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Multi-modal generative modeling for joint
analysis of single-cell T cell receptor andgene
expression data

Felix Drost 1,2, Yang An 1,3, Irene Bonafonte-Pardàs1, Lisa M. Dratva 4,
Rik G. H. Lindeboom 5, Muzlifah Haniffa 4,6, Sarah A. Teichmann 4,7,
Fabian Theis 1,2,3, Mohammad Lotfollahi 1,4,8 & Benjamin Schubert 1,3,8

Recent advances in single-cell immune profiling have enabled the simulta-
neous measurement of transcriptome and T cell receptor (TCR) sequences,
offering great potential for studying immune responses at the cellular level.
However, integrating these diverse modalities across datasets is challenging
due to their unique data characteristics and technical variations. Here, to
address this, we develop the multimodal generative model mvTCR to fuse
modality-specific information across transcriptome and TCR into a shared
representation.Our analysis demonstrates the added valueofmultimodal over
unimodal approaches to capture antigen specificity. Notably, weusemvTCR to
distinguish T cell subpopulations binding to SARS-CoV-2 antigens from
bystander cells. Furthermore, when combined with reference mapping
approaches, mvTCR can map newly generated datasets to extensive T cell
references, facilitating knowledge transfer. In summary, we envisionmvTCR to
enable a scalable analysis of multimodal immune profiling data and advance
our understanding of immune responses.

T cells are a critical component of the adaptive immune system. Their
primary function is the detection of pathogens and tumor cells
resulting in immune reactions, which is achieved through antigen
recognition by a highly diverse repertoire of T cell receptors (TCRs).
While recognizing antigens and immune signaling are well-researched
individually, the interplay betweenT cell function through theTCRand
its phenotype remains largely unexplored. Recent findings have shown
that T cells sharing the sameTCR, so-called clonotypes, express similar
transcriptional phenotypes and distribute non-randomly across gene
expression-based clusters1. Further, differences in memory pheno-
types are observed even between T cell clones recognizing the same
epitope, suggesting that a layer of T cell transcriptional diversity is

clonally inherited2,3. These findings indicate that the cells’ heritage
imprints specific transcriptional cell states shared within clonotypes.
Hence, the joint analysis of TCR and transcriptomic information pro-
vides a promising tool to identify groups of functionally and clonally
linked T cells, thereby improving our understanding of the inter-
dependencies between both modalities.

Paired measurements of TCR and transcriptome can be obtained
with modern single-cell multi-omic sequencing techniques4, enabling
the study of cell state and function, simultaneously5–7. However, both
modalities are usually analyzed separately on the transcriptomic- and
TCR levels, potentially missing crucial interdependencies between the
two modalities. While integration tools exist for other modality
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combinations such as transcriptome and surface protein counts, these
methods are not adapted to the TCR protein sequences. While pre-
vious tools such as Scirpy8 and scRepertoire9 offered utilities for TCR
analysis and shared data structures to interlink the unimodal analyses,
recent endeavors sought to integrate transcriptomics and TCR infor-
mation directly. Schattgen et al. used clonotype neighbor graph ana-
lysis (CoNGA) to detect correlations between TCR sequences and
transcriptome10. Zhang et al. developed a Bayesian model called TCR
functional landscape estimation supervised with scRNA-Seq analysis
(tessa) to correlate both modalities and cluster T cell clones by their
specificity11. While these methods incorporate both modalities for
clustering, they do not provide an integrated representation for other
downstream analyses or offer principled approaches to integrate
multiple datasets and scale only to small-size datasets. Furthermore,
they use a clonotype-level approach, fusing cells with identical TCRs.
However, cells from the same clonotype can have distinct
phenotypes12–14, but this information is lost when reducing cells to
common gene expression profiles.

Here, we introduce mvTCR, a multi-view deep learning model for
integrating TCR and transcriptome. mvTCR provides a cell-level
embedding incorporating both modalities, seamlessly integrates into
standard single-cell analysis workflow, and scales well to atlas-level
analysis. Moreover, we demonstrate that mvTCR preserves cell state
and phenotype information to a high degree, which is crucial for a
multimodal analysis. The model provides the contribution of the
modalities to its representation for each cell, thereby, providing an
additional layer of interpretability. On nine datasets of various sizes,
we show that mvTCR’s shared representation offers a holistic view of
T cells for immunological research, which can be used for various
downstream tasks such as antigen-specificity capturing, query-atlas
mapping, or the integration of new repertoires. Lastly, wedemonstrate
the method’s ability to reveal SARS-CoV-2-specific and bystander
T cells unidentifiable in a unimodal analysis.

Results
mvTCR fuses T cell receptor and gene expression data
mvTCR is a generativemodel basedon adeepVariationalAutoencoder
(Fig. 1, Supplementary Fig. 1, Methods mvTCR) that receives for each
cell i the gene expressiondataxi

RNA and the sequenceof amino acid IDs
of the Complementary Determining Region 3 (CDR3) from the α-chain
xi
TRA and β-chain xi

TRB as the only TCR information. Following15, we

employed a multi-layer perceptron (MLP) to embed xi
RNA to a lower-

dimensional representation hi
RNA . To efficiently capture sequence

structure16, we leverage a transformer network, which learns a con-
textual representation for each residue by attending to its position and
the other amino acids in the CDR3 sequence. This residue-level
representation is then aggregatedby anMLP toderive a sequence-level
representation of the TCR hi

TCR . After encoding both modalities indi-
vidually, a mixture module M was used to fuse both modalities into a
shared representation zijoint ∼qðzijointjh

i
RNA,h

i
TCRÞ for each cell which can

be used for various downstream analyses.
We evaluate three approaches to combine the two modalities for

M: Concatenation, Product-of-Experts (PoE)17, and Mixture-of-Experts
(MoE)18. The Concatenation model combines both latent embedding
hi
RNA and hi

TCR as input to an additional encoding network estimating
the distribution of zijoint. PoE and MoE first estimate separate marginal
posterior distributions qðziRNAjh

i
RNAÞ and qðziTCRjh

i
TCRÞ, which are then

fused via multiplication or addition to form the joint posterior dis-
tribution, respectively. As unimodal baselines, a TCR and a tran-
scriptome model directly estimating the latent distribution from the
either hi

RNA or hi
TCR alone were additionally implemented. To train the

model, similar decoding networks reconstructing x̂i
RNA, x̂

i
TRA, and x̂i

TRB

were used.

mvTCR enables analysis of cell function and phenotype
When analyzing T cell repertoires, the antigen specificity of each cell is
critical to contextualize its cell state to understand its contribution to
the immune reaction. The specificity of T cells towards their cognate
epitope is inherently determined by their individual TCR. While TCRs
with similar sequences often—but not always—recognize the same
epitope19, dissimilar TCRs may bind the same epitope through distinct
bindingmodes20, whichposes amajor challenge for approaches purely
based on sequence similarity. Additionally, cells with shared clonal
heritage express similar phenotypic characteristics1–3. Therefore, we
investigated to what extent a joint T cell embedding improves the
prediction of antigen specificity while preserving modality-specific
variation. To this end, we used a dataset from 10x Genomics with
binding annotations si of 44 epitope peptides bound on Major Histo-
compatibility Complex (pMHC) multimers for four donors (Methods
Datasets). The donors greatly varied in T cell specificity.While donors 1
and 2 expressed greater diversity, 68.2% of the T cells of donor 3 were
specific to the cytomegalovirus pMHCKLGGALQAK and 26.0% did not
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Fig. 1 | Overview of the mvTCR. The mvTCR model receives a gene expression
vector, along with the CDR3-α and -β amino acid sequences. This input is trans-
formed through separate encoders, and a mixture module combines different

modalities to infer a joint representation (latent space) for downstream analysis.
This joint representation is then fed into separate decoders to reconstruct the
original gene expression and TCR sequences for each cell.

Article https://doi.org/10.1038/s41467-024-49806-9

Nature Communications |         (2024) 15:5577 2



express binding to any of the tested pMHCs. For donor 4, 80.9% of the
cells were considered non-binders.

We applied mvTCR to the T cells with specificity towards the eight
most common pMHCs (Fig. 2, Supplementary Fig. 2), resulting in 61,237
cells in total. To compare multi- and unimodal representations, the
repertoires of all donors were jointly embedded with uni- and multi-
modal versions of mvTCR. The resulting representations were clustered
via the Leiden algorithm21, where the resolutionwas chosen tomaximize
the NMI between pMHC specificity and cluster annotation. The unim-
odal embedding trained solely on xTCR (Fig. 2a col.: TCR)was dominated
by large clonotypes, which form separated clusters of distinct specifi-
cities. This was reflected by larger number of clusters (n= 214) at a lower
Normalized Mutual Information (NMI) of 0.408. Further, the embed-
dings of different clones did not follow a clear transcriptional pattern to
differentiate cell type from each other, which was expected as the TCR
does not inherently capture this annotation. In contrast, the tran-
scriptomic model trained on xRNA (Fig. 2a col.: RNA) led to a more
continuous representation, which formed several antigen-specific
groups with an NMI of 0.456 at n =22 clusters (Supplementary Fig. 3).
This performance was influenced by donor-specific biases towards cer-
tain epitopes. As GLCTLVAML and RAKFKQLL were bound almost
exclusively by Donor 2 (Supplementary Fig. 4), their clusters could be

partially identified by shifts in the transcriptomic profile, which shows a
clear separation from the remaining dataset. While common T cell
markers were distributed across all donors (Supplementary Fig. 5a),
Donor 2 differentially expressed several ex vivo activation signature
genes such as FOS, DUSP1, JUN, and NFKBIA22 (Supplementary Fig. 5b-d).
However, correcting for donor effects using Harmony integration23

(Supplementary Fig. 6a-b) decreased the clustering performance to an
NMI of 0.212 atn=14 clusters. In the RNAmodel, various subpopulations
such as T cells binding to GLCTLVAML remained hidden, which were
observable in the multimodal mvTCR models (Fig. 2a col.: mvTCR,
Supplementary Fig. 2 col.: mvTCR, Concat, PoE). The mvTCR repre-
sentation was able to combine clonotype and cell type information,
simultaneously (Fig. 2a, Supplementary Fig. 2), leading to an NMI of
0.535 (n= 15 clusters, Supplementary Fig. 3). While 94.4% of the T cells
specific toGILGFVFTL fall into threeRNAclusters, 96.5%are contained in
only one mvTCR cluster of 99.2% purity (Fig. 2b). Here, T cells from
Donors 1 and 2 were combined by the TCR information which were
previously separated through inter and intra donor-specific differences
in the transcriptomic profile. Similarly, for the pMHCELAGIGILTV, 86.7%
of cells contained in one mvTCR cluster distributed into three RNA
clusters, while for IVTDFSVIK 88.6% of the cells group in two mvTCR
clusters compared to four RNA clusters. Compared to both unimodal

Fig. 2 | mvTCR learns an interpretable representation of the TCR and tran-
scriptome, highlighting their importance for each cell. a UMAP visualizations71

comparing the embeddings of the unimodal (RNA, TCR) and the multimodal
mvTCRmodels colored by peptide-MHC (pMHC) specificity, donor, and ten largest
clonotypes. b Comparison of RNA clusters to mvTCR clusters with respect to
antigen specificity. c UMAP visualization colored by the contribution of TCR
sequence information on the joint representation. Values <0.5 represent the
dominance of RNA information and values >0.5 the dominanceof TCR information.
d Contribution of TCR sequence information to the joint representation by dif-
ferent specificity groups. n corresponds to the number of cells in each group (see

Source Data). Selected pMHCs with high TCR Contribution scores are highlighted.
e TCR similarity by TCRdist19 between all clonotypes of a specificity group with the
pMHCs highlighted as in d. n corresponds to the number of unique pairwise clo-
notype combinations within each group (see Source Data). The box plots within
each violin indicates the data quartiles with the whiskers extending to the full
distribution excluding outliers outside the 1.5 interquartile range. The median is
indicated as a white point. f Correlation between the TCR Similarity and the con-
tribution of the TCR information on themvTCR representation (n = 8 specificities).
The line indicates the linear regression fit with the 95% confidence interval as
error band.
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representations, mvTCR captured antigen-specificity better in this
dataset byembedding theTcells into a small numberof concise clusters.

To investigate the influence of each modality on the learned
representation, we devised a mechanism to infer modality-specific
scores (Methods TCR-Contribution). These contribution scores range
from complete RNAdominance at 0% to only TCR information at 100%
(Fig. 2c) and represent the respective similarity between ziRNA and ziTCR
to zijoint. The four highest average contributions of the TCR sequences
were observed in the pMHCs mentioned above: GILGFVFTL (55.4%),
GLCTLVAML (54.8%), IVTDFSVIK (53.0%), and ELAGIGILTV (51.8%). This
indicates that the model prioritized TCR information for these cells
compared to the cells of the remaining dataset (Fig. 2d). This is cor-
roborated with TCR similarity estimated by the well-established
TCRdist method19, which also indicated an elevated TCR sequence
similarity for specificity groups of high TCR-contribution, with
RAKFKQLL as the only outlier (Fig. 2e). Further, the average TCR-
contribution per specificity and the TCR similarity show a positive
Pearson correlation of 0.64 (Fig. 2f).

Next, we evaluated the impact of the transcriptome on the
representation. Remarkably, we observed a compact clustering of
expanded clonotypes within all three representations persisting even
in the RNA-derived model (Fig. 2a), consistent with recent findings
suggesting a phenotypic imprint within cells of a clonotype1–3. mvTCR
preserved the transcriptomic information at 72.0% of the RNA-models’
NMI for cell type clustering surpassing the TCR model at 49.5% (Sup-
plementary Fig. 7a). Similarly, clusters defined on RNA coincided at an
NMI of 0.684 with mvTCR in contrast to only 0.487 with the TCR
model. As the TCR model could solely accumulate cells by their clo-
notype and homologous sequences, its specificity-based clustering
contained only an average of 65.6 different clonotypes, while mvTCR
(946.2) groups clonotypes at a similar rate as the RNA-model (728.3)
(Supplementary Fig. 7b). The variability within the clonotypes’ tran-
scriptomic information and the mvTCR representation showed a
strong significant Pearson correlation of 0.802 (p-value < 0.001)
independent from their clonal expansion (Supplementary Fig. 7c),
which leads to the conservation of cell type and the cells’ cytotoxicity
(Supplementary Fig. 7d). Within the antigen-specific clusters, cells
organize in distinct phenotypic subpopulations, as can be observed by
the separation of RNA clusters in the mvTCR embedding. Here, even
cells of the same clonotype followed a distinct shift caused by varia-
bility in their transcriptome, which underscores the nuanced nature of
mvTCR’s representation (Supplementary Fig. 7d).

Overall, these results indicate that mvTCR complements its joint
embedding with information from both transcriptome and TCR
sequences, leading to a more holistic cell representation capturing
phenotype and functionality at the same time.

mvTCR captures antigen-specificity superior to alternative
approaches
We then quantitatively evaluated mvTCR’s capability to capture
antigen specificity. We retrained mvTCR on the 10x dataset pooled
over all donors and separately for each donor on five different ran-
dom splits. Additionally, we included the dataset by Minervina
et al.24 (Minervina dataset), which contains specificity annotation for
pMHC-dextramers against 18 SARS-CoV-2 related epitopes for 8,618
cells from 55 vaccinated donors (Methods Datasets). After training
themodel, a hold-out set was projected onto the training set and the
cells’ specificity was predicted by a k-Nearest-Neighbor (kNN)
model. Note that mvTCR was trained only on clonotypes not con-
tained in the holdout set to ensure unbiased performance estima-
tion. Of the three tested approaches to fuse TCR and GEX
information (Methods Network Structure), the MoE performed
better on average than the PoE and the Concatenation mixture
module (Supplementary Fig. 9), and was therefore used as the main
mixing module for the mvTCR model.

To investigate the benefits of mvTCR for predicting specificity, we
compared mvTCR against baselines trained only on TCR or tran-
scriptome information (Fig. 3a). On average, mvTCR (F1-Score: 0.821)
significantly outperforms both the TCRmodel (F1-Score: 0.767, p-value:
0.0051, one-sided paired t-test) and the RNA model (F1-Score: 0.759, p-
value: 0.0016). In the individual datasets, mvTCR outperforms the
unimodal baselines in 7 out of 12 cases during atlas-query prediction
while performing on par with the better-performing modality. Often,
specificity was either dominated by TCR (donors 1, 2, and 4) or RNA
information (Minervinadataset) as shownbybetter prediction using this
modality. To validate that mvTCR focuses on the relevant information,
we calculated the contribution of each modality to its representation.
We observed a significant Pearson correlation of 0.757 (p-value: 1.3e-6)
between the average contribution of TCR information in a dataset to the
embedding and the F1-Score quotient of the TCR over the RNA model
(Fig. 3b). Depending on the dataset either TCR or transcriptomic infor-
mation ismore indicative of antigen specificity. However,mvTCRadapts
to the datasets by focusing on themost informativemodality to a larger
degree. We found that the average TCR Contribution for the different
10x datasets has a strong negative Pearson correlationwith the variation
in transcriptome information of large clonotypes (Supplementary
Fig. 8). In other words, when cells of the same clonotypes have more
diverse gene expression profiles in a dataset mvTCR incorporates less
TCR information. As mvTCR was able to fuse both modalities at a task-
appropriate weighting for each dataset, it was better suited than uni-
modal approaches to predict antigen specificity.

Next, we evaluated how good cells with similar antigen specificity
cluster in the latent space using NMI as the metric21 (Fig. 3a, Supple-
mentary Fig. 9). We observed a superior performance of mvTCR when
compared to the uni-modal baselines with an increase in NMI of 20.7%
over the RNA model (p-value: 1.5e-5) and 7.5% over the TCR model (p-
value: 0.048). For clustering, themultimodal representation preserves
antigen specificity better than the uni-modal models, except for the
TCRmodel in donor 4. All models fail to capture specificity in donor 3
at an NMI of ~0.00. This is caused by the lack of diverse annotation in
both datasets with the most prominent binder yielding 74.2% and
92.6%, respectively. Following, we utilized the batch-corrected dataset
to ensure that the separation of Donor 2 does not impair the perfor-
mance in the transcriptome baseline for the pooled 10x dataset.
Besides the PCs provided by Harmony23, we evaluated models trained
on the PCs (Harmony-RNA) and additionally the TCR sequences
(Harmony-mvTCR). While for the PCs the performance decreased
considerably by an F1-Score of 0.239 and anNMI of 0.163 over the RNA
model, the models trained on batch-corrected data performed simi-
larly to models trained on the corresponding uncorrected dataset
(Supplementary Fig. 10).

To further enhance the representation, we adapted mvTCR to
semi-supervised learning introducing a supervised classification head
to predict antigen specificity from μi

joint . While direct prediction fell
short, the kNN classifier on the resulting representation surpassed the
basemodel on three datasets, and clustering on all six (Supplementary
Fig. 9b) with an average improvement of 0.12 in NMI. These results
might further be improved bymethods tackling the trade-off between
the unsupervised and supervised learning objectives.

Next, we compared mvTCR against tessa for predicting and
clustering antigen specificity (Fig. 3c, Methods Benchmarks). For
comparability with tessa, which uses the CDR3β sequence as the only
input for representing the TCR, we retrainedmvTCRwithout the TCRα
sequence. The mvTCR embeddings performed better for atlas-query
mapping on all datasets, with an average improvement of 23.6% in F1-
Score (p-value: 4.7e-6) for prediction and 27.7% inNMI (p-value: 4.6e-6)
for clustering.We attribute this gain in performance tomvTCR’s ability
to integrate transcriptome information at a cellular level, while such
information influences tessa’s embedding only on a dataset level
through its weighting factors.
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We sought to evaluate whether mvTCR can not only predict
antigen-specificity but also quantify the binding. As binding avidity
depends on the binding strength of the individual TCR as well as the
cell state25, a joint representation might be ideally suited for this task.
Therefore, we trained an additional neural network that received the
embedding as input to predict the counts of detected for pMHC
multimers as an approximate measure of avidity ai (Methods Avidity
Prediction). The performance greatly varied between datasets, as the
prediction was biased toward pMHCs mostly recognized by heavily
expanded clonotypes. Again, a multimodal embedding proved bene-
ficial (Fig. 3d, Supplementary Fig. 11a) with a decrease inMean Squared
Logarithmic Error (MSLE) (TCR: 0.045, non-significant; RNA: 0.063, p-
value: 0.045) and an increase in Pearson correlation (TCR: 0.074, p-
value: 3.2e-10; RNA: 0.028, p-value: 0.006).

In summary, we have demonstrated that the multimodal mvTCR
representation effectively encodes antigen specificity information,
resulting in superior performance compared to unimodal embeddings
and the tessa model for a variety of tasks.

Cellular heterogeneity is captured at various dataset sizes
Next, we asked how dataset size influencesmvTCR performance. First,
we evaluated its robustness for capturing antigen specificity when
trained on varying amounts of cells. To this end, we reduced the
training set to sample sizes ranging from 100 to 15,000 cells on the 10x
Genomics5 and Minervina dataset24. To keep the evaluation

comparable across the different training set sizes, the kNN prediction
was performed on the same reference and test data used above
(Fig. 3a). We observed that performance improves when the training
size increases but begins to saturate at 2500 cells with only a minor
increase afterward (Fig. 3e). We, therefore, conclude that mvTCR can
be trained already on fairly small datasets containing several thousand
T cells.

For single-cell analysis, multimodal embeddings must conserve
modality-specific characteristics such as cell type and clonotype. To
test this, we trained mvTCR on five different subsamples of three
datasets (Methods Datasets) ranging from small study design of
6,713 T cells (Fischer dataset6), over amulti-site cohort of 103,761 T cell
(Haniffa dataset7), to a large-scale collection of multiple studies con-
taining 722,461 T cells (Tumor Infiltrating Lymphocytes (TIL)
dataset26–37). To provide an estimate of how well modality-specific
characteristics are retained, we normalized the NMI to the score of the
defining modality (Supplementary Fig. 11b, Supplementary Fig. 12a).
The models purely trained on TCR data failed to capture the cell type
adequately with an average score of 52.8%. This suggests that the dif-
ferent transcriptomic states are not sufficiently linked to identical or
homologous TCR sequences to convey this information. In contrast,
mvTCR reaches 83.3% of the RNA models’ clustering, a significant
improvement compared to the TCR model (p-value: 7.5e-6). At the
same time, the multimodal representation retained 97.3% of the clo-
notype information, which is mainly driven by the large clonotype

Fig. 3 | mvTCR’s multimodal representation efficiently captures antigen spe-
cificity information. a Predictions of antigen specificity were made on the 10x
Genomics dataset for all donors (10x Full), donors 1-4 separately (D1-D4), and the
Minervinadataset. Each score represents the averageoverfive randomsplits (n = 5).
b Correlation between the average TCR-Contribution and the fraction of the F1-
Score between the TCR and RNAmodel for each of the five splits of the six datasets
(n = 30). r indicates the Pearson correlation coefficient. The line marks the linear
regression fit with the 95% confidence interval as error band. c Comparison
betweenmvTCR trained only on the gene expression and theCDR3β sequence, and
tessa11 on the tasks defined in a (p-values: pF1 = 4:67*10

�6, pNMI =4:62*10
�6).

d Avidity predictionmeasured bymean squared logarithmic error (MSLE, p-values:

pmvTCR�RNA =0:0452) and Pearson correlation (p-values: pRNA�TCR =6:26*10
�4,

pmvTCR�RNA = 5:95*10
�3, pmvTCR�TCR = 3:24*10

�10) on each of the five splits and eight
specificities of the five versions of the 10xGenomics dataset (n = 200). All box plots
indicate the data quartiles with the whiskers extending to the full distribution
excluding outliers outside the 1.5 interquartile range while the median is indicated
as a horizontal line. e Influence of mvTCR’s training set size on prediction perfor-
mance at varying dataset sizes (n100�2,500 = 30, n5,000 = 25, n10,000 = 15, n15,000 = 10).
Statistical significance (p-values: *<0.05, **<0.01, ***<0.001, baseline indicated left)
to the corresponding unimodal representation or the tessa algorithm is calculated
via one-sided, paired t-test. The bars and lines represent the average metric score,
while the error bars and error bands indicate the 95% confidence interval.
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clusters. Interestingly, the RNA model was able to capture this infor-
mation to 89.8% indicating that many expanded clonotypes follow a
similar transcriptomic state. Compared to the tessa model, which
preserves TCR information by default as a clonotype level embedding,
mvTCR showed an average increase in NMI of 0.182 (p-value: 3.1e-7,
Supplementary Fig. 12b).

This analysis demonstrated that mvTCR is robust to dataset sizes
for capturing antigen-specificity, which makes it applicable to small
cohort studies as well as multi-studies atlases. Here, mvTCR simulta-
neously preserves the characteristics of the cells’TCR to a large degree
without sacrificing the transcriptomic information, and vice-versa.

mvTCR distinguishes activated from bystander T cells
We asked whether mvTCR can be used to identify the relevant T cell
subsets during an immune response to disease. We appliedmvTCR on
Peripheral blood mononuclear cells (PBMCs) from 130 patients diag-
nosed with SARS-CoV-2 virus with varying severities, including
asymptomatic, mild, moderate, severe, and critical cases7. The study
contained a negative control groupwith cells fromhealthy donors and
also patients with other lung diseases, and donors with previously
administered intravenous lipopolysaccharide (LPS) to mimic

inflammatory response (Methods Datasets). The resulting mvTCR
latent representation (Fig. 4a) separated groups of CD8+ effector
T cells that expressed a high interferon (IFN) response score38, which
were captured by fine-grained Leiden clustering (Fig. 4b,c). After
selecting these clusters of elevated IFN response scores (one-sided,
unpaired t-test, p-values < 0.001, Fig. 4d, Supplementary Data 1), we
observed that all 13 resulting clusters contained almost exclusively
(99.1%) cells from donors with symptomatic SARS-CoV-2 infection
(Fig. 4e). Overall, the selected clusters consisted of cells from samples
collected on average after 8.1 ± 4.2 days of symptom onset indicating
an ongoing primary T cell response39,40. Contrary, the cells of the
remaining clusters originated from samples collected at a later date
after symptom onset (11.7 ± 8.8 days). Generally, these clusters con-
sisted of several expanded clonotypes with similar TCRs—10 out of 13
clusters had significantly lower inter-clonotype distance19—and similar
phenotype—12 clusters showed significantly higher inter-cell correla-
tion compared to remaining CD8+ effector cells (one-sided t-test, p-
values < 0.05, Supplementary Data 1). Hence, we assumed that cells of
a cluster were activated in the same fashion. While several clusters
might be SARS-CoV-2 reactive, others might express a bystander
response. Bystander T cells are activated by immune signaling without

Fig. 4 | Joint embedding reveals hidden clusters in SARS-CoV-2 study. a UMAP
visualization of the joint embedding of the 103,761 T cells colored by annotation of
cell type and status at day of hospital admission. b Effector CD8+ T cells form
separating clusters. c UMAP colored by IFN response score, which is elevated in
patients with symptomatic SARS-CoV-2 infection. d Distribution of the IFN
response score across the effector clusters (one-sided, unpaired t-test, p-values

indicated above). The selected, highly significant clusters (p-value < 0.001) are
marked in color. e Patient status of cells from clusters with highly enriched IFN
score. f Specificity assignment of TCRswithin the enriched clusters by query to the
IEDB and predicted MHC restriction. g Distribution of time after disease onset for
the significant clusters. h Selected differentially expressed genes between antigen-
specific and bystander clusters.
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recognition of their cognate antigen41 and were reported to play a
crucial role in the different severity degrees of COVID-19 patients42. To
assess T cell specificity, the TCRs were queried to the Immune Epitope
Database (IEDB)43, which revealed 1839 cells with possible cognate
epitope matches (Methods Datasets), which were reduced to 1342
matches, whenfiltering out epitopes thatwerenot predicted tobind to
the corresponding donors’ HLA-types (Supplementary Data 2) via
MHCFlurry 2.044 (Fig. 4f, Supplementary Data 3). Based on this query,
we identifiedfive SARS-CoV-2-specific and threebystander clusters.On
average, the cells from SARS-CoV-2-specific clusters originated from
earlier time points after symptom onset (7.7 days) compared to the
bystander clusters (10.1 days) and the remaining clusters (11.6 days)
again indicating an antigen-specific T cell response (Fig. 4g).

Differential analysis between antigen-specific and bystander
clusters (Fig. 4h, Supplementary Data 4) revealed several upregu-
lated genes related to Natural Killer (NK) cells in the bystander
clusters such as KLRD1,NCR3, and genes of the NK2G receptor group
(KLRK1 and KLRC4), which recognize stress-induced self-proteins41.
Additionally, multiple granzymes (GZMB, GZMM, and GZMK) were
upregulated indicating cytotoxic activity. This was coherent with
previous studies on bystander activation in various diseases41,45,
which linked elevated levels of KLRK1 (NKG2D) and NCR3 (NKp30) to
an Interleukin 15 (IL-15) induced T cell response in absence of TCR
stimulation. Following IL-15 exposure, CD8+ T cells adopt an NK-like
phenotype and are able to kill targets in an innate-like fashion
among others via cytotoxic granzymes. The antigen-specific clusters
indicated downregulated CD8 expression (CD8A, CD8B) as pre-
viously reported for an active response of virus-specific CD8+ T cells
8 days after infection46. Further, IL7R was expressed in 30.3% of the
antigen-specific cells. While IL7R is downregulated in most CD8+

effector cells, it can be indicative ofmemory precursor effector cells
(MPECs) which survive after viral clearing to form a long-lasting
immune memory47. Finally, several genes related to the mitochon-
drial respiratory chain and oxidative phosphorylation (OXPHOS)
(MT-CO1, MT-CO2, MT-CO3, MT-CYB) were observed in the antigen-
specific cells. Even though there is a shift towards aerobic glycolysis
after CD8+ activation, a parallel increase in OXPHOS level further
contributes to the ATP production48,49, while both levels are further
increased by a peptide-MHC-induced activation50.

In summary, mvTRC identified clusters of SARS-CoV-2 reactive
and bystander cells in a large patient study. The resulting clusters
showed compelling concordance of their activation pattern by TCR
specificity, timeafter symptomonset, anddifferently expressed genes,
which demonstrates mvTCR’s capability of discovering T cells related
on a functional and phenotypical level.

Multimodal analysis is essential to capture activation
mechanisms
We asked if our finding on the SARS-CoV-2 dataset can be replicated
by using standard analysis of both modalities without multimodal
integration. As an RNA-based method, we clustered the CD8+
effector T cells directly on the transcriptome into a number of
clusters similar to the previous analysis using the standard tools
provided by Scanpy51. As above, the clusters were subsetted based
on IFN response score (Supplementary Fig. 13a) and labeled as
antigen-reactive or bystander based on the database query (Sup-
plementary Fig. 13c). As a TCR-based analysis, we classified each cell
individually based on specificity by directly querying its TCR to the
database (Supplementary Fig. 13a). However, the clusters identified
with mvTCRs differed greatly from both analyses (Supplementary
Fig. 13a,b). Exemplary, the mvTCR SARS-CoV-2 cluster 42, where
88.8% of the cells were annotated as SARS-CoV-2 specificity, was
distributed into 37 different RNA clusters. Similarly, the mvTCR
bystander cluster 22 consisting of 87.1% yellow fever TCRs, was
contained in RNA cluster 20, which also included a similar amount of

SARS-CoV-2 reactive cells and a majority of not annotated cells. The
mvTCR clusters lead to an increase in cluster purity of disease
severity of 6.7% for RNA-based and 85.9% for TCR-based grouping
(Supplementary Fig. 13d) and 16.2% in specificity over the RNA-based
clusters (Supplementary Fig. 13c). ThemvTCR clusters also showed a
higher homogeneity for the time after disease onset with a standard
deviation of 2.93 days compared to 3.88 days in RNA clusters and
7.61 in TCR clusters (Supplementary Fig. 14b). Overall, the cells
contained in mvTCRs’ clusters were in a more similar functional
state indicated by phenotype (Supplementary Fig. 14c) and TCR
sequences (Supplementary Fig. 14d), which led to a better separa-
tion between bystander and antigen-specific cells.

Next, we compared the disparity between the differentially
expressed genes (DEGs) of bystander and SARS-CoV-2 reactive cells
identified with each of the different approaches (Supplementary
Fig. 14e). We observed that out of 95 DEGs based onmvTCR Bystander
clusters only 20 overlapped with the 156 DEGs discovered in the RNA-
based clusters. Similarly, only 12 DEGs were discovered in both SARS-
CoV-2-specific clusters with IL7R as the only one from the genes
highlighted above (Supplementary Fig. 14f). These numbers are similar
to the overlap between mvTCR bystander to RNA-based SARS-CoV-2
clusters (n = 19) and vice-versa (n = 13). Interestingly, the differential
analysis based on the specificity-based annotation resulted in only 16
SARS-CoV-2 and 19 bystander DEGs with no overlap with any of the
mvTCR DEGs of that category (Supplementary Fig. 14e-f).

To investigate how mvTCR balances RNA and clonotype infor-
mation, we selected clones with at least 20 cells. As in the 10x dataset,
we observed a significant Pearson correlation of 0.64 (p-value < 0.001)
between the average within-clonotype RNA and mvTCR distance,
independent of their clonal expansion (Supplementary Fig. 15a).
Similar to the RNA space, the ten clonotypes with the highest cell type
diversity (Supplementary Fig. 15b) were accurately mapped to the
effector memory and terminal effector regions of the mvTCR repre-
sentation (Supplementary Fig. 15c). Conversely, the ten clones purest
in cell type were confined to the effector memory region with a lower
within-clone distance (Supplementary Fig. 15c). Further, the main
transcriptional drivers of T cell variability were well captured by
mvTCR as indicated by canonical naive, CD8+ activation, and CD4+

activation markers (Supplementary Fig. 15d).
Overall, we observe how mvTCR enriched transcriptomic infor-

mation with clonality, allowing us to identify the DEG of clusters which
depend both on specificity and transcriptional signatures. This cannot
be obtained by the analysis of individual modalities, demonstrating
that the integration of multiple modalities using mvTCR enables the
discovery of novel knowledge that would have been missed in unim-
odal approaches.

mvTCR enables construction of large-scale T cell atlases
Within the domain of single-cell analysis, leveraging reference-based
techniques has enhanced the efficiency of rapidly analyzing newly
generated datasets52,53. However, the effectiveness of such analyses
heavily relies on the establishment of robust and comprehensive
reference datasets. Often these atlases are composed of multiple
smaller-scale studies, where correcting for batch effects is crucial for
successful knowledge transfer and analysis. To account for technical
effects, we use conditional embeddings (Methods Conditioning).
These allow us to construct multi-sample atlases and extend refer-
ences with query data for knowledge transfer over time and transfer of
knowledge from the reference to the query.

We demonstrated this by integrating conditional mvTCR into the
scArches framework52 and integrating data from 12 diverse tumor-
infiltrating lymphocyte (TIL) studies26–37. After data filtering (Methods
Datasets), we had 722,461 T cells across six tissue origins and 11 cancer
types. We held out two samples (query) and used the rest to build a
reference.
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We trained a conditional mvTCR model for reference construc-
tion and used scArches for query sample mapping (Fig. 5a, Supple-
mentary Fig. 16a). To evaluate conditional embeddings’ effectiveness
in batch effect removal and reference mapping, we compared it to a
non-conditional method that projected query data into the reference
without scArches (Fig. 5b). We assessed their performance in trans-
ferring knowledge from the reference to annotate cells for different
cancer types, tissue sources, and cell types (Fig. 5a) using a simple kNN
classifier with varying k-values (Supplementary Fig. 16b). mvTCR
combined with scArches improved tissue type prediction by an aver-
age of 4.1% for cancer source and 15.2% while performing similarly for
cell type annotations. These results demonstrate theneed for technical
effect correction and our method’s flexibility in integrating into
reference mapping approaches. This aligns with recent findings on
scRNA-seq data, suggesting that curated, harmonized references
enhance contextualizing query datasets54. Therefore, we conclude that
mvTCR efficiently removes batch effects between query and atlas sets
while preserving biological signals across studies.

To further compare the scalability of mvTCR with other estab-
lished methods integrating gene expression and TCR information, we
assessed the execution time for a single training run of mvTCR,
CoNGA10, and tessa11 on various number of cells obtained by sub-
sampling the dataset (Methods Benchmarks). For all dataset sizes,
mvTCR was significantly faster than CoNGA and tessa (Fig. 5c). In
comparison to CoNGA,mvTCRwas up to 135 times faster (n = 100,000
cells—mvTCR: 545 s, CoNGA: 73,516 s), while tessa needed up to 2,353-
fold more time (n = 30,000 cells—mvTCR: 166 s, tessa: 389,578 s).
Besides runtime, thememory requirements for CoNGA and tessa were
also higher due to pairwise comparisons. On the specified machine
used for runtime benchmarking, both CoNGA and tessa exceeded the
memory available (256 GB) for dataset sizes of 30,000 and 100,000
cells, respectively, demonstrating mvTCR’s great scalability to atlas-
scale dataset integration.

Discussion
With the increasing accumulation of paired single-cell TCR- and RNA-
seq datasets, there is a growing demand for scalablemethods that can
effectively utilize both modalities for integrated analyses. However,
standard multimodal methods cannot be applied as they are not
adapted to model the TCR sequence. In this context, we introduced
mvTCR, amultiview Variational Autoencoder designed to facilitate the
large-scale integration of paired TCR and transcriptome data in single-
cell studies focusing on T cell repertoires. As themodel solely uses the
transcriptome counts and the TCR sequences, it is theoretically
applicable across species. mvTCR’s embedding capability surpasses
that of unimodal representations and other multimodal methods, as
demonstrated through its efficacy in antigen and avidity prediction,
referencemapping, and clustering. Onedistinctive featureofmvTCR is
its ability to provide an additional layer of interpretability for its
representation by quantifying the influence of each modality on the
representation of individual cells. We observed that the contribution
of the TCR sequence correlates with the amount of information it
contributes to the formation of antigen-specific clusters. At the same
time, the transcriptomic information was captured as demonstrated
by the preservation of cell type and state. Even within cells of a clo-
notype, mvTCR expressed the variability of the transcriptome leading
to nuanced phenotypic patterns in its representation.

mvTCR’s representation seamlessly integrates into standard single-
cell analysis workflows over the Scanpy-format51. Here, its capacity to
integrate cell state and function by incorporating bothmodalitiesmakes
it particularly well-suited for identifying clusters of related cells within a
repertoire. In a large-scale SARS-CoV-2 dataset, mvTCR effectively dis-
tinguished between bystander and antigen-specific T cells. Interestingly,
these clusters remained concealed when employing unimodal or step-
wise unimodal analysis, underscoring the importance of integrated
representations. Lastly, we showcased mvTCR’s scalability in handling
atlas-level datasets containing several hundred thousand cells for T cell
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reference construction. When combined with tools like scArches,
mvTCR adeptly mapped newmultimodal studies into reference atlases,
thereby enabling systematic extensions of these references and the
automated analysis of query datasets.

mvTCRhas robust performance onmultimodal T cell datasets of a
variety of biological conditions and dataset sizes. Yet, we applied it
mainly to paired data, where gene expression is available in combi-
nation with α- and β-CDR3 of the TCR. While training mvTCR on par-
tially missing data might be sufficient for prediction (Supplementary
Fig. 17a), novel mosaicing techniques55,56 could further overcome the
decrease in information content. Initial tests suggested that adding
surface protein abundance further informed the embedding while still
preserving cell type and clonotype (Supplementary Fig. 17b). There-
fore, a natural extension would be to incorporate other modalities
such as chromatin accessibility as recently proposed by non-TCR-
aware single-cell multimodal integration methods53,57. Additionally,
interpretability methods could be applied to detect TCR and tran-
scriptome characteristics indicative of the cell’s functional role. Fur-
thermore, pre-trained TCR embedding models58 in combination with
VDJ-gene encoding could be incorporated besides the CDR3 sequence
currently used to improve the TCR representation59. Further, mvTCR
can be extended to joint B-cell receptor and gene expression datasets.
Tests on the SARS-CoV-2 dataset showed that TCR clusters with single
amino acid mutations in their CDR3β region have significantly lower
distance in the TCR representation of our joint model (Supplementary
Fig. 17c). While this indicates that somatic hypermutations of BCRs
might be inherently captured bymvTCR, an in-depth benchmarkmust
be conducted upon the availability of large-scale B cell datasets with
specificity annotation. As a technical limitation, adjusting the con-
tribution of each modality requires repeated training of mvTCR, ide-
ally by an additional hyperparameter search. Even though an
automated selection of network parameters could partially prevent
retraining, the desired contribution of each modality is dependent on
the study andmight vary across or even within one dataset depending
on the analysis objective.

In conclusion,wepresentedmvTCRas amodel for analyzingT cell
repertoires in the context of infectious disease, tumors, and therapies.
We envision that the integration of TCR and transcriptome via mvTCR
will uncover hidden interdependencies between the two modalities
and identify functionally related T cell sub-clusters, that would remain
hidden in a separate analysis of the T cell response, thereby con-
tributing to our understanding of T cell modulation in health and
disease.

Methods
mvTCR
mvTCR was trained on paired single-cell TCR sequences and RNA-seq
datasets. A dataset D= fðxi

TRA,x
i
TRB,x

i
RNAÞgNi= 1 consists of xi

TRA and xi
TRB

representing the α- and β-chain of the TCR and xi
RNA indicating the

expression for each cell i. xi
TRA 2 Zseq and xi

TRB 2 Zseq contain the
amino acid sequence of the highly variable CDR3 as the only infor-
mation on the TCR. Both sequences are tokenized and zero-padded to
the maximal sequence length seq present in D. In the following, xi

TRA
and xi

TRB are summarized as xi
TCR when both chains are considered.

xi
RNA 2 Rgenes comprises the 5000 most highly variable genes, whose

read counts were normalized and log1p-transformed.
mvTCR encodes the TCR sequences xi

TRA and xi
TRB via the two

encoder ETRA and ETRB, respectively, to obtain the lower-dimensional
representations:

hi
TRA = ETRAðxi

TRAÞand ð1Þ

hi
TRA = ETRAðxi

TRBÞ ð2Þ

of size h=2. Both representations are then concatenated to form the
TCR embedding hi

TCR. Similarly, xi
RNA is transformed via the encoder

ERNA to the embedding:

hi
RNA = ERNAðxi

RNAÞ ð3Þ

of size h. Next, both embeddings are combined via different versions
of the mixture model M leading to the shared latent distribution:

qðzijointjhi
RNA,h

i
TCR,MÞ ð4Þ

of size h. All downstream analysis and benchmark tests were per-
formed on zijoint. The networks DRNA, ETRA, and ETRB decode the
embeddings to the reconstructions:

x̂i
RNA =DRNAðzijointÞ, ð5Þ

x̂i
TRA =DTRAðzijointÞ, and ð6Þ

x̂i
TRB =DTRBðzijointÞ, ð7Þ

Network structure
mvTCR consists of several networks, specifically, the encoders and
decoders for TCR and transcriptome, and different variants of the
mixture module for fusing both modalities.

RNA networks. Following15, ERNA uses the architecture of a multi-layer
perceptron. Each layer was built by a block containing a fully con-
nected layer, followed by batch-normalization60, leaky ReLU activation
and a dropout layer61. Via a linear layer, the output was transformed to
h. DRNA similarly consisted of these blocks with a final layer with linear
activation function obtaining the original input size of 5000 genes.

TCR networks. Based on its performance on sequence data in Natural
Language Processing, we employed the transformer architecture62 for
extracting features from xi

TRA and xi
TRB via the encoders ETRA and ETRB.

In the transformer, each amino acid token was assigned a trainable
embedding which was consequently refined through several multi-
head self-attention layers. The output of each encoder was trans-
formed, separately, via a fully connected layer with a linear activation
function to h=2. While ETRA and ETRB followed the same architecture,
they did not share their weights, to allow each network to focus on
unique features of their respective input. The shared representation
zijoint was up-sampled via a fully connected linear layer, before yet again
transformer blocks were used for the decoding networks DTRA and
DTRB. Finally, a linear layer with a softmax activation function recon-
structed the amino acid sequence.

For fusing the two modalities, three different versions of the
mixturemodelsMwere implemented. Additionally, models trained on
either the transcriptome or the TCR modality were used as unimodal
baseline models.

Concatenation.hi
RNA andhi

TCR are concatenated to a representation of
size h*2, which is passed to an additional shared encoding network
E joint. This network consists of the same blocks described above and
estimates the mean μ and standard deviation σ of the normal dis-
tribution qðzijointjh

i
RNA,h

i
TCRÞ from which zjoint is sampled via the

reparameterization trick63. Note, that μ is used for all downstream
analysis throughout this paper.

Product of Experts (PoE). Contrary to the concatenation model, PoE
uses additional encoder networks E1 and E2 to obtainmean (μ1 and μ2)
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and standard deviations (σ1 and σ2) for each modality, individually,
resulting in the latent distributions qðziRNAjxi

RNAÞ and qðziTCRjxi
TCRÞ. zijoint

is sampled via the reparameterization trick from the product of these
distributions. μ and σ can be calculated from its closed-form solution

qðzijointjziRNA,ziTCRÞ=p zð Þ
Y

m
qðzimjximÞ 8m 2 ½TCR,RNA�, ð8Þ

where pðzÞ is an univariant Gaussian prior with zero-mean17. To
motivate the linkage of knowledge between both modalities, the
reconstruction was calculated from the shared as well as the modality-
specific latent distribution by the same decoder.

Mixture of Experts (MoE). As the PoE, MoE calculates individual latent
distributions, which are then both used to reconstruct each modality.
This forces the encoder networks to have similar predictions for TCR
and transcriptomic input18. For downstream analysis, the average of
both distributions

qðzijointjziRNA,ziTCRÞ=
1
2

X

m

qðzimjxi
mÞ 8m 2 ½TCR,RNA�, ð9Þ

is used. If not stated otherwise, this mixture module was used
throughout this paper.

Unimodal models. An encoding network of fully connected blocks
described above estimated themeanμ and standard deviation σ of the
normal distribution qðziRNAjhi

RNAÞ or qðziTCRjhi
TCRÞ from hi

RNA or hi
TCR,

respectively. The reconstructionwas calculated from the sampled ziRNA
or ziTCR.

Supervised classification head. The architecture consists of fully
connected layers, batch-normalization, ReLU activation, and dropout
followedby afinal linear layerwith softmax activation. Thedistribution
over all specificity labels is predicted from themean of the joint latent
representation μ. The network is trained simultaneously with the VAE
to minimize an additional cross-entropy loss, while the weighting of
this loss is a tunable hyperparameter.

TCR-contribution
To estimate the influence of each modality on each cell embedding,
the contribution of input xi

TCR and xi
RNA to zijoint wasdeterminedby first

calculating the unimodal hidden representations hi
TCR and hi

RNA. Fol-
lowing, the angular distances

θi
m =

zim � zijoint
zim
�� �� � zijoint

���
���
8m 2 ½TCR,RNA� ð10Þ

between each modality and the shared embedding of cell i is deter-
mined. The final modality contribution is defined as the difference
between θiTCR and θi

RNA shifted by the factor 0.5 to scale the values
between 0 (only RNA contribution) and 1 (only TCR contribution).

Conditioning
To integrate query datasets into a trained reference atlas model, we
followed a similar approach as Lotfollahi et al.52. First, the model is
trained on the samples from the atlas datasets to build a reference
model. Since the reference atlas may consist of multiple different
studies, batch effects can occur between those. To counter batch
effects, mvTCR is conditioned toward the studies. Since the MoE
mixturemodule is used in our experiments for query to reference atlas
mapping, we describe the procedure for this version of the mixture
model only. Let cj,atlas be a trainable embedding of dimensionality Dc

for each atlas study j representing the difference between studies. For
each cell i the corresponding conditional embedding is concatenated

to the hidden representations hi
RNA and hi

TCR before calculating the
individual latent distributions. Similarly, the same embedding cj,atlas is
concatenated towards the individual latent representations ziRNA and
ziTCR before passing them into the corresponding decoders. After the
training converged for the reference dataset, the query is integrated
using architectural surgery52. All parameters of the referencemodel are
frozen and embeddings cj,query for the new query studies are randomly
initialized. Only these embeddings cj,query are trained on the new query
datasets. This procedure reduces the number of parameters to be
trained by multiple orders of magnitudes while preventing cata-
strophic forgetting.

Training
The models are trained on the weighted sum of reconstruction losses
encouraging the conservation of the input data and regularization
losses, which shaped the properties of the latent distribution.

Ltotal =LRNAðxi
RNA,x̂

i
RNAÞ+ λ1LTCRðxi

TCR,x̂
i
TCRÞ+ λ2LKLD, ð11Þ

where

LRNA =
1
N

XN

i

ðxi
RNA � x̂i

RNAÞ
2 ð12Þ

is the mean squared error, and

LTCR = � 1
N � K � P

XN

i

XP

p

XK

k

xi,p,k
TCR logðx̂i,p,k

TCR Þ ð13Þ

theCross-Entropy loss over the sequenceencodings for each cell i over
each amino acid label k per position P in the TCR. The Kullback-Leibler
divergence loss

LKLD =KL½qðzjxRNA,xTCRÞjpðzÞ�withpðzÞ=N ð0,1Þ ð14Þ

constrains the latent distribution to resemble a univariant, zero-mean
Normal distribution and is applied to all latent distributions of the
respective mixture model. The loss is minimized by the ADAM
optimizer with the learning rate as a hyperparameter64. The datasets
are split into different subsets before training the model. The loss
function Ltotal is reduced by optimizing all subnetworks of the model
jointlyon the trainingdata until the validation loss stopsdecreasing for
5 epochs or amaximumof 200 epochs is reached. Since datasets often
contained highly expanded clonotypes, the TCR encoder and decoder
focus on over-represented sequences. Therefore, we oversample cells
with low-frequency TCRs in the training set of the joint and TCR
models by sampling with a probability

pct =
wctP
j2CTwj

withwct = log
nct

10
+ 1

� ��1

ð15Þ

for each clonotype ct from the set of all clonotypes CT.
For benchmarks (Fig. 3), an additional test set of 20% was used to

evaluate the performance on unobserved data. Training, validation,
and test sets were constructed randomly on a clonotype level, i.e., cells
with the same TCR input sequence were exclusively contained in a
single subset.

For evaluating atlas-level integration (Fig. 5a–c), two studies33,34

containing cells from lung cancer patients were held out of the accu-
mulated dataset and 20% of the remaining data was used as a
validation set.

To compare the running times with other multimodal methods
(Fig. 5c),mvTCRwas trained on random subsets. Again 20%of the data
was used as a validation set to measure the time for evaluation calcu-
lations. Since themodel converged after 20 epochs on the full dataset,
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this number was held constant over all subsets, i.e., no early stopping
was performed.

Hyperparameter optimization
To select the best model structure, we perform optimization of all
hyperparameters of the architecture via Optuna65 2.10.0. Depending
on the information available, different performance metrics are opti-
mized to obtain the bestmodel over different training runs.When cell-
level pMHC specificity information is available (10x dataset and
Minervina dataset), themodels are evaluated by their ability to capture
specificity in the embedding. Specifically, the weighted F1-Score for
predicting pMHC specificity via a kNN classifier (k = 5) is evaluated
between the training (atlas) and validation (query) set. For the
remaining datasets, the hyperparameters between the model runs are
optimized on how well they cluster cell types provided in the original
study and clonotypes defined as identical CDR3-α and -β sequence,
simultaneously. These annotations serve as a proxy to what degree the
model focuses on gene expression and TCR sequence, respectively. As
both pieces of information are partially complementary, it is not
possible to conserve both of them simultaneously. E.g. a model only
preserving TCR information can perfectly predict the clonotype, but
will fail to capture the cell type. Therefore, we can determine the
influence that each modality has on the cell representation by choos-
ing a suitable weighting factor between both prediction tasks. In
practice, the weighted F1-Score is calculated for assigning both anno-
tations for each cell of the validation set by their nearest neighbor.
Models on all datasets were optimized over multiple trials with dif-
ferent sets of hyperparameters for 48 GPU hours, except on the TIL
dataset, where the training time was increased to 96 GPU hours due to
thedataset size. The timing analysis (Fig. 5c) indicates the runtime for a
single trial over different dataset sizes. All experiments except the
timing analysis were either conducted on a single GPU machine of
32GB of memory or paralyzed to train 4 models simultaneously on a
node containing 4 GPUs and 512GB of memory. All results were
obtained from the best-performing model on these performance
metrics.

Avidity prediction
Aprediction head isfitted topredict the pMHC tetramer readcountsai

of the most abundant eight pMHCs in the 10x dataset. This additional
neural network consists of fully connected blocks with an exponential
activation layer. Using the mean squared logarithmic error

LMSLEðai,âiÞ=
1
N

XN

i =0

ðlogðai + 1Þ � logðâi + 1ÞÞ2 ð16Þ

between the ground truth and the predicted avidity âi, the models are
trained with ADAM optimizer and early stopping (patience of 10). The
hyperparameters are optimized by Optuna on 100 training runs.

Benchmarks
We compare the different multi- and unimodal models of mvTCR and
tessa with the following metrics:

F1-Score. the performance for predicting cell-level labels with a
k-nearest neighbor classifier is evaluated by the harmonic mean
between precision and recall. To aggregate performance over all labels
L, the F1-Score

F1 = 2 �
X

l2L

nl

N
� precision � recall
precision + recall ð17Þ

is weighted by the class support. This metric is applied for pre-
dicting antigen specificity on the 10x dataset and for cell type, tissue
source, and tissue on the TIL dataset.

Normalized Mutual Information (NMI). The NMI is used to compare
the overlapbetween clustersC in the shared embedding and cell labels
L via

NMIðL,CÞ= 2 � IðL,CÞ
HðLÞ+HðCÞ ð18Þ

which normalizes the mutual information IðL,CÞ by the entropies HðLÞ
and HðCÞ. To derive clusters in the latent space, Leiden clustering is
applied for different resolution factors (0.01, 0.1, 1.0) and themaximal
NMI value between labels and annotation is reported. The NMI is
reported for evaluating the clustering of antigen specificity in the 10x
dataset, cell type, and reactive clonotypes in the Fischer dataset on the
observed data to simulate a realistic analysis scenario. On the TIL
dataset the cancer type, tissue source, and cell type are used as labels.
The best-performing resolution out of (0.01, 0.03, 0.1, 0.3, 1.0, 3.0) is
used for each label individually.

Mean Squared Logarithmic Error (MSLE). Following Fischer et al.66,
the MSLE as described in Eq. 16 is used to evaluate the prediction of
avidity counts in the 10x dataset.

Graph connectivity score. The graph connectivity score quantifies
how well cells of the same biological label l 2 L are connected in the
kNN graph on the embedding space. Following Luecken et al67., this
metric is calculated as

GC=
1
Lj j
X

l2L

LCCðsubgraphÞ
�� ��

l
�� �� , ð19Þ

where LCC(subgraph) indicates all cells within the largest connected
component of type l, l

�� �� the number of cells from type l and Lj j the
number of labels. The average over all labels is taken and the metric
ranges from 0 to 1. A score of 1 indicates that all cells of type c are
connected within one kNN graph.

Adjusted random index. The ARI compares the overlap of predicted
clusters and biological labels. It assesses both correct overlaps and
simultaneously counts correct disagreements. Similar to the NMI
score, we use Leiden clustering with the following resolutions (0.01,
0.03, 0.1, 0.3, 1.0, 3.0) and retain the resolutionwith thebestARI on the
labels - cancer type, tissue source, and cell type.

Average silhouettewidth. This scoremeasures the average distance in
embedding space of one cell to all other cells while distinguishing
between cells of the same and different types. Following Luecken et al.67,
the score is normalized to range between 0 and 1, where 1 indicates that
cells are well clustered within each type and separated from clusters of
other types. Biological signals should be conserved after integration,
hence, a score of 1 is desired. Again, on the TIL dataset the cancer type,
tissue source, and cell type are used as labels. On the other hand, for
batch effect correction, individual studies should be as indistinguishable
as the biological variation allows. Therefore, Luecken et al. modified the
calculation, so that 1 represents a perfect overlap of batches67. In the
experiment, each data source is treated as a unique batch.

Benchmarking tests are performed under the following settings:

10x dataset. Optuna optimized the hyperparameters for predicting
kNN-prediction of antigen specificity. The model is retrained and
evaluated on dataset splits on five different seeds during the bench-
mark tests (Fig. 3) to enable statistical testing. The avidity prediction
(Fig. 3d) is conducted on the same training, validation, and testing
splits as indicated above.

Article https://doi.org/10.1038/s41467-024-49806-9

Nature Communications |         (2024) 15:5577 11



Fischer dataset. as for the 10x dataset, the models are trained five
times on different dataset splits (Supplementary Fig. 12). The hyper-
parameters are adapted viaOptuna topreserve cell type and clonotype
at a ratio of one-to-one.

Comparison to tessa. We evaluate the performance ofmvTCR against
tessa as a baseline model (Fig. 3e, Supplementary Fig. 12b). However,
tessa takes the CDR3β sequence as the sole input of the TCR. There-
fore, we retrain mvTCR without the CDR3α sequence for the 10x and
Fischer dataset to avoid the advantage of additional information. Here,
we directly use hi

TRB as hi
TCR instead of concatenating it with hi

TRA. In
this setting, we consider clonotypes as cells with identical CDR3β
sequences to avoid the same TCR information in the different subsets
of thedata. The remaining training follows the description above. After
applying the tessa algorithm, kNN predictions are evaluated on the
resulting weighted TCR embedding. The cluster annotation provided
by tessa is evaluated using the NMI-based metrics.

Query to reference mapping. Since the MoE model worked best, we
compared this variant with and without architectural surgery52 on the
TIL dataset. Both are optimized using Optuna to determine the best
hyperparameter sets to preserve cell type and clonotypewith a ratio of
10 to 1. The F1-Score for evaluating cell annotation via the kNN clas-
sifier was not statistically analyzed (Fig. 5b).

Runtime vs dataset size. In this experiment, we compare the runtime
of mvTCR with two concurrent methods integrating gene expression
and TCR information - tessa11 and CoNGA10 on a computer with 2x Intel
Xeon Gold 6226R (in total 32 Cores), 256 GB RAM, and 1 Nvidia Tesla
V100. The same subsets of the full TIL dataset are used for all experi-
ments. We first determined the number of training epochs needed for
mvTCR to converge on the full dataset and keep this number (20
epochs) constant over all subsets and no early stopping was per-
formed. The runtime corresponds to the training time for 20 epochs
without counting the preprocessing and inference time. Similarly, for
tessa and CoNGA, we also excluded the preprocessing time. The time
for tessa is counted from running the BriseisEncoder and tessa clus-
tering. CoNGA is run as provided in their example script and the run-
time as defined by the original authors is logged.

Datasets
10x dataset. The dataset for all four donors was downloaded from 10x
Genomics under the section Application Note—A NewWay of Exploring
Immunity. Following68, we performed quality control using Scanpy51

1.7.0, which can shortly be described as following: to remove lysed and
dying cells, we filtered cells exceeding a fraction of 20%mitochondrial
reads. Additionally, we only considered cells within the span of
1000–10,000 read counts with a minimum of 500 genes per cell.
Genes reported for <10 cells were removed from the dataset. Doublets
were filtered using Scrublet 0.2.3 at a threshold of 0.0569. The gene
expression data were normalized to 10,000 reads per cell, followed by
log1p-transformation and the reduction to the 5000 most highly
variable genes. Additionally, the specificity annotation suggested in
the publication note was added. All cells not expressing a full TCR
consisting of oneα- and β-chain were removed from the datasets since
mvTCR requires paired information. To ensure correct matching
between TCR and specificity in our benchmark data, we further
removed all cells expressing multiple TCRs. A clonotype ID was
assigned grouping cells with identical α- and β-chain. For better
quantification during the benchmark studies, this dataset was reduced
to T cells with reported binding to the most abundant eight antigens
excluding non-binders. Following, the cell type was annotated via the
CellTypist package with default parameters on the full gene matrix70.
The TCR similarity is calculated as the pairwise distance between the
CDR3α and CDR3β sequences as defined by TCRdist19. To transform

the values to a TCR similarity, the distance was subtracted from the
maximal value occurring within the dataset. No statistical analysis was
performed between the TCR contribution across the specificity group
(Fig. 2d) and between the TCR similarities (Fig. 2e). For analysis on the
batch-corrected dataset, we applied Harmony23 at its default para-
meters. Models trained on the batch-corrected dataset received the
PCs provided by Harmony as the transcriptome input.

Minervina dataset. The raw data were obtained from the online
repository provided along with the original publication from Miner-
vina et al.24. and reduced to the barcodes provided by the authors to
exclude carrier cells, non-T cells, and cells of lowquality. The cellswere
normalized for 10,000 reads and log1p-transformed. Following, the
5000 most variable genes were selected. Additionally, the clonotype
ID and the donor as conditional labels were assigned.

Fischer dataset. The filtered, normalized, and log1p-transformed
dataset of Fischer et al.6 was downloaded from NCBI GEO. Cells with
missingα- or β-chainwere removed from the dataset. Clonotypeswere
assigned for the remaining cells. Finally, we selected the 5000 most
variable genes for training mvTCR.

SARS-CoV-2 dataset. We obtained the SARS-CoV-2 dataset from the
Covid19 Cell Atlas under the section COVID-19 PBMC Ncl-Cambridge-
UCL and manually joined transcriptomic data with TCR information.
Quality control, normalization, and log1p-transformation were already
performed in the original publication. The original dataset comprised
>780,000 peripheral blood mononuclear cells (PBMCs) from 130
patients collected at three different sites. After filtering for complete
TCR annotation, 103,761 cells from 90 patients of the 254,104 anno-
tated T cells remained. We reduced the dataset to the 5000 most
variable genes, filtered for incomplete TCRs, and assigned the clono-
type. Themodelswere selected to equally preserve cell and clonotype.
The database query of TCRs to the IEDB (Fig. 4d) was performed via
Scirpy version 0.118 using the Levenshtein distance with threshold 1.
For predicting HLA binding affinity to the resulting epitopes, we used
MHCFlurry 2.0 with a threshold of 500nM44. The IFN response score
was calculated as the mean of the normalized marker genes described
in Szabo et al.38. CD8+ effector T cell clusters with elevated IFN
response were assigned as antigen-specific if >5% of the cluster’s cells
and >50% of the epitope matches of the cluster stemmed from SARS-
CoV-2 variants. Similarly, bystander clusterswere defined as exceeding
these thresholds with non-Covid related epitopes. The pairwise simi-
larity of gene expression was calculated as the Pearson correlation of
the first 50 principal components of transcriptome space. Differential
gene expression was calculated between antigen-specific and bystan-
der clusters via a t-test with Benjamini-Hochberg correction using
scanpy. Only genes with an adjusted p-value <5% and a log-fold change
>0.25 were reported. For the comparison of mvTCR to unimodal
analysis, the cluster detection in RNA was performed via the Leiden
algorithm21 0.8.4 on the log1p transformed 5000 most variable genes.
To evaluate the addition of a thirdmodality to themvTCR training, we
concatenated the processed and normalized antibody-derived tag
counts as provided by the authors to the 5000 most variable genes,
and conducted the training as described above. To investigatewhether
somatic hypermutation is potentially captured by mvTCR we defined
single-linkage clusters of TCR clones with a Hamming distance in their
CDR3β-chain. The average distances were calculated on the joint
model’s TCR space (ziTCR) within the cluster or a random clone selec-
tion of the same size.

Tumor-Infiltrating Lymphocyte dataset. The Tumor-Infiltrating
Lymphocyte (TIL) dataset consisted of a collection of studies down-
loaded as described under https://github.com/ncborcherding/utility.
Transcriptome and TCRs were manually merged and cells without
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complete TCR were filtered. Additionally, annotated doublets and
genes in<100cellswere removed. Thedatawerenormalized to 10,000
counts per cell, log1p-transformed, reduced to 5000 most variable
genes, and annotated with clonotype. After filtering, the dataset con-
tained 722,461 T cells.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All datasets used in this paper are publicly available. The 10x dataset
was accessed from the 10xwebsite under the SectionApplicationNote -
A New Way of Exploring Immunity [https://www.10xgenomics.com/
datasets] (accessed March, 7th, 2021). The Minervina dataset was
accessed from Zenodo under the accession code 6231854 [https://doi.
org/10.5281/zenodo.6232103]. The SARS-CoV-2 dataset was accessed
from the Covid-19 Cell Atlas under the section COVID-19 PBMC Ncl-
Cambridge-UCL [https://www.covid19cellatlas.org/index.patient.html]
(accessed February, 2nd, 2022). The Fischer dataset was accessed from
the NCBI GEO under the accession number GSE171037. The samples
contained in TIL dataset stem from a collection of studies. A processed
version of this data was downloaded as described in https://github.
com/ncborcherding/utility (accessed December, 20th, 2021). Source
data are provided with this paper.

Code availability
The software code including tutorials is available at https://github.
com/SchubertLab/mvTCR. The code to reproduce the results of this
manuscript can be accessed under https://github.com/SchubertLab/
mvTCR_reproducibility. All trained models used for this manuscript
can be downloaded from Zenodo via https://doi.org/10.5281/zenodo.
8112246.
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