫ s

0
β(a − c) (−κ̃−

0
′(c) − μ(c)κ̃−

0 (c)) dc ds

}
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Note that β is independent of κ̃−
0 (a), as β is the contact rate of the focal individual, and

κ̃−
0 is the survival probability for a given infectee of the focal individual. According to
the considerations above, particularly Eq. (6), the expectation w.r.t. (all) contact rates
involved can be written as

κ−
0 (a) = κ̂(a) E

(

exp

{

− p
∫ a

0

∫ s

0
β(a − c) (−κ−

0
′(c) − μ(c)κ−

0 (c)) dc ds

})

.

	

Proposition 3.2 For one-step tracing, we find

κ−
0 (a) = κ̂(a) E

(

exp

{

− p
∫ a

0

∫ s

0
β(a − c) σ (c)κ−

0 (c) dc ds

})

. (8)

Proof The proof parallels that of Proposition 3.1, only that we replace the expression

−κ−
0

′(c)
κ−
0 (c)

− μ(c)

by the rate of direct observations σ(c). 	

The next aim is to remove the expectation from the formulas (7) and (8). LetWλ(z)

denote the probability generating function for the Poisson distribution,

Wλ(z) = eλ(z−1)

In the proof of the next theorem we use a well known, handy lemma about the condi-
tioned Poisson process (Shanbhag and Rao 2001, page 612).

Lemma 3.3 Consider the Poisson process (Ti )i∈N with counting process Ya, and for
k ∈ N0

Ωa,k = {T1, . . . , Tk | Ya = k}.

Let furthermore Ω̃a,k , consisting of k i.i.d. copies of random variables uniformly
distributed in [0, a]. Then, Ωa,k and Ω̃a,k have the same distribution, and for g ∈
C0(R)

E

( ∑

T∈Ωk,a

g(T )

)

= E

( ∑

T∈Ω̃k,a

g(T )

)

= k

a

∫ a

0
g(t) dt .

We are now equipped to prove the following theorem.

Theorem 3.4 Given the infection rate, i.i.d. for each infected individual,

β(a) = β0(a) +
∞∑

i=1

ZTi (β1(Ti )/λ) δTi (a),
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where (Ti )i∈N is a Poisson process with rate λ, we obtain for recursive tracing

κ−
0 (a) = κ̂(a) e−p

∫ a
0 (a−c) β0(a−c) (−κ−

0
′(c)−μ(c)κ−

0 (c)) dc

×Wλ a

(
1

a

∫ a

0
exp

{[

e−p (a−c) (−κ−
0

′(c)−μ(c)κ−
0 (c)) − 1

]

β1(a − c)λ−1
}

dc

)

.

(9)

and for one-step tracing

κ−
0 (a) = κ̂(a) e−p

∫ a
0 (a−c) β0(a−c) σ (c)κ−

0 (c) dc

×Wλ a

(
1

a

∫ a

0
exp

{[

e−p(a−c)σ (c)κ−
0 (c) − 1

]

β1(a − c)/λ

}

dc

)

. (10)

Proof We focus on one-step tracing, as the argument for recursive tracing is completely
parallel. We may rewrite Eq. (8) as

κ−
0 (a) = κ̂(a) Eβ

(

exp

{

− p
∫ a

0
(a − c) β(a − c) σ (c)κ−

0 (c) dc

})

.

Taking the given form of the contact rate into account, we find

∫ a

0
(a − c) β(a − c) σ (c)κ−

0 (c) dc =
∫ a

0
c β(c) σ (a − c) κ−

0 (a − c) dc

=
∫ a

0
(a − c) β0(a − c) σ (c) κ−

0 (c) dc

+
∞∑

i=1

Ti ZTi (β1(Ti )/λ) σ (a − Ti ) κ−
0 (a − Ti ) χTi<a .

Note that the first term at the r.h.s. does not depend on the random variables Ti .
Therefore,

κ−
0 (a) = κ̂(a) e−p

∫ a
0 (a−c)β0(c) σ (c)κ−

0 (c) dc

× E

(

exp

{

− p
∞∑

i=1

Ti ZTi (β1(Ti )/λ) σ (a − Ti )κ
−
0 (a − Ti ) χTi<a

})

.

We focus on the expectation. Let Ek , k ∈ N, denote the event that T1, . . . , Tk−1 ∈
[0, a] and Tk ≥ a. Recall that Ya is the counting process associated to (Ti )i∈N), s.t.

P(Ek) = P(Ya = k − 1) = (λa)k−1

(k − 1)!e
−λa .
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With the notation of Lemma 3.3 we have

∗ := E

(

exp

{

− p
∞∑

i=1

Ti ZTi (β1(Ti )/λ) σ (a − Ti )κ
−
0 (a − Ti ) χTi<a

})

=
∞∑

k=1

E

(

exp

{

− p
∑

T∈Ωa,k−1

T ZT (β1(T )/λ) σ (a − T )κ−
0 (a − T )

} ∣
∣
∣
∣ Ek

)

P(Ek).

According to Lemma 3.3, Ωa,k can be replaced by Ω̃a,k , which is the set of k i.i.d. in
[0, a] uniformly distributed random variables. We proceed

∗ =
∞∑

k=1

E

(

exp

{

− p
∑

T∈Ω̃a,k−1

T ZT (β1(T )/λ) σ (a − T )κ−
0 (a − T )

})

1

(k − 1)! (λa)k−1e−λa

=
∞∑

k=1

E

(

exp

{

− p
∑

T∈Ω̃a,k−1

(a − T ) Za−T (β1(a − T )/λ) σ (T )κ−
0 (T )

})

1

(k − 1)! (λa)k−1e−λa

=
∞∑

k=1

E

( ∏

T∈Ω̃a,k−1

exp

{

− p (a − T ) Za−T (β1(a − T )/λ) σ (T )κ−
0 (T )

})

1

(k − 1)! (λa)k−1e−λa

=
∞∑

k=1

E

( ∏

T∈Ω̃a,k−1

E

(

exp

{

− p (a − T ) Za−T (β1(a − T )/λ) σ (T )κ−
0 (T )

}) )

1

(k − 1)! (λa)k−1e−λa

=
∞∑

k=1

{
1

a

∫ a

0
E

(

exp

{

− p (a − τ) Za−τ (β1(a − τ)/λ) σ (τ)κ−
0 (τ )

})

dτ

}k−1

1

(k − 1)! (λa)k−1e−λa

where we used the pairwise independency of the random variables in Ω̃a,k−1. Let us
consider the remaining expectation,

E

(

exp

{

− p (a − τ) Za−τ (β1(a − τ)/λ) σ (τ)κ−
0 (τ )

})
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=
∞∑

�=0

exp

{

− p (a − τ) � σ (τ)κ−
0 (τ )

}
1

�! (β1(a − τ)/λ)�e−β1(a−τ)/λ

= exp

([

e−p(a−τ)σ (τ)κ−
0 (τ ) − 1

]

β1(a − τ)/λ

)

.

Therewith,

∗ =
∞∑

k=0

(
1

a

∫ a

0
exp

{[

e−p(a−τ)σ (τ)κ−
0 (τ ) − 1

]

β1(a − τ)/λ

}

dτ

)k 1

k! (λa)ke−λa

= exp

(

λ

∫ a

0
exp

{[

e−p(a−τ)σ (τ)κ−
0 (τ ) − 1

]

β1(a − τ)/λ

}

dτ

)

e−λa

= Wλ a

(
1

a

∫ a

0
exp

{[

e−p(a−τ)σ (τ)κ−
0 (τ ) − 1

]

β1(a − τ)/λ

}

dτ

)

.

	

Remark 3.5 We consider the two extreme cases, λ → ∞, and λ → 0. We focus on
one-step tracing, the computation/results for recursive tracing are parallel.

Defining η(τ, a) =
[
e−p(a−τ)σ (τ)κ−

0 (τ ) − 1
]
β1(a − τ) yields

lim
λ→∞ Wλ a

(
1

a

∫ a

0
exp

{

− λ−1 η(τ, a)

}

dτ

)

= lim
λ→∞ exp

(

λ

∫ a

0

[

exp

{

− λ−1 η(τ, a)

}

− 1

]

dτ

)

= lim
λ→∞ exp

(

λ

∫ a

0
− λ−1 η(τ, a) + O(λ−2) dτ

)

= exp

(

−
∫ a

0
η(τ, a) dτ

)

.

In the limit, we therefore do not simply obtain the situation with a deterministic
contact rate β0(a) + β1(a). Intuitively, for λ large, the very frequent and very small
random contact events should behave like a deterministic contact rate. Interestingly,
the additional variance in Za(β(a)/λ) has an effect also in the limiting case. For p
small, however, we have that

η(τ, a) =
[
e−p(a−τ)σ (τ)κ−

0 (τ ) − 1
]
β1(a − τ) ≈ −p(a − τ)σ (τ)κ−

0 (τ ) β1(a − τ),

s.t. in case of λ → ∞ and p � 1,

κ−
0 (a) ≈ κ̂(a) e−p

∫ a
0 (a−c)(β0(a−c)+β1(a−c)) σ (c)κ−

0 (c) dc

and the random contacts behave as deterministic contacts. 	

In the other extreme (λ → 0) we find that

lim
λ→0

exp

(

λ

∫ a

0

[

exp

{

− λ−1 η(τ, a)

}

− 1

]

dτ

)

= 1
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such that

lim
λ→0

κ−
0 (a) = κ̂(a) e−p

∫ a
0 (a−c)β0(a−c) (κ−

0
′(c)−μ(c)κ−

0 (c)) dc.

That is, the rare (but large) spreading events modeled by the random contact rate do
not play a role in the effect of backward tracing. If λ is small, the fraction of super-
spreaders among all infected individuals is negligible. In contrast, the fraction of their
infectees is large. As each super-spreader produces a high number of infectees, he/she
is detected and removed soon. However, as we only have very few super-spreaders,
this fact hardly affects the probability to be infected at a.s.i. a for the average infected
person. This situation resembles the observation that rare super-spreader events hardly
affect the probability for a major outbreak (see Remark 2.6).

We aim at a computation of Ref f ; later, we will also address the exponential growth
rate. The difficulty here is that the time span a given individual is infectious is correlated
with the infection rate—an individualwho producesmany infectees by a superspreader
event is likely to be discovered early. We need to address this correlation. The next
computations and propositions serve this fact. Thereto, we define a function H : R →
R

H(r) = E

( ∫ ∞

0
β(a) κ−

0 (a) e−ra da

)

.

Then, the reproduction number with CT is the integral over the contact rate times the
survival probability κ−

0 (a), Ref f = H(0). In case of independent generations (which
is not true for contact tracing) the exponential growth rate r is given by the unique root
of H(r) = 1 (Wallinga and Lipsitch 2007). Nevertheless, we will later use also that
formula to identify the exponential growth, though it is in our setting only a heuristic
approach and not a hard result (see discussion below). We handle the deterministic
component β0(a) and the random component Za(β1(a)/λ)dYa of the contact rate
separately. For the deterministic component, we simply find

E

( ∫ ∞

0
β0(a) κ−

0 (a) e−ra da

)

=
∫ ∞

0
β0(a) κ−

0 (a) e−ra da.

The expectation of the random component
∫ ∞
0 Za(β1(a)/λ)κ−

0 (a) dYa is more subtle
to determine, as in a realization the contact rate Za(β1(a)/λ)dYa precisely is the
contact rate of the focal individual which appears in the (random) function κ−

0 (a).
This observation indicates dependencies which we need to take into account.

Proposition 3.6 Let ϕ(a) a continuous function. Then, for one-step tracing, we have

E

( ∫ ∞

0
ϕ(a)Za(β1(a)/λ)κ−

0 (a) dYa

)

=
∫ ∞

0
β1(a) ϕ(a) κ−

0 (a) da.
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Proof If we spell out the integral E

(
∫ ∞
0 Za(β1(a)/λ)κ−

0 (a) dYa

)

we find

E

( ∫ ∞

0
ϕ(a)Za(β1(a)/λ)) κ̂(a) e−p

∫ a
0 (a−c)β0(a−c) σ (c)κ−

0 (c) dc

e−p
∫ a
0 (a−c) Za−c(β1(a−c)/λ)σ (c)κ−

0 (c) dYc dYa

)

.

Importantly, the two counting measures Ya and Yc belong to the same realization
of the Poisson process, and so are the Poisson random variables Za(.) at identical
arrival times of the Poisson process identical realizations. Therefore some attention is
required in computing the expectation. The argument, however, resembles that used
in the Proof of Theorem 3.4. Let

ϕ̃(a) = κ̂(a) e−p
∫ a
0 (a−c)β0(a−c) σ (c)κ−

0 (c) dcϕ(a).

Therewith, the integral we aim to simplify becomes

E

( ∫ ∞
0

ϕ̃(a)Za(β1(a)/λ) e−p
∫ a
0 (a−c) Za−c(β1(a−c)/λ)σ (c)κ−

0 (c) dYc dYa

)

= E

(∫ ∞
0

ϕ̃(a)Za(β1(a)/λ) e−p
∫ a
0 c Zc(β1(c)/λ)σ (a−c)κ−

0 (a−c) dYc dYa

)

=
∞∑

i=1

E

(

ϕ̃(Ti )ZTi (β1(Ti )/λ) e
−p

∑i−1
j=1 Tj ZTj (β1(Tj )/λ)σ (Ti−Tj )κ

−
0 (Ti−Tj )

)

=
∞∑

i=1

∫ ∞
0

E

(

ϕ̃(t)Zt (β1(t)/λ) e
−p

∑
T j∈Ωt,i−1

Tj ZTj (β1(Tj )/λ)σ (t−Tj )κ
−
0 (t−Tj )

)

λ (λt)i−1

(i − 1)! e−λt dt

=
∞∑

i=1

∫ ∞
0

E

(

ϕ̃(t)Zt (β1(t)/λ)

i−1∏

j=1

[
1

t

∫ t

0
e−p s Zs (β1(s)/λ)σ (t−s))κ−

0 (t−s) ds

])

λ (λt)i−1

(i − 1)! e−λt dt

=
∞∑

i=1

∫ ∞
0

E

(

ϕ̃(t)Zt (β1(t)/λ)

i−1∏

j=1

[
1

t

∫ t

0
e−p(t−s) Zt−s (β1(t−s)/λ)σ (s))κ−

0 (s) ds

])

λ (λt)i−1

(i − 1)! e−λt dt

=
∞∑

i=1

∫ ∞
0

ϕ̃(t) β1(t)
i−1∏

j=1

[
1

t

∫ t

0

∞∑

k=0

e−p(t−s) kσ(s))κ−
0 (s) (β1(t − s)/λ)k

k!

e−β1(t−s)/λ ds

]
(λt)i−1

(i − 1)! e
−λt dt
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=
∞∑

i=1

∫ ∞
0

ϕ̃(t) β1(t)

[
1

t

∫ t

0
exp

{[

e−p(t−s) σ (s))κ−
0 (s) − 1

]

β1(t − s)/λ

}

ds

]i−1

(λt)i−1

(i − 1)! e
−λt dt

=
∫ ∞
0

ϕ̃(t) β1(t)Wλt

(
1

t

∫ t

0
exp

{[

e−p(t−s) σ (s))κ−
0 (s) − 1

]

β1(t − s)/λ

}

ds

)

dt

=
∫ ∞
0

ϕ(t) β1(t) κ−
0 (t) dt .

	

For full tracing, the argument is exactly the same: In Eq. (9), the functions κ−

0 (a)

on the right hand side concern the infectees of the focal individual, s.t. this function is
independent of the focal individual’s contact rate.We are allowed to replaceσ(c)κ−

0 (c)
by −κ−

0 (c) − μ(c)κ−
0 (c), and use the same computations as above to find the next

proposition.

Proposition 3.7 Let ϕ(a) a continuous function. Then, for recursive tracing, we have

E

( ∫ ∞

0
ϕ(a)Za(β1(a)/λ)) κ̂(a) e−p

∫ a
0 (a−c)β0(c) [−κ−

0 (c)−μ(c)κ−
0 (c))] dc

×e−p
∫ a
0 (a−c) Zc(β1(c)/λ) [−κ−

0 (c)−μ(c)κ−
0 (c))] dYc dYa

)

=
∫ ∞

0
β1(a) ϕ(a) κ−

0 (a) da.

With this understanding, we have the following corollary.

Corollary 3.8 For recursive as well as for one-step tracing, we find for r ∈ R that

E

( ∫ ∞

0
Za

(
β1(a)

λ

)

E(κ−
0 (a)|β) e−ra dYa

)

=
∫ ∞

0
β1(a)̂κ(a) e−ra κ−

0 (a) da.

(11)

From this corollary, we obtain

Theorem 3.9 For one-step as well as for recursive tracing, we have

Ref f =
∫ ∞

0
(β0(a) + β1(a)) κ−

0 (a) da.

Remark 3.10 It is remarkable that the formula for the effective reproduction number
is identical for one-step and recursive tracing, were we emphasize that κ−

0 (a) does
depend on the tracing mode. In that, there is an implicit influence of one step/recursive
tracing. In any case, the intuition is that an individual is infectious for a random time
span that is described by the “survival probability” κ−

0 (a). During this time period,
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Fig. 3 Sketch of the concept for forward tracing. Only if the infector becomes an index cases, the focal
individual can be traced

the individual produces infectees at rate β0(a) + β1(a), in both modes of tracing. The
correlation of the infectious period and the contact rate does not affect the equation.
It is very well possible that the choice of the distributions in β are crucial, and that
dependencies will affect this formula if we go away from a Poisson process for the
arrival times of superspreader events, or from a Poisson distribution for the size of
superspreader events.

3.3 Forward tracing

The investigation of forward tracing turns out to be more simple, as the contact rate
of a focal individual does only influence the infectees, but not the infector. In that,
the tracing probability is independent of the focal individual’s contact rate, and taking
expectations is rather straightforward.

The number of ancestors in the infection lineage affects a focal individual. There-
fore, the generation matters; generation refers to the location of an individual in the
tree (forest) of infection: The primary infected person has generation 0, the secondary
cases generation 1, the infectees of the secondary infecteds generation 3, etc. Let
κ+
i (a) denote the probability of a generation i individual to be infectious at a.s.i. a,

and κ+
i (a|b) that probability, conditioned on the age of the infector b at the infection

event.
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Proposition 3.11 In case of recursive tracing, we have for i > 0

κ+
i (a|b) = κ̂(a)

κ+
i−1(b){

κ+
i−1(b) − p

∫ a

0

(

− (κ+
i−1(b + c))′ − μ(b + c) κ+

i−1(b + c)

)

dc

}

. (12)

Proof Our focal individual is infectious if it did not recover independently of CT,
times the probability that no tracing event did remove the individual from the class of
infecteds,

κ+
i (a|b) = κ̂(a)

{

1 − P(a successful tracing event did happen)

}

.

In order to obtain the probability for a successful tracing event, we first note that we
know that the infector has been infectious at (his/her) a.s.i. b, s.t. the probability for
him/her to be infectious at a.s.i. b + c reads

κ+
i−1(b + c)

κ+
i−1(b)

.

We use here the expected values (averaged over all possible realizations of β). The
detection rate is the hazard rate minus the rate to recover spontaneously/unobserved,

−κ+
i−1(b + c)

′

κ+
i−1(b + c)

− μ(b + c).

Hence, the desired probability reads

P(a successful tracing event did happen) = p
∫ a

0

(−κ+
i−1(b + c)

′

κ+
i−1(b + c)

− μ(b + c)

)
κ+
i−1(b + c)

κ+
i−1(b)

dc.

	

Proposition 3.12 In case of one-step-tracing we have

κ+
i (a|b) = κ̂(a)

{

1 − p
∫ a

0
σ(b + c)

κ+
i−1(b + c)

κ+
i−1(b)

dc

}

. (13)

Proof The argument parallels that of Proposition 3.11. We only need to take into
account that in one-step tracing the infector has to be detected directly, what happens
at rate σ(.). This rate replaces the hazard rate minus the spontaneous recovery rate. 	


In order to determine the desired probability κ+
i (a) we remove the condition in

κ+
i (a|b). Thereto we determine the probability density for an infector to have age

b of infection. The net infection rate is E(β(b) κi−1(b)), where the β is the contact
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rate of the i − 1’th generation individual, that is independent of κi−1. Therefore,
E(β(b) κi−1(b)) = (β0(b) + β1(b)) κ i−1(b). We normalize this expression and find
for the probability distribution of the age of the infector at infection events

ϕi−1(b) = (β0(b) + β1(b)) κ+
i−1(b)∫ ∞

0 (β0(c) + β1(c)) κ+
i−1(c) dc

.

Corollary 3.13 In one-step tracing as well as in recursive tracing, we have for i > 0

κ+
i (a) =

∫ ∞

0
κ+
i (a|b)ϕi−1(b) db. (14)

	

Remark 3.14 Forward tracing does not depend at all on λ (and therewith on the
dispersion factor). That’s because each individual has a single infector, and also super-
spreader events do not change that fact. In contrast, the intensity of backward tracing
is affected by the statistics of infectees, which in general depends on the intensity of
super-spreader events.

Because in backward tracing the randomness does not play a role, we immediately
conclude the following result for the effective reproduction number.

Corollary 3.15 The effective reproduction number of an individual in generation i ,
Ref f ,i , is given by

Ref f ,i =
∫ ∞

0
(β0(a) + β1(a)) κ+

i (a) da.

It is rather involving to obtain a proof for the convergence of Ref f ,i for i → ∞. It is
possible to show convergence of (κi (a))i∈N0 in a weighted L1 space if p is sufficiently
small (no super-spreader events) Müller and Hösel (2007). This convergence is a hint
that also Ref f ,i converges; numerical analysis seems to indicate that the restriction on
p is not necessary for the convergence. However, this problem is out of scope of the
present paper.

3.4 Full tracing

Full tracing is the combination of backward- and forward tracing. The basic argument
is as follows: We focus on an individual in generation i . As long as the individual is
infectious, the infectees (generation i + 1) cannot be traced by forward tracing (and
thus are only subject to backward tracing), and the infector (generation i − 1) cannot
be traced by backward tracing triggered by the focal individual. The infectees and the
infector of the focal individual decouple. As long as no forward tracing takes place,
the focal individual is subject to backward tracing only. Backward tracing already is
analyzed. The investigation that requires attention is forward tracing. It turns out that

123



24 Page 24 of 37 J. Müller, V. Hösel

we cannot directly use our results for forward tracing to understand full tracing. We
need to adapt the analysis at that point.

A central ingredient in the analysis of forward tracing above was the fact that the
probability for the focal individuals infector to be infectious at a.s.i. a+ b, if the focal
individual has a.s.i. a, is given by κ+

i−1(a + b)/κ+
i−1(b).

Let us now think about forward tracing, in combination with backward tracing.
The focal individual can be produced by a deterministic or a random (super-spreader)
contact event. Recall that we assume that the focal infectee did not trigger a tracing
event in age interval [0, a]. If the focal individual has been produced in a deterministic
contact event, the knowledge that this individual exists does not change the structure
of the infector’s other infectees (number and timing), s.t. the infectors probability to be
infectious at a.s.i. a again is κ i−1(a+b)/κ i−1(b). This is different if a random tracing
event did infect our focal individual: In this case, it is likely that many sibling infectees
have been produced, which decease the infector’s probability to be infectious, even
though the target individual still is infectious.

The next interesting question is the following: Consider two individuals of gen-
eration i − 1, both did trigger a random contact event at their a.s.i. b. One is the
infector of our focal individual (that is, this infector did produce at least one infectee
in the event), for the other one, we have no additional information about the number
of infectees produced in the event. Is the probability to be infectious at a.s.i. a + b
for these two infectors different? That is, is the statistics of the number of infectees
for the second infector similar to statistics of the number of siblings of our focal indi-
vidual? Astonishingly, these two statistics coincide, indeed. This fact is known as the
the “environmental equivalence property” in the context of Poisson games, and has
been proven by Myerson (1998). Myerson even shows that the Poisson distribution is
(under mild conditions) the only distribution with that property. The assumption that
the number of infectees in a super-spreader event is Poissonian distributed prevents
our considerations to become technically highly involving. In that, this assumption is
crucial.

Let Ki−1(a+b|b, D) denote the probability for the infector to be infectious at a.s.i.
a+b, if he/she produced the focal individual at a.s.i. b in a deterministic contact event,
Ki−1(a+b|b, R) this probability in case of a random contact event, and Ki−1(a+b|b)
if nothing is known about the contact.

Proposition 3.16 For recursive tracing, we have

K i−1(a + b|b, D) = κ i−1(a + b)

κ i−1(b)
, (15)

Ki−1(a + b|b, R) = κ i−1(a + b)

κ i−1(b)

exp

(

− p (β1(b)/λ)

∫ a

0

(−κ0(c)′

κ0(c)
− μ(c)

)

κ0(c) dc

)

,

(16)
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while the result for one-step-tracing is given by

K i−1(a + b|b, D) = κ i−1(a + b)

κ i−1(b)
, (17)

K i−1(a + b|b, R) = κ i−1(a + b)

κ i−1(b)
exp

(

− p (β1(b)/λ)

∫ a

0
σ(b + c) κ0(c) dc

)

.

(18)

Proof As a deterministic contact has no additional information that changes the prob-
ability to be infectious, we directly find

Ki−1(a + b|b, D) = κ i−1(a + b)

κ i−1(b)
.

That is different in a random contact event. If the individual is not traced by the
infectees generated in that event, we again have κ i−1(a+b)

κ i−1(b)
as survival probability. The

probability for a tracing event triggered by a given infectee (infected in that random
contact event) is given by

p
∫ a

0

(−κ0(c)′

κ0(c)
− μ(c)

)

κ0(c) dc.

As the number of infectees is Poisson distributed with parameter β1(b)/λ, we have
for the probability that no infectee triggers successfully a tracing event

∞∑

k=0

(

1 − p
∫ a

0

(−κ0(c)′

κ0(c)
− μ(c)

)

κ0(c) dc

)k 1

k! (β1(b)/λ)ke−β1(b)/λ

= exp

(

− p (β1(b)/λ)

∫ a

0

(−κ0(c)′

κ0(c)
− μ(c)

)

κ0(c) dc

)

.

Hence,

Ki−1(a + b|b, R) = Ki−1(a + b|b, D)

exp

(

− p (β1(b)/λ)

∫ a

0

(−κ0(c)′

κ0(c)
− μ(c)

)

κ0(c) dc

)

.

The result for one-step tracing follows by a parallel argument. 	

The probability for the focal individual to be infected by a deterministic contact

event is (we know that the infectors a.s.i. was b at the time of infection) β0(b)/(β0(b)+
β1(b)), and that the probability for a randomcontact event is 1−β0(b)/(β0(b)+β1(b)).
Hence we have the following corollary.

Corollary 3.17 For recursive tracing, we have

K i−1(a + b|b) = κ i−1(a + b)

κ i−1(b)
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×
(

1 − β1(b)

β0(b) + β1(b)

(

1 − exp

(

− p (β1(b)/λ)

∫ a

0

(−κ0(c)′

κ0(c)
− μ(c)

)

κ0(c) dc

) ) )

, (19)

and for one-step-tracing,

K i−1(a + b|b) = κ i−1(a + b)

κ i−1(b)

×
(

1 − β1(b)

β0(b) + β1(b)

(

1 − exp

(

− p (β1(b)/λ)

∫ a

0
σ(b + c) κ0(c) dc

) ) )

. (20)

We now proceed to the probability κi (a|b) for the infectee: the probability to be
infectious at a.s.i. a, if the infector has had a.s.i. b at the infection event. With the
argument of Proposition 3.11, where we take into account that the conditioned prob-
ability for the infector is Ki−1(a + b|b), instead of κ i−1(a + b)/κ i−1(b), we find the
following corollary.

Proposition 3.18 For recursive tracing, we find

κ i (a|b) = κ0(a)

(

1 − p
∫ a

0

(−K
′
i−1(b + c|b)

Ki−1(b + c|b) − μ(b + c)

)

Ki−1(b + c|b) dc
)

= κ0(a)

[

1 − p

(

1 − Ki−1(a + b|b)

−
∫ a

0
μ(b + c) Ki−1(b + c|b) dc

)]

(21)

while for one-step tracing, we have

κ i (a|b) = κ0(a)

(

1 − p
∫ a

0
σ(b + c) Ki−1(b + c|b)dc

)

. (22)

The last step necessary to complete the step from generation i − 1 to generation
i is to remove the condition on the age of the infector. Thereto we use again that the
age-of-infection distribution of the infector is given by

ϕi−1(b) = (β0(b) + β1(b)) κ i−1(b)∫ ∞
0 (β0(c) + β1(c)) κ i−1(c) dc

.

Wecollect all results, andwrap up the induction step in the next two theorems,where
we introduce K̂i−1(a|b) = Ki−1(a + b|b) κ i−1(b). We start with the remark that the
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survival probability is given by that of backward tracing (Eq. (7) and (8); we drop now
the minus in the index), multiplied by the probability to be not removed by forward
tracing. In order to construct this second probability, we require the probability for the
infector to be infectious [K̂i (a|b) = Ki−1(a + b|b) κ i−1(b) resp. K̃i (a + b|b) given
in Eqs. (19) and (20)], which then enters in the probability of a focal individual to be
infectious at age a since infection, given the infector has had age b at the infectious
event (Eq. 21) and (22)). Last, the condition on b is removed in integrating over the
distribution of the age-since-infection at infectious events.

Theorem 3.19 Consider recursive tracing. Let (for i > 0)

κ0(a) = κ̂(a) e
−p

∫ a
0 (a−c)β0(a−c)

(
κ0

′(c)
κ0(c) −μ(c)

)

κ0(c) dc

×Wλ a

(
1

a

∫ a

0
exp

{[

e−p (a−c) (−κ−
0

′(c)−μ(c)κ−
0 (c)) − 1

]

β1(a − c)λ−1
}

dc

)

, (23)

K̂i−1(a|b) = κ i−1(a + b)

×
(

1 − β1(b)

β0(b) + β1(b)

(

1 − exp

(

− p (β1(b)/λ)

∫ a

0

(−κ0
′(c)

κ0(c)
− μ(c)

)

κ0(c) dc

) ) )

, (24)

κ i (a|b)κ i−1(b) = κ0(a)

[

(1 − p)κ i−1(b) + p K̂i−1(a|b)

+p
∫ a

0
μ(b + c) K̂i−1(c|b) dc

)]

. (25)

Then,

κ i (a) =
∫ ∞
0 κ i (a|b) κ i−1(b) (β0(b) + β1(b)) db

∫ ∞
0 (β0(c) + β1(c)) κ i−1(c) dc

.

Theorem 3.20 Consider one-step tracing. Let (for i > 0)

κ0(a) = κ̂(a) e−p
∫ a
0 (a−c)β0(a−c) σ (c) κ0(c) dc

×Wλ a

(
1

a

∫ a

0
exp

{[

e−p(a−c)σ (c)κ−
0 (c) − 1

]

β1(a − c)/λ

}

dc

)

(26)

Ki−1(a + b|b) = κ i−1(a + b)

κ i−1(b)

(

1 − β1(b)

β0(b) + β1(b)

(

1 − exp

(

− p (β1(b)/λ)

∫ a

0
σ(b + c) κ0(c) dc

) ) )

κ i (a|b) = κ0(a)

(

1 − p
∫ a

0
σ(b + c) Ki−1(b + c|b)dc

)

(27)
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Then,

κ i (a) =
∫ ∞
0 κ i (a|b) κ i−1(b) (β0(b) + β1(b)) db

∫ ∞
0 (β0(c) + β1(c)) κ i−1(c) dc

.

Again, the effective reproduction number again is an interesting quantity. Thereto
we repeat the arguments for Theorem 3.22 in the present setting. We start with the
following technical proposition that parallels Proposition 3.6.

Proposition 3.21 Let ϕ(a) be a bounded continuous function. Then, for one-step trac-
ing, we have

E

( ∫ ∞

0
ϕ(a)Za(β1(a)/λ)κi (a) dYa

)

=
∫ ∞

0
β1(a) ϕ(a) κ i (a) da.

Proof First we obtain the equation for κi (a). Recall that we fix the realization of the
focal’s individual contact rate, but take the average over the infector’s and infectee’s
contact rates. Therefore, Eq. (20) is still appropriate: Even if the focal individual has
been infected by a randomevent, the functions K i−1(a+b|b, D) and K i−1(a+b|b, R)

only depend on the siblings of our focal individual. In Eq. (22), however, κ0(a) is
dependent on the focal individual’s contact rate. That is,

κi (a|b) = κ0(a)

(

1 − p
∫ a

0
σ(b + c) Ki−1(b + c|b)dc

)

.

Therewith, we find

E

( ∫ ∞

0
ϕ(a)Za(β1(a)/λ)κi (a) dYa

)

= E

( ∫ ∞

0
ϕ(a)Za(β1(a)/λ)

∫ ∞
0 κ i (a|b) κi−1(b) (β0(b) + β1(b)) db

∫ ∞
0 (β0(c) + β1(c)) κ i−1(c) dc

da

)

=
∫ ∞
0 E

(
∫ ∞
0 ϕ(a)Za(β1(a)/λ)κi (a|b) da

)

κ i−1(b) (β0(b) + β1(b)) db
∫ ∞
0 (β0(c) + β1(c)) κ i−1(c) dc

)

If we lump the product of ϕ(a) and

(

1− p
∫ a
0 σ(b+c) Ki−1(b+c|b)dc

)

into a sin-

gle continuous function g(a; b), the expectation reads E
(

∫ ∞
0 g(a; b)Za(β1(a)/λ)κ0(a) da

)

.

As we know that κ0(a) is identical with κ−
0 (a) (backward tracing), we use Proposi-

tion 22 to conclude

E

( ∫ ∞

0
g(a; b)Za(β1(a)/λ)κ0(a) da

)

=
∫ ∞

0
g(a; b)β1(a)κ0(a) da.

This formula implies the desired result. 	
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As before, the proposition also holds true for recursive tracing. This proposition
allows to compute the effective reproduction number for an individual of generation
i .

Theorem 3.22 For one-step as well as for recursive tracing, we have

Ref f ,i =
∫ ∞

0
(β0(a) + β1(a)) κ i (a) da.

As in the case of backward tracing, we expect that the convergence of Ref f ,i for
i → ∞ is difficult to prove, though numerically we fund that this convergence is
rapid. 	


The comparison of our theory withMonte-Carlo simulations can be found in Fig. 4.
The behavior forλ → 0 is interesting. In that case, super-spreader events are extremely
rare, but also extremely large. Let us consider really the extreme case, in that not only
λ ≈ 0, but also β0 ≈ 0, s.t. the infection is only driven by random contact events. In
the limiting case, Ki−1(a+b|b) jumps from 1 at b = 0 to zero for b > 0. Therefore, in
one-step-tracing (see Eq. (27)) we have κi+1(a) = κ̂(a), while we obtain in recursive
tracing [using Eq. (25)] that

κi+1(a) = (1 − p)̂κ(a)

for a > 0. The interpretation is clear: Super-spreaders are a.s. rapidly detected and
removed, but the fraction of super-spreaders within all infecteds is negligible small.
Therefore, one-step tracing has no effect at all. In recursive tracing, on the other hand,
each infectee has the probability p to be rapidly removed, and the probability to be
infectious is decreased by the probability to escapeCT.Hencewe obtain in this limiting
case

Ref f = (1 − p)R0, (28)

as already stated in Eames and Keeling (2003). The critical tracing probability for
which Ref f = 1 is hence pcrit = 1 − 1/R0. That formula coincides with the critical
tracing probability for (constant coefficients and) μ = 0, that is, in the scenario that
all infecteds eventually develop symptoms (Müller et al. 2000).

3.5 Implications for the tracing-branching process

As discussed above, Ref f ,i , and also the exponential growth rate ri given by the root
of the equation

1 = Hi (r) =
∫ ∞

0
(β0(a) + β1(a)) κ i (a) e−r a da (29)

is determined via themarginal “survival” probability κ i (a). The function Hi (r) (and in
that also Ref f ,i = Hi (0) and ri ) does take into account the correlation of an individuals
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Fig. 4 Comparison of theory (gray dashed) and simulations (solid line) for generation 0, generation 1, and
generation 2; dotted black line: κ̂(a). Note the logarithmic scale in the y-axis. Parameter: β0 = β1 = 0.75,
μ = σ = 0.5, p = 0.8; recursive full tracing; λ as indicated

survival rate and its contact rate, but is averaged over all other individuals. Due to
the correlations between individuals of different generations in the tracing-branching
process, the significance of Ref f ,i and the asymptotic growth rate limi→∞ ri (if the
limit exists) is not clear.

We conjecture that these two quantities resemble the parallel quantities in the
branching process theory, as the correlations introduced by CT are strongly localized:
We can couple the branching process (p = 0) with the branching-tracing process
(p > 0). We start with the branching process, s.t. individuals are present until they are
removed at rateμ(a)+σ(a). During their “live span”, individuals infect contactees at
the random rateβ(a).We introduce (as usual) two colors: living individuals and ghosts.
If a tracing event leads to the discovery of a person (which induces the removal of that
individual in the branching-tracing process), we change the color of that individual
from “living” to “ghost”. Ghosts cannot trigger further tracing events. Furthermore,
the infectees of a living individual are living individuals, and the infectees of ghosts
are ghosts. We start the process with one single living individual.

This coupling shows that the connected components of living individuals in the
branching process are stochastically larger than that of the branching-tracing process.
For constant parameters, in Müller and Möhle (2003) the statistics of the connected
components in the branching process has been investigated: In the long run, that size
is geometrically distributed, with the mean R0 + 1. The connected components are
small. As contact tracing events (also for recursive tracing) cannot jump from one
connected component to another one, correlations are strongly localized, and in that,
we expect the marginal quantities to be appropriate to describe global properties of
the the process. First results in this direction can be found in Ball et al. (2015), Barlow
(2020).

Simulations confirm that heuristic argument (Fig. 6), though this argument is –
particularly in case of extinction – suspect: If the process goes extinct, we do not have
many individuals available, s.t. even local correlations might be decisive.
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Fig. 5 Scan of Ref f for different fractions of symptomatic cases. Please note the logarithmic scale on the
y-axis (recursive tracing with β0 = 0, β1 = 4, μ = 1 − σ , σ = fraction of symptomatic cases)

Fig. 6 Comparison of simulations and theory for the full recursive branching-tracing process in dependence
of p (all three panels).(a) upper panel: probability of a major outbreak (fraction of 5000 simulations per
parameter set that reach at least 8000 infeceteds and recovereds), lower panel: Ref f ,4, horizontal line
Ref f ,4 = 1 (b) Growth rate (line: theory for i = 4, bullets: simulated growth rate, averaged over 100 runs
that are non-extinct). Parameters: β0 = 0, β1 = 2, λ = 0.1, μ = σ = 0.5, p as indicated

4 Effect of dispersion on CT

We use our theory to investigate the impact of super-spreader events on the effect of
CT. Thereto, we first consider the situation that all rates are constant, and in a second
step, we aim to understand the dependency on incubation- and latency period. Last
we inspect the results for a scenario that resembles the SARS-CoV-2 infection.

In Fig. 5 we investigate what happens if all rates are constant (they do not depend
on the age-since-infection). We recall that in case of λ large implies that the system
behaves as only deterministic contacts are present, while for λ small super-spreader
events dominate. In order to find the impact of super-spreader events, we particularly
compare the lower and upper margin of the graphs / the direction of the curves. If the
curves (that indicate lines of constant Ref f ) tend from the left (lower margin) to the
right (upper margin), then CT is more efficient with super-spreader events, and less
efficient in the reverse case.
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Fig. 7 Ref f for λ = 10 (dashed curves) and λ = 0.01 (solid lines) over the tracing probability p in case
that the fraction of symptomatics is 0.1, 0.5 and 0.9. Note that in case of λ = 0.001 and panel (a), (b), the
three lines are on top of each other. a All rates are constant, β0 = 0, β1 = 4, μ + σ = 1, and the fraction
of symptomatics σ/(μ + σ) as indicated. b All rates but β1 are as in (a), where β1 = 0 for a < 1, and
β1 = 4 for a ≥ 1. c All rates but μ and σ are as in (a); μ(a) + σ(a) ≡ 1, σ(a) = 0 for a < 0.5, σ(a) > 0
and constant for a ≥ 0.5

First of all, we find first of all that Ref f changes in a clear interval for the frequency
of super-spreader events. If λ is too small (λ < 0.01) or too large (λ > 5), Ref f

appears to be approximately independent of λ. This observation is in line with the
convergent results for λ → 0 and λ → ∞ that we worked out above. The observation,
however, is stronger than convergence only. We can understand that the stripe for λ

were Ref f changes is connected with timing: The infectious period of an individual
is about 1/(μ + σ) (≈ 1 in the simulation). If λ is distinctively larger than μ + σ , the
average individual will have several (small) “super-spreader” events. As the events
are frequent and small, they are indistinguishable from deterministic contact events,
and Ref f does not change if λ is larger than (about) 5(μ + σ). In turn, if λ is much
smaller than μ + σ , only very few individuals are hit by super-spreader events. These
events are large indeed. We will find below that the effect of contact tracing does not
change in case of large or very large super-spreader events. Therefore, Ref f hardly
does depend on λ if either λ � μ + σ or λ � μ + σ .

Next we discuss the fact that CT seems always to perform better in the presence
of super-spreader events if the fraction of symptomatics is small, while the effect of
super-spreader events depends on the tracing probability if we have a high fraction
of symptomatic cases. Thereto we compare Ref f for small λ (= 0.001) with large λ

(= 10), and for different fraction of symptomatic cases (Fig. 7, panel (a)). The first fact
to be noticed is that Ref f is approximately linearly decreasing in p for small λ, while
it is non-linear if λ is large. The second striking point is that Ref f hardly depends on
the fraction of symptomatics for λ small, while for λ large, Ref f heavily depends on
this fraction. CT is based on different mechanisms for these two cases (Fig. 8).

In case of λ small, we have super-spreader events. As many infectees are produced
synchronously, even in case a small fraction of symptomatics and p is small, there will
be very soon after the event sufficiently many index cases discovered, s.t. the super-
spreader his/herself is detected by means of backward tracing. This fact explains the
independence of Ref f of the fraction of symptomatics. Once the super-spreader is
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Fig. 8 Different mechanisms for super-spreader events and deterministic contacts: In super-spreader events,
a fraction p of infectees is traced. In deterministic contacts, a fraction of future infections is prevented; this
fraction depends on the timing and can be larger than p

known, a fraction p of infectees are quarantined due to forward tracing. Therefore,
the effect of CT nicely fits a linear curve.

In case of deterministic contact events, a focal individual produces infectees, one
after the other. Eventually an infectee will becomes symptomatic, and the focal indi-
vidual can be traced. The higher the fraction of symptomatics, the earlier the focal
individual will be detected by backward tracing. Forward tracing might reveal more
infectees. However, even more importantly, further infections are prevented. While in
super-spreader events, a fraction p of infectees are removed, in deterministic contact
events—depending on the timing—the fraction of prevented cases might be much
larger than p. As the timing crucially depends on the fraction of symptomatics in that
case, also the effect depends on this fraction.

Therefore, if p is small and the fraction of symptomatic cases is high, CT can be
more efficient in deterministic contacts events. If p is large, then CT will be more
efficient in case of super-spreader events. Realistic parameter settings are not that
extreme. However, also in that case, CT will act in super-spreader events rather in
detection of already infected persons, while in deterministic contacts it rather acts in
preventing further infections by the focal individual.

In case of constant parameters and μ = 0, we have (see above) that the critical
tracing probability coincides for the scenario with and without super-spreaders. In
this special case, CT is more efficient without super-spreader events if Ref f > 1,
and less efficient for Ref f < 1. If we also have asymptomatic cases, the effective
reproduction number that separates the regions were CT is more/less efficient for
super-spreader events increases.

Last we consider the effect of incubation and latent period. In Fig. 7, panel (b), the
effect of the latent period is presented. The figure does change quantitatively but not
qualitatively. In case of a latency period, CT is more efficient, as the tracing process
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Fig. 9 For parameters resembling that for SRAS-CoV-2, we consider the impact of super-spreader events.
β0(a) = τβ(a), and β1(a) = (1 − τ)β(a). Dashed: λ = 10, solid lines λ = 0.001. τ : as indicated in the
inlay, symmetric from outside to the central curves, τ = 0.1, τ = 0.5, and τ = 0.9

is better able to catch up with the infectious process. Otherwise, the interpretation we
obtained for the first case does not change.

That is different if we consider an increased incubation period. We adapted the
model with constant rates s.t.μ(a)+σ(a) (the total recovery rate) still is constant, but
that no individual shows symptoms in a first time interval. Therefore, there are less
symptomatic cases and hence CT is less efficient. However, the most striking point
is the fact that the curves for super-spreader events split up and become qualitatively
similar to the curves for deterministic contacts. The basic mechanism for CT in case of
super-spreader events changes. The infectees of the event cannot be removed early (as
in the scenario without incubation period), and start to produce further infecteds until
the super-spreader is detected. In case of a long incubation period, a strong component
in the effect of CT is the prevention of further infecteds. That is, the mechanismmoves
from eliminating already infected persons to preventing further infections.

Let us turn to a real-world example: SARS-CoV-2. We use parameters that are
derived using medical information about that infection (for details see Pollmann et al.
(2020), SI, where we use here R0 = 3 to calibrate). These parameters incorporate
no information about supers-spreader events; we have only an idea about β̃(a) :=
β0(a) + β1(a). Therefore we scan different possible ratios of β0 and β1, as well as
different values for λ. We find in Fig. 9 that Ref f rather resembles the deterministic
mechanism than the super-spreader mechanism for CT. And indeed, for SARS-CoV-2
the incubation period is about 2 days larger than the latency period. Due to this fact, CT
is rather based on the prevention of further cases, and so super-spreader mechanisms
do only change the efficiency of CT in a limited way.

123



Contact tracing & super-spreaders in the branching-process model Page 35 of 37 24

5 Discussion

We considered a branching-type model for CT, where we introduced random contacts
to model super-spreader events. Themethod developed inMüller et al. (2000) was car-
ried over to analyze the present model. Thereto, we introduced forward- and backward
tracing. The results for these sub-processes are interesting in itself. Particularly nei-
ther backward- nor forward tracing alone is able to adequately handle super-spreader
events. In extreme cases, backward tracing alone has no effect at all. This observation
has technical consequences (the combination of backward- and forward to full tracing
requires more careful attention than in most studies based on Müller et al. (2000) pub-
lished up to now), but also practical consequences Bradshaw et al. (2020). Particularly
it is necessary to choose the tracing interval (the interval for which the contacts are
identified) long enough to also detect the infector.

The second interesting finding of the present study is a difference in the mechanism
of CT in deterministic- and super-spreader events. While in super-spreader events CT
is based on a rapid detection of a fraction p of infectees (and in that Ref f decreases
appropriately linearly while the fraction of symptomatic individuals only has a minor
influence), in deterministic, non-synchronous contacts, CT is rather based on the pre-
vention of cases. If the tracing probability is small and the fraction of symptomatics
(index-cases) is large, then CT becomes less effective in case of super-spreader events.
A large incubation period (distinctively larger than the latency period) relativize the
differences - the “super-spreader mechanism” becomes less important, and the results
resemble more the situation with deterministic contacts. Particularly, in case of SARS-
CoV-2, we don’t recognize a huge effect.

The present paper deepens our understanding of CT in the presence of super-
spreader events. We are able to better understand the different mechanisms by which
CT controls an infection with/without super-spreader events. This insight, in turn,
allows to characterize situation where the effect of CT is not increased but decreased.

In any case, we need to emphasize that the present model only is one of many pos-
sible ways to address superspreading. Another approach is based on a heterogeneous
contact graph. Also in that case, there are indications that a higher variance (super-
spreading) decreases the efficiency of contact tracing (see Okolie and Müller 2020).
However, in the present study as well as in the paper by Okolie and Müller (2020), we
assume that only infector/infectee links can be traced, and all links independently. It
might be more realistic that also direct contacts happen between infectees in a super-
spreader events, or that the complete group of infectees is detected. Both cases violate
assumption that contacts/individuals are detected independently of each other. In that,
the present approach might underestimate the efficacy of CT. Further investigations
are necessary to analyze the different reasons for super-spreading, and the effect of
super-spreading on the efficacy of CT.
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