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s u m m a r y

Objective: Spinal stenosis is a common condition among older individuals, with significant morbidity at
tached. Little is known about its risk factors but degenerative conditions, such as osteoarthritis (OA) have 
been identified for their mechanistic role. This study aims to explore causal relationships between an
thropometric risk factors, OA, and spinal stenosis using Mendelian randomisation (MR) techniques.
Design: We applied two-sample MR to investigate the causal relationships between genetic liability for 
select risk factors and spinal stenosis. Next, we examined the genetic relationship between OA and spinal 
stenosis with linkage disequilibrium score regression and Causal Analysis Using Summary Effect estimates 
MR method. Finally, we used multivariable MR (MVMR) to explore whether OA and body mass index 
(BMI) mediate the causal pathways identified.
Results: Our analysis revealed strong evidence for the effect of higher BMI (odds ratio [OR] = 1.54, 
95%CI: 1.41-1.69, p-value = 2.7 × 10−21), waist (OR = 1.43, 95%CI: 1.15-1.79, p-value = 1.5 × 10−3) and hip 
(OR = 1.50, 95%CI: 1.27-1.78, p-value = 3.3 × 10−6) circumference on spinal stenosis. Strong evidence of 
causality was also observed for higher bone mineral density (BMD): total body (OR = 1.21, 95%CI: 1.12-1.29, 
p-value = 1.6 × 10−7), femoral neck (OR = 1.35, 95%CI: 1.09-1.37, p-value = 7.5×10−7), and lumbar spine 
(OR = 1.38, 95%CI: 1.25-1.52, p-value = 4.4 × 10−11). We detected high genetic correlations between spinal 
stenosis and OA (rg range: 0.47-0.66), with Causal Analysis Using Summary Effect estimates results sup
porting a causal effect of OA on spinal stenosis (ORallOA = 1.6, 95%CI: 1.41-1.79). Direct effects of BMI, BMD on 
spinal stenosis remained after adjusting for OA in the MVMR.
Conclusions: Genetic susceptibility to anthropometric risk factors, particularly higher BMI and BMD can 
increase the risk of spinal stenosis, independent of OA status. These results may inform preventative 
strategies and treatments.
© 2023 The Author(s). Published by Elsevier Ltd on behalf of Osteoarthritis Research Society International. 

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Introduction

Spinal stenosis is a potentially debilitating condition with 
symptomatic spinal stenosis affecting about 10% of Western popu
lations and prevalence only increasing with age.1–3 It is char
acterised by narrowing of the spinal canal that results in 
compression of the spinal cord and/or nerves, leading to symptoms 
such as back pain, sciatica and spinal claudication.4 Consequently, 
spinal stenosis often has a significant adverse impact on affected 
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individuals’ quality of life.5 Although spinal stenosis can occur at any 
level of the spine, it most commonly affects the lumbar and cervical 
regions.6 Treatment can be conservative but ever increasing rates of 
surgery in the USA7,8 mean it now accounts for > $15 billion9 per year 
in healthcare spending in the USA.

The two main, mutually non-exclusive causes of spinal stenosis 
are degenerative (acquired), and less commonly developmental 
(congenital).1 Degenerative spinal stenosis is thought to be caused 
by changes associated with aging and spinal osteoarthritis 
(OA).10 For example, in UK Biobank (UKBB), a large prospective co
hort in the UK, 50% of individuals with spinal stenosis diagnosis had 
a concurrent OA diagnosis.

Despite its increasing prevalence and the associated increasing 
healthcare cost, little is known about the epidemiology of spinal 
stenosis, in particular its modifiable risk factors.11 It has been hy
pothesised that increased risk factor burden in the population could 
be responsible for this rise.12 For example, there is observational 
evidence that high body mass index (BMI) predisposes to degen
erative spinal disease, including spinal stenosis.13–15 Knutsson 
et al.12 showed that obese construction workers had a twofold in
creased risk of lumbar spinal stenosis compared with normal weight 
workers. However, observational studies are liable to confounding 
and reverse causation making causal conclusions difficult. In addi
tion, these studies are unable to assess whether raised BMI causes 
spinal stenosis through degenerative changes or other pathways. 
Previously, it has been shown that BMI is positively correlated with 
bone mineral density (BMD)16,17 and increased BMD has been as
sociated with OA.18 It is therefore feasible that BMD and OA are 
mediating the relationship between BMI and spinal stenosis. An al
ternative explanation is that BMI is confounding the relationship 
between BMD and spinal stenosis.

Mendelian randomisation (MR) is an increasingly popular 
method for causal inference in epidemiology due to biobank-driven 
expansion in genome-wide association studies (GWAS) on a variety 
of phenotypes.19 MR utilises genetic variants that are randomly as
signed at conception to explore causal relationships between ex
posures and outcomes. The technique capitalises on the Mendelian 
principles of inheritance, where segregation of genetic variation is 
independent of confounding factors and reverse causation, so MR is 
particularly useful when investigating risk factors that may be 
challenging to examine with conventional epidemiological methods. 
While not applied to spinal stenosis so far to the best of our 
knowledge, MR has previously confirmed a causal effect of BMI20

and BMD20,21 on site-specific OA.
In this study, we employ two-sample univariable MR techniques 

to firstly explore the total causal relationships between genetic 
susceptibility to anthropometric risk factors and spinal stenosis. 
Among individual risk factors, we focus on measures of adiposity 
(BMI, waist circumference, hip circumference, waist-to-hip ratio) as 
overall BMI may not reflect body fat distribution and its effect on 
spine degeneration via mechanical and inflammatory path
ways.22 We also look at height due to potentially increased me
chanical stress in tall individuals,23 bone mineral-related traits (BMD 
– total and lumbar, circulating calcium and phosphorus) due to 
importance in maintaining bone and joint health.24,25 Next, we 
employ a multivariable MR (MVMR) approach to elucidate the un
derlying independent mechanisms contributing to aetiology of 
spinal stenosis adjusting for effects of OA and BMD.

Methods

Genetic association studies

We used two (Table I) publicly available spinal stenosis GWAS 
studies in European populations available from FinnGen release 8 

(https://r8.risteys.finngen.fi/phenocode/M13_SPINSTENOSIS)26 and 
UK Biobank (UKBB) available via PheWeb (https://pheweb.org/UKB- 
TOPMed/pheno/720)27 with the spinal stenosis diagnosis defined as 
having been assigned the International Classification of Disease revision 
10 (ICD-10) M48.0 (spinal stenosis) code. The FinnGen study was used in 
our main results due to increased power offered by its sample size 
(16,698 cases in FinnGen and 3713 in UKBB) whereas the UKBB GWAS is 
used as a sensitivity analysis. The reasons for reduced prevalence seen in 
UKBB can be potentially attributed to misclassification due to require
ment for hospital inpatient admission for ICD-10 code assignment and 
lower MRI diagnosis rate relative to Finland (Ville Mattila, personal 
communication).

Since we were interested to study the effect of genetic liability for 
OA on spinal stenosis, we used the Genetics of Osteoarthritis (GO) 
European OA GWAS across 3 body sites and 2 composite phenotypes 
(hip, knee, knee/hip – i.e. knee and/or hip, spine, all – i.e. hip, knee, 
hand, finger, thumb and spine) in our main analyses (Table I). To 
avoid bias induced by sample overlap between exposure and out
come in the analysis involving UKBB spinal stenosis GWAS we used 
custom GO GWAS with no UKBB individuals included.

We aimed to study the direct genetic effect of a number of anthro
pometric risk factors on spinal stenosis (Fig. 1): adiposity (BMI,28,29 hip 
circumference,30 waist circumference,30 waist-to-hip ratio30), 
height,31 bone mineral density (BMD: total,32 lumbar spine33 and fe
moral neck – this study) as well as circulating albumin-adjusted calcium 
(this study, Supplementary Methods and Supplementary Table I) and 
circulating phosphate (Neale Lab GWAS available via OpenGWAS34,35). 
Again, to prevent sample overlap in a subset of MR analyses we included 
additional BMI,28 femoral neck BMD33 GWAS with low number/no UKBB 
participants (but adjusted for weight).

Power calculations

We used the mRnd calculator (https://shiny.cnsgenomics.com/ 
mRnd/) to calculate the minimum detectable odds ratio (OR) at 80% 
power in our main two-sample MR analyses involving spinal ste
nosis as the outcome.

Linkage disequilibrium score regression

We utilised the LD SCore (LDSC) ver 1.0.1 software36 to estimate 
the genetic correlation (rg) between OA and spinal stenosis, using 
the standard procedures described in the LDSC tutorial, using 
HapMap 3 single-nucleotide polymorphisms (SNPs) and 1000 Gen
omes European ancestry reference panel to calculate linkage dis
equilibrium (LD) scores.

Selection of genetic instruments

To identify genetic instruments for each exposure, we selected SNPs 
that showed strong association at a genome-wide significance level (p- 
value < 5 × 10−8). We further clumped the SNPs to ensure that LD as 
measured by r2 <  0.001 between any pair of significant SNPs in a 10 Mbp 
window in the 1000 Genomes European panel37 to avoid multiple in
struments capturing the same causal effect. This was done using plink 
ver 1.938 as called by ld_clump function in the ieugwasr R package 
(https://mrcieu.github.io/ieugwasr). In each case, genetic variant asso
ciations for the outcome trait were extracted and harmonised using 
default settings in the TwoSampleMR34 package. We next calculated the 
F-statistics and R2 to check for weak instrument bias.

Two-sample MR analyses

We applied the two-sample MR approach, which utilises sum
mary-level data from two non-overlapping GWAS, to estimate the 
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causal effect of anthropometric risk factors on spinal stenosis using 
the TwoSampleMR34 R package. We used the inverse-variance 
weighted (IVW) method as the primary analysis, where the causal 
estimate is obtained by combining the SNP-specific Wald ratios 
using a random-effects IVW meta-analysis. To combine the causal 
estimates obtained using FinnGen and UKBB spinal stenosis out
comes, we meta-analysed them with fixed-effects inverse variance 
method used for pooling in the R meta package. Effect estimates are 
interpretable as change in outcome per 1 standard deviation in
crease in continuous exposure or per doubling in the risk of binary 
exposure.

Sensitivity analyses

To assess the robustness of our findings and potential violation of 
MR assumptions, we performed several sensitivity analyses, in
cluding:

Weighted median and mode estimator
These approaches estimate the causal effect by calculating the 

median and mode of the individual Wald ratios, respectively, pro
viding a consistent estimate if at least 50% of the weight comes from 
valid instruments (for median estimator) and the largest subset of 
variants identifies the same causal effect (for mode estimator).

MR-Egger regression
This method is robust to balanced pleiotropic effects, i.e. positive 

and negative effects of the instrument acting through alternative 
pathway cancelling each other out. It provides an estimate of the 
causal effect by regressing the SNP-outcome associations on the 
SNP-exposure associations, while allowing for an intercept term that 
captures the average pleiotropy across instruments.

MR-Pleiotropy RESidual Sum and Outlier39

The MR-Pleiotropy RESidual Sum and Outlier (MR-PRESSO) test 
was used to detect and correct for horizontal pleiotropy by identi
fying and removing outlier SNPs that could bias the causal effect, 
using the default settings.

Causal Analysis Using Summary Effect estimates40

The Causal Analysis Using Summary Effect estimates (CAUSE) is a 
Bayesian MR method which harnesses the full genome-wide set of 
variant summary statistics (as opposed to only genome-wide sig
nificant SNPs in a traditional MR) to distinguish the causal effect from 
correlated pleiotropy (when a variant affects the exposure and out
come through a shared heritable factor) and uncorrelated horizontal 
pleiotropy (when a variant affects the exposure and outcome through 
separate mechanisms). We used it to help discern if the effect of OA on 
spinal stenosis seen in standard MR analysis was driven more by 
shared genetic heritability of the two traits or causal effect.

Exposure GWAS source Includes UKBB? Sample size (cases/controls) Number of SNP instruments* R2* % Mean F-statistic Pubmed ID

Anthropometric risk factors
Body mass index (BMI) GIANT3 N 339,224 78 1.56% 65.7 25673413
Body mass index (BMI) GIANT3 Y 681,275 496 4.91% 72.7 30124842
Hip circumference GIANT3 N 213,038 52 1.37% 55.0 25673413
Waist circumference GIANT3 N 232,101 42 1.09% 59.3 25673413
Waist-to-hip ratio GIANT3 N 212,244 29 0.68% 48.3 25673413
Height GIANT3 N 253,288 381 11.96% 78.2 25282103
Total body BMD1 GEFOS4 Y 56,284 84 9.71% 65.2 30598549
Femoral neck BMD1 GEFOS4 N 32,735 18 1.96% 54.6 26367794
Femoral neck BMD1 UKBB Y 38,645 45 6.32% 54.4 This study
Lumbar spine BMD1 GEFOS4 N 28,498 23 2.48% 48.2 26367794
Circulating calcium UKBB Y 361,194 233 11.85% 101.4 This study
Circulating phosphate UKBB Y 361,194 148 4.81% 93.2 Neale lab**
Osteoarthritis
Hip OA2 with UKBB GO Consortium Y 36,445/316,943 40 0.53% 46.2 34450027
Hip OA2 no UKBB GO Consortium N 25,237/272,284 14 0.32% 37.7 34450027
KneeHip OA2 with UKBB GO Consortium Y 89,625/399,222 39 0.32% 40.1 34450027
KneeHip OA2 no UKBB GO Consortium N 60,683/282,999 8 0.09% 37.7 34450027
Knee OA2 with UKBB GO Consortium Y 62,603/332,423 31 0.31% 39.2 34450027
Knee OA2 no UKBB GO Consortium N 43,102/254,144 4 0.05% 40.2 34450027
All OA2 with UKBB GO Consortium Y 177,591/647,127 31 0.14% 37.4 34450027
All OA2 no UKBB GO Consortium N 108,970/399,281 4 0.05% 35.5 34450027
Spine OA2 with UKBB GO Consortium Y 27,916/303,489 1 0.01% 30.3 34450027
Spine OA2 no UKBB GO Consortium N 16,777/258,933 1 0.01% 30.3 34450027
Spinal stenosis
Spinal stenosis FinnGen N 16,698/248,831 21 0.27% 40.8 36653562
Spinal stenosis PheWeb UKBB Y 3713/390,237 NA5 NA5 NA5 32504056

*MR analyses using FinnGen spinal stenosis GWAS dataset as outcome.
**Available via OpenGWAS id: ukb-d-30810_irnt.
1BMD - bone mineral density.
2OA - osteoarthritis.
3GIANT - The Genetic Investigation of ANthropometric Traits consortium.
4GEFOS - GEnetic Factors for OSteoporosis.
5NA - not available.

Table I                                                                                                       

GWAS used as sources for instrumental variables in the study. 
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Reverse MR
We also carried out reverse MR, i.e. we used the FinnGen spinal 

stenosis GWAS (Table I) as the exposure to detect any potential 
causal effect of genetic liability for spinal stenosis on any of the 
tested risk factors.

Heterogeneity
We used the standard statistics of Cochran’s Q and I2 to assess 

heterogeneity in our MR IVW analyses.

MVMR analyses

In order to test if the effect of risk factors with significant effect 
on spinal stenosis, as identified in the univariable analysis, is 
mediated by OA, a MVMR model was used combining both exposure 
variables in a single regression test and meta-analysed using IVW 
method. We also carried out MVMR analyses adjusting simulta
neously for BMI and body fat distribution traits,30 as well as BMI and 
BMD41 as these are strongly positively genetically correlated.

The instrument strength (conditional F-statistics, FTS) and effect 
heterogeneity (Cochran’s QA) in MVMR context were calculated 
using the MVMR42 package with the covariance between genetic 
associations with each exposure fixed at zero in the primary ana
lysis, but a range of values was also tested. Since we detected pre
sence of weak instrument bias towards the (likely) confounded 
observational association, the Q-minimisation approach (QHET) from 
the MVMR package42 was run as a sensitivity analysis to comple
ment the MVMR-IVW results.

Results

Investigation of total effect of risk factors on spinal stenosis using two 
sample MR

Our power analysis showed that we had at least 80% power for 
detecting small-to-moderate effects (odd ratio: 1.07-1.27) for a range 
of anthropometric risk factors using the FinnGen spinal stenosis 
GWAS (Supplementary Table II). Unless otherwise stated, all the 
main results presented are derived using the IVW estimator and 

Fig. 1                                                                                                         

Flowchart providing overview of datasets and methods used in the current MR study.
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FinnGen spinal stenosis outcome. Among the adiposity traits, we 
found strong evidence for the effect of higher BMI (OR = 1.54, 95% CI: 
1.41-1.69, p-value = 2.7 × 10−21, Fig. 2A), hip circumference (OR = 1.50, 
95% CI: 1.27-1.78, p-value = 3.3 × 10−6, Fig. 2B) and waist-cir
cumference (OR = 1.43, 95% CI: 1.15-1.79, p-value = 1.5 × 10−3, Fig. 2C) 
but not waist-to-hip ratio (OR = 1.10, 95% CI: 0.83-1.47, p-value =  
0.49, Fig. 2D) on spinal stenosis. Among the skeletal traits, we found 
weak evidence for a causal effect of increased height (FinnGen: 
OR = 1.06, 95% CI: 0.99-1.14, p-value = 0.10; UKBB: OR = 1.15, 95% CI: 
1.04-1.28, p-value = 6.6 × 10−3; Fig. 3A) but strong evidence for a 
causal effect of higher total BMD (OR = 1.21, 95% CI: 1.12-1.29, p- 
value = 1.6 × 10−7, Fig. 3B), femoral neck BMD (OR = 1.22, 95% CI: 1.09- 
1.37, p-value = 5.9 × 10−4, Fig. 3C) and lumbar spine BMD (OR = 1.38, 
95% CI: 1.25-1.52, p-value = 4.4 × 10−11, Fig. 3D) on spinal stenosis. On 
the other hand, little evidence of an effect was found for circulating 
calcium (OR = 1.02, 95% CI: 0.93-1.11, p-value = 0.69, Supplementary 
Fig. 1A) and phosphate (OR = 0.94, 95% CI: 0.85-1.03, p-value = 0.19, 
Supplementary Fig. 1B).

Sensitivity analyses – two sample MR

Fixed-effects meta-analysis of MR results based on both FinnGen 
and UK Biobank spinal stenosis outcome GWAS resulted in similar 
estimates to those obtained using solely FinnGen. SNP outliers ap
parent in the scatter plots (Supplementary Figs. 2-3) along with 

significant Cochran’s Q values for all exposures (except for lumbar 
spine BMD, Supplementary Table III) suggested presence of effect 
heterogeneity. However, outlier-robust sensitivity method MR- 
PRESSO reproduced the same magnitude of associations, while other 
methods (MR Egger, weighted median and mode) were consistent 
with IVW/MR-PRESSO estimates overall (Supplementary Table IV). 
Non-significant Egger’s intercept (Supplementary Table V) suggested 
limited presence of horizontal pleiotropy. Reverse MR analysis with 
the FinnGen spinal stenosis found little evidence of effect on all risk 
factor traits, apart from lumbar spine BMD (OR = 1.15, 95% CI: 1.06- 
1.26, p-value = 1.5 × 10−3).

Shared genetic liability for spinal stenosis and OA

We then investigated the magnitude of LD score-derived genetic 
correlation between spinal stenosis and OA across various sites 
(Fig. 4). As expected, the highest correlation was found between the 
two spinal stenosis GWAS (rg = 0.77, p-value = 1.1 × 10−23), however 
high genetic correlation was also revealed between spine OA 
(rgFinnGen = 0.66, p-value = 4 × 10−22; rgUKBB = 0.73, p-value = 1.3 ×  
10−11) and spinal stenosis. Genetic correlation across other OA sites 
was high in the FinnGen spinal stenosis GWAS (from rg = 0.47, p- 
value = 2.5 × 10−23 and p-value = 2.8 × 10−17 for knee and hip OA, re
spectively, to rg = 0.52, p-value = 2.4 × 10−25 for all OA) and moderate 
in the UKBB spinal stenosis GWAS (rg ranging 0.3-0.38).

Fig. 2                                                                                                         

Two sample Mendelian randomisation results for the effect of genetic susceptibility for adiposity traits (A – BMI, B – hip circumference, C - waist 
circumference, D – waist-to-hip ratio) on spinal stenosis (FinnGen and UK BioBank). Plots compare results obtained using IVW and outlier-robust 
MR-PRESSO method and display fixed-effects meta-analysis results of the odds ratio per SD increase in exposure obtained using FinnGen and 
UK Biobank outcomes.
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Shared risk factors for OA and spinal stenosis

Given the substantial genetic correlation of spinal stenosis with 
OA and evidence of causal effects of adiposity traits as well as BMD 
on OA in previous MR studies,20,21,43,44 we hypothesised that OA may 
be a major mediator of the effects of these risk factors on spinal 
stenosis. First, to investigate this hypothesis in the two-step MR 
framework,45 we replicated the evidence for causal effects of an
thropometric risk factors on OA (Supplementary Tables VI-VIII): BMI, 
hip circumference, waist circumference (Supplementary Fig. 4), 
height, total BMD, femoral neck BMD and lumbar spine BMD 
(Supplementary Fig. 5). As the next step, we assessed the bidirec
tional relationship between OA and spinal stenosis (Supplementary 
Figs. 6-7, Supplementary Tables IV, VI). The main IVW result con
firmed the causal effect of all site OA on spinal stenosis with OR of 
1.44 (95% CI: 1.13-1.84, p-value = 3.1 × 10−3). IVW result for knee OA 
(OR = 1.16, 95% CI: 0.98-1.38, p-value = 0.09) was markedly increased 
after outlier correction using MR-PRESSO (OR = 1.34, 95% CI: 1.18- 
1.52, p-value = 1.3 × 10−4) and a very uncertain estimate was available 
for spine OA (OR = 1.13, 95% CI: 0.75-1.71, p-value = 0.56) as calcu
lated using a single instrument (F-statistic = 30).

Spinal stenosis is causally downstream of OA

To help overcome this power limitation and establish the true causal 
path between OA and spinal stenosis given their shared genetic herit
ability, we applied the Bayesian CAUSE method (Supplementary Table 

IX). When evaluating the bidirectional relationship between OA and 
FinnGen spinal stenosis GWAS, the causal model was always picked over 
the sharing model (p-value from 1.4 × 10−6 to 4.9 × 10−3). In each case, 
effect size for the OA to spinal stenosis direction dominated (ORall OA 

= 1.6, 95% CI: 1.41-1.79; ORspinal OA = 1.4, 95% CI: 1.21-1.62) over the re
verse direction (ORall OA = 1.07, 95% CI: 1.05-1.09; ORspinal OA = 1.13, 95% 
CI: 1.09-1.17).

Investigation of direct effect of risk factors on spinal stenosis 
independent of OA using MVMR

In light of the predicted strong causal effect of OA on spinal 
stenosis and both OA and spinal stenosis sharing the same set of 
anthropometric risk factors in our two-sample MR analyses, we 
employed MVMR to estimate the direct effect of a given risk factor 
on spinal stenosis accounting for OA (Supplementary Table X). The 
direct effect of higher BMI on spinal stenosis (Fig. 5A) ranged from 
OR = 1.29 for all OA mediator (95% CI: 1.16-1.45, p-value = 7.2 × 10−6) 
to OR = 1.37 for spine OA mediator (95% CI: 1.24-1.51, p-value = 4.7  
× 10−10) which corresponded to all OA mediating 16.2% (95% CI: 
14.2%-17.8%) of the total effect of BMI on spinal stenosis. For height, 
adjusting for OA resulted in the direct effect being consistent with 
the null hypothesis (Fig. 5B) for all OA (OR = 1.01, 95% CI: 0.94-1.08, 
p-value = 0.79) and spine OA (OR = 1.01, 95% CI: 0.94-1.08, p-value =  
0.85), albeit a weak direct effect remained in the UKBB analysis. 
Next, total body BMD direct effect adjusted for OA (Fig. 5C) resulted 
in OR = 1.19 (95% CI: 1.11-1.29, p-value = 6.6 × 10−6) for all OA and in 

Fig. 3                                                                                                         

Two sample Mendelian randomisation results for the effect of genetic susceptibility for skeletal traits (A – height, B – total body BMD, C – femoral 
neck BMD, D – lumbar spine BMD) on spinal stenosis (FinnGen and UK Biobank). Plots compare results obtained using IVW and outlier-robust 
MR-PRESSO method and display fixed-effects meta-analysis results of the odds ratio per SD increase in exposure obtained using FinnGen and 
UK Biobank outcomes.
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OR = 1.2 (95% CI: 1.11-1.29, p-value = 1 × 10−6) for spine OA. Inter
estingly, unadjusted odds-ratio for total body BMD did not mean
ingfully differ (OR = 1.21, 95% CI: 1.12-1.29, p-value = 1.6 × 10−7) 
suggesting total body BMD affects OA through an independent 
pathway. This was not unlike femoral neck BMD (Fig. 5D), where 
the direct effect accounting for all OA (OR = 1.19, 95% CI: 1.06-1.33, 
p-value = 3.2 × 10−3) and spine OA (OR = 1.15, 95% CI: 1.01-1.30, 
p-value = 0.03) equated to all OA mediating 2.5% of the total effect of 
femoral neck BMD on spinal stenosis. Similarly, relatively low (5.8%) 
degree of mediation was found for the lumbar spine BMD outcome 
(Supplementary Fig. 8). Summary of the main findings from OA 
mediation analysis is provided in Fig. 6.

Direct effect of waist/hip circumference on spinal stenosis independent 
of BMI

Since the two non-BMI adiposity risk factors which we identified 
(waist and hip circumference) are phenotypically and genetically 
correlated with BMI, we used the MVMR approach to arrive at direct 
estimates adjusted for BMI (Supplementary Fig. 9). We found that 
the corrected estimates shifted towards the null for both waist 
(OR = 1.13, 95% CI = 0.82-1.55, p-value = 0.45) and hip circumference 
(OR = 1.12, 95% CI = 0.85-1.46, p-value = 0.42).

Direct effect of BMD on spinal stenosis independent of both OA and BMI

Lastly, since previous research hypothesised that BMI can be a 
confounder of a relationship between BMD and OA,21 we were in
terested in studying the mutually adjusted effect of the three vari
ables on spinal stenosis (Supplementary Fig. 10, Supplementary 
Table XI). In the model including total body BMD and all OA ex
posures, the estimated effect of BMI on spinal stenosis remained 
consistent (OR = 1.32, 95% CI: 1.16-1.47, p-value = 3.2 × 10−6) with the 

Fig. 4                        

Genetic correlation of osteoarthritis and spinal stenosis phenotypes 
estimated by LD score regression. Correlation coefficients are dis
played within cells and the colour/area of the cells are proportionally 
scaled. All p-values are significant after FDR correction. FDR, false 
discovery rate, FINN_SS, FinnGen spinal stenosis, UKBB_SS, UK 
Biobank spinal stenosis.

Fig. 5                                                                                                         

Multivariable Mendelian randomisation results for the jointly modelled effect of genetic susceptibility for risk factors (A – BMI, B – height, C – total 
body BMD, D – femoral neck BMD) and liability for osteoarthritis (all or spine) on spinal stenosis (FinnGen). The odds ratios are scaled per SD 
increase of risk factors and doubling in the odds of osteoarthritis.
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model including only OA covariate, while the total BMD estimate 
was slightly attenuated (OR = 1.13, 95% CI: 1.03-1.24, p-value = 8.3 ×  
10−3) but there is a large amount of uncertainty in the estimate. The 
results for the model involving spine OA rather than all OA, and 
femoral neck BMD rather than total body BMD were analogous. 
There is some evidence that BMI is common cause of both lumbar 
spine BMD and OA shown by the significant reduction in the effect of 
lumbar spine BMD on spinal stenosis (adjusted for both BMI and all 
OA: OR = 1.01, 95% CI: 0.90-1.14, p-value = 0.83; adjusted for all OA 
only: OR = 1.30, 95% CI: 1.15-1.47, p-value = 4.4 × 10−5).

Sensitivity analyses – MVMR

As we detected presence of potential pleiotropy due to high 
heterogeneity as measured by Cochran’s QA, and weak instrument 
bias evidenced by conditional F-statistics < 10 in our MVMR analyses 
(Supplementary Tables XII-XIII), we applied the robust estimator 
QHET in a sensitivity analyses. The method produced results generally 
consistent with the IVW MVMR results, albeit with a much higher 
degree of uncertainty around the true causal value (Supplementary 
Tables XIV-XV).

Discussion

Our understanding of spinal stenosis epidemiology remains quite 
limited despite the condition’s relatively high prevalence among 
older adults and its association with substantial pain and mobility 
impairment. In this study, we applied a genetic epidemiology 
method (MR) to investigate the causal relationships between an
thropometric risk factors, OA and spinal stenosis.

When analysed independently, BMI was found to act as a strong 
risk factor for spinal stenosis (meta-analysed OR = 1.53 per 1 stan
dard deviation (SD) increase in exposure), similar to hip 

circumference (OR = 1.47) and waist circumference (OR = 1.44) but 
these attenuated to the null after adjusting for BMI in multivariable 
analysis. BMD across different sites also showed a substantial effect 
on spinal stenosis: total (OR = 1.2), hip (femoral neck, OR = 1.22) and 
lumbar spine (OR = 1.35). As lumbar spine BMD measurement is li
able to falsely increase with degenerative change46,47 and spinal 
stenosis liability affects lumbar spine BMD in our reverse MR ana
lysis, we subsequently focussed on total and hip BMD. Interestingly, 
in a previous case-control study higher BMD was found in lumbar 
spinal stenosis cases across not only the lumbar spine, but also fe
moral neck and total hip.48 In addition, we found that circulating 
calcium and phosphate exhibited little to no evidence for an effect 
on spinal stenosis.

OA, in particular facet joint OA of the spine, can contribute to the 
narrowing of the spinal canal thanks to joint hypertrophy and formation 
of synovial cysts.11 In agreement with this biological mechanism, our MR 
analysis found a positive effect of a genetic predisposition to OA (when 
measured at all sites) on the development of spinal stenosis. These re
sults were further supported by the Bayesian CAUSE model which found 
our results were more likely to be driven by a causal effect of a genetic 
predisposition to OA than by correlated and horizontal pleiotropy. We 
also identified a reverse causal effect, hypothesised to be indicative 
mostly of a shared genetic aetiology, as supported by LD score regression 
estimating inter-trait genetic correlation. It is worth noting that while 
our spinal OA signals showed consistent results, in terms of direction of 
effect, the estimates were less precise likely due to the reduced number 
of genetic instruments as compared with OA at all sites.

MVMR, which models the joint effects of multiple risk factors on 
an outcome to assess their individual contributions, identified a 
largely OA-independent causal pathway between BMI, BMD and 
spinal stenosis, with OA mediating < 20% of the effect of BMI and 
< 6% of BMD. However, weak evidence for the causal effect of height 
on spinal stenosis (OR = 1.09) was diminished to the null in the 

Fig. 6                                                                                                         

Summary diagrams illustrating direct and indirect, osteoarthritis (all sites)-mediated effects of risk factors (A – BMI, B – height, C – total body 
BMD, D – femoral neck BMD) on spinal stenosis (FinnGen). OR indicates odds ratio (with 95% CI). 

M.K. Sobczyk et al. / Osteoarthritis and Cartilage 32 (2024) 719–729 726



MVMR analyses suggesting that the univariable effect was driven by 
the causal association with OA. Moreover, we did not find compel
ling evidence for BMI to be acting as a confounder for the association 
of BMD, OA and spinal stenosis.

MR can only provide reliable causal estimates subject to meeting 
three key assumptions which were tested in multiple ways in our 
analysis. The first criterion (“relevance”), that the genetic variants 
are robustly associated with the risk factor of interest was met by 
using variants with genome-wide significant associations with ex
posure and using variants with F-statistics > 30 that should minimise 
weak instrument bias, which can arise when the genetic variant 
explains only a small proportion of the variance in the risk factor. 
Weak instrument bias can move the MR estimate towards the ob
servational confounded association and increase type 1 error rate. 
The second criterion, that the genetic variant shares no unmeasured 
confounder with the outcome (’independence’/’exchangeability’) is 
usually concerned with confounding by population stratification 
which is addressed during the initial GWAS analysis. In addition, 
bidirectional MR analysis confirmed that associations between risk 
factors and spinal stenosis were not confounded by reverse causa
tion in all but one case.

Perhaps the most pervasive problem plaguing MR analysis is the 
violation of the third assumption, that the genetic variant affects the 
outcome only through its association with the risk factor, and not 
through any other independent pathways (’exclusion restriction’, i.e. 
no horizontal pleiotropy). We evaluated this assumption with the 
MR Egger intercept test and MR-PRESSO analysis. Also included were 
a range of MR sensitivity methods (MR-Egger, weighted median, 
weighted mode) whose results are consistent in magnitude with the 
main IVW results and so indicate that the independence and ex
clusion restriction assumptions were not violated.

Our IVW MVMR analysis typically suffered from low strength of 
the genetic instrument for 1-2 exposures. We tried to rectify that by 
applying the Q-minimisation approach which is more robust to 
these violations of MR assumptions but there remains a possibility 
that our MVMR direct estimates are incompletely adjusted.

Since there was no gold standard diagnostic tool for spinal stenosis at 
the time of data collection with diagnosis based on clinical history, 
physical examination, and imaging,49,50 varying case definition will in
troduce an additional layer of heterogeneity into GWAS and reduce its 
power. Using a severe end of the phenotype spectrum can lead to re
duced power in GWAS, and so fewer genomewide-significant hits. This is 
demonstrated by 0 versus 21 genome-wide significant loci in the UKBB 
(3713 cases) and FinnGen (16,698 cases) spinal stenosis GWAS, respec
tively. Likewise, the OA outcomes from the GO consortium included a 
range of definitions, including hospital diagnosis, radiographic evidence 
and self-reporting, which can inflate estimate heterogeneity, and so in
crease the risk of a weak instrument bias. Furthermore, this MR study 
could benefit from inclusion of more ancestrally diverse populations to 
compare the estimated effects of identified risk factors but currently no 
suitable spinal stenosis outcome GWAS in non-Europeans is available.

Our study has public health implications, as efforts to minimise 
prevalence of high adiposity in the population should lead to reduction 
in spinal stenosis incidence and associated benefits regarding quality of 
life and healthcare costs. Previously identified obese individuals with 
elevated BMD measurement could be especially targeted for weight loss 
intervention due to higher compounded risk of spinal stenosis. 
Moreover, while the current MR study uses condition prevalence as the 
outcome, it is quite likely that the risk factors identified could contribute 
to progression of symptoms.

In conclusion, we examined a variety of potential anthropometric 
risk factors for spinal stenosis, both independently and in conjunction 
with potential mediators. Our findings, confirmed by two-sample IVW 
MR, MR-PRESSO, and CAUSE analyses, demonstrate that a genetic pre
disposition to OA causally contributes to the development of spinal 

stenosis. Overall, we have found evidence for OA-independent causal 
effect of BMI on spinal stenosis, in addition to BMI- and OA-independent 
causal effect of BMD. Further investigation is necessary to elucidate the 
mechanisms through which elevated BMD and BMI contribute to spinal 
stenosis, as well as to explore the functional genomics of spinal stenosis, 
including potential drug targets.
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