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To comprehensively understand tissue and organism physiology and
pathophysiology, it is essential to create complete three-dimensional
(3D) cellular maps. These maps require structural data, such as the 3D

configuration and positioning of tissues and cells, and molecular dataon
the constitution of each cell, spanning from the DNA sequence to protein
expression. While single-cell transcriptomics is illuminating the cellular
and molecular diversity across species and tissues, the 3D spatial context
of these molecular datais often overlooked. Here, I discuss emerging 3D
tissue histology techniques that add the missing third spatial dimension
to biomedical research. Through innovations in tissue-clearing chemistry,
labeling and volumetric imaging that enhance 3D reconstructions and
their synergy with molecular techniques, these technologies will provide
detailed blueprints of entire organs or organisms at the cellular level.
Machine learning, especially deep learning, will be essential for extracting
meaningful insights from the vast data. Further development of integrated
structural, molecular and computational methods will unlock the full
potential of next-generation 3D histology.

Histology has been used to examine the microanatomy of tissues at
thecellleveland tolink tissue structure to function for more than two
centuries'. Traditional histology requires sectioning tissues to gener-
atethin, transparent slices from otherwise opaque biological tissues,
whichthen allowsimaging cellular and molecular details. Yet, serial sec-
tioningand imaging areimpractical for larger organs or whole rodent
bodies, which means that scientists have had to choose samples based
on preconceived ideas, leading to confirmation bias and limiting the
potential for discovering unanticipated mechanisms and phenomena.

The problem is most apparent at the whole-organism level when
studying interconnected systems of multiple or all organs. Therefore,
new approaches for assessing the whole specimen could lead to a
fundamental shift away from biased (that is, focused on pre-selected
tissues and their molecules) to unbiased assessment of biological pro-
cesses. The power of such holistic approaches has already been shown
in many studies in lower organisms>>. To bring the same level of analysis
to mice, humans and other opaque higher organisms, tissue-clearing
approaches that enable 3D imaging of intact biological specimens

at the cellular and subcellular level have emerged as promising tech-
nologies. Combiningtissue clearing with omics approaches and deep
learning analysis will further accelerate the study of biological systems.

A prime example of a process that spans multiple scales is can-
cer development and cancer metastasis. Cancer is both alocal and a
body-wide phenomenon®. To fully understand the whole metastatic
cascade and to develop metastasis-specific treatments, we need tools
to find and characterize individual cancer cells in the context of the
whole body. This will allow us to characterize their molecular diver-
sity and to assess the efficacy of drugs (that is, their targeting and the
induction of desired effects) down to the single-celllevel inevery part
of preclinical animal models and human samples.

Not only cancer but most diseases also have a systemic com-
ponent, just as normal physiology and development do. Also,
next-generation treatment modalities such as engineered T cells’,
somatic gene editing® and regenerative medicines such as stem cells’
and engineered tissues® (including organoids’) all require accuracy
and control at the cellular level to be truly effective and must be
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Fig. 1| Optical clearing enables imaging of whole mouse bodies and human
organs. a, Imaging of optically transparent whole mice stained with antibodies
specific to the peripheral nerve marker PGP9.5, also known as ubiquitin carboxy-
terminal hydrolase L1 (left) to reveal the complexity of the nervous system
(physiological state, 4 weeks old) or markers (CD3*CD23") for tertiary lymphoid

b
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structures (TLS) (right) to reveal these ina mouse with cancer. Adapted fromref.
27,CCBY 4.0.b, Whole human organs, such as the heart, can be made optically
transparent, stained and imaged using light-sheet microscopy. Bottom, dextran-
labeled vessels are shown in green, and plaques as autofluorescence are shown in
gold. Adapted with permission fromref. 61, Elsevier).

assessed at a holistic level. Clinical pathology would also benefit
from a more complete characterization of tumors and tissue sam-
ples, asis already being explored in early clinical investigations using
tissue-clearing techniques for tumor biopsies'®".

In addition to the challenges caused by tissue selection, the anal-
ysis of imaging data can introduce additional biases. For example,
filter-based data analysisincommercial visualization software requires
humaninputto define thresholds, whichislargely subjective. Optimal
image analysis pipelines, however, aim to be asindependent of human
subjectivity as possible to limitinterobserver and intra-observer vari-
ability. Recent developmentsin machine learning-based image analysis
are now bringing us closer to this goal. Although these approaches
require further development to achieve full objectivity, that s, to oper-
ate independently of human-generated training data, deep learning
methods already surpass humans in many data analysis tasks™.

In sum, biomedical research needs to evolve beyond the analysis
of structuraland molecular biology in selected tissue sections, expand-
ingits focus to entire organs and organisms. Here, I will outline a path
for combining unbiased volumetricimaging with unbiased molecular
profiling of biological samples, a pursuit that I consider both a major
goaland agrand challenge inbiomedical research. Finally, this Perspec-
tive will discuss recent advances in deep learning approaches aimed
at the unbiased and integrated analysis of large-scale imaging and
molecular datasets.

Deep imaging of whole organisms using optical
tissue clearingin3D

The inability of classical histology to preserve the 3D spatial context
has spurred the development of optical tissue-clearing techniques

thatenable theimaging of intact specimens with cellular or subcellular
resolution (Fig.1)">. When combined with light-sheet microscopy, tissue
clearingenables the investigation of samples ranging in size from whole
mouse and human embryos to entire mouse bodies and human organs
at the cellular level* . Ongoing refinements of clearing and labeling
methods aim to optimize results across diverse organs and tissues.

Inrecent years, we have seen diverse applications of tissue clear-
ing in biological research. For example, in mice, tissue clearing has
helped to identify brain regions regulating feeding'®, parental behav-
ior'” and mood and anxiety* as well as dopaminergic neuronal circuits
in the substantia nigra® and cortical brain regions downstream of
whisker-evoked sensory processing®. In the mouse gut, tissue clear-
ing has revealed interactions between the peripheral nervous system
and local macrophages® while tissue clearing has shed light on the
morphogenesis of human exocrine glands and neurovascular and
skeletomuscular structures in the developing human head®.

To make tissue-clearing methods widely usable, it is essential to
develop more standardized protocols. While we have witnessed the
continuous development of various tissue-clearing methods, they are
mostly tailored for specific uses. Similar to the user-friendly single-cell
RNA sequencing (scRNA-seq) technologies, such as the 10x platform,
that have revolutionized single-cell biology, standardizing proto-
cols and instruments will enhance the accessibility of tissue-clearing
methods.

Iforesee that tissue clearing and labeling will become increasingly
automated to standardize and accelerate laborious sample processing.
Meanwhile, making open-source light-sheet microscopes available
for large-scale 3D imaging will help to democratize the imaging of
clearedtissues. We also need easy-to-use software tailored for common
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Fig. 2| Three-dimensional omics for spatial molecular maps. a, Current
imaging methods can provide whole-body maps at cellular resolution but

only for afew markers. b, scRNA-seq and single-cell proteomics can provide
high-sensitivity analysis of individual cells from tissues but lose spatial context.
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t-SNE, t-distributed stochastic neighbor embedding. ¢, Future 3D spatial omics
technologies will provide whole-body maps of the distribution of biomolecules
inwhole animal bodies.

analysis tasks, yet flexible enough to allow optimizations for diverse
applications. Unlike scRNA-seq, imaging data vary substantially in
terms of resolution, complexity and labels, requiring tailored analysis
methods, now primarily based on deep learning, for segmentation and
classification. Thus, while the standardization of basic procedures and
analyses will ease access and ensure data comparability across groups,
retaining flexibility in both clearing and analysis protocols is crucial.

Imaging more specifically

Labeling specific cells and molecules in whole specimens has
represented a major bottleneck for tissue-clearing applications.
Small-molecule dyes, while extensively used in many clearing pro-
tocols, can only stain a limited range of biomolecules. Methods such
as SWITCH*, CLARITY” and immunolabeling-enabled 3D imaging of
solvent-cleared organs (iDISCO)* have enabled the use of antibodies
in mouse organs. We recently developed wildDISCO%, a method that
enables the use of full-length antibodies for staining entire mouse
bodies, thus making the full arsenal of thousands of commercial anti-
bodies available for whole-organism studies (Fig. 2a). RNA and DNA
molecules canbelabeled and imaged in some clearing protocols; how-
ever, these are currently challenging to apply to large specimens on a
routine basis™?*°,

Thelimitations of labeling methods can be partially overcome by
combining them with unbiased molecular profiling (omics) methods
(Imaging more, faster and smarter). l expect that future developments
will introduce new methods to increase the number of detectable
molecules, for example, through 3D in situ sequencing in cleared tis-
sues or by substantially enhancing our ability for multiplex labelingin
cleared tissue. Furthermore, there is a pressing need to develop new

technologies for antibody labeling of very large specimens, such as
human organs.

The extended periods required to complete current labeling
protocols, ranging from many days to weeks, represent another bot-
tleneck for the widespread application of unbiased 3D imaging. Sub-
stantial efforts are needed to develop engineering solutions capable
of achieving large-specimen labeling within minutes to hours, akin to
theincreasesin clearing speed already achieved for small samples®*,
Through these advancements, we will be able to image increasingly
larger and, therefore, more intact biological samples.

Imaging more, faster and smarter

Imaging labeled cellsand moleculesinlarge, cleared tissuesinvolves a
tradeoffbetween resolution and the size of tissues that can beimaged.
Objectives with higher numerical apertures (NA) tend to have ashorter
working distance, thereby reducing the maximum depth that can be
accessedinatissue. Simultaneously, thereis ageneralinverse relation-
ship between field of view and NA, necessitating more images to cover
the same volume at a higher resolution, thus reducing overallimaging
speed. Although various imaging modalities have been employed for
cleared samples, each affected by tradeoffs among different imaging
parameters, light-sheet microscopy has emerged as the most effec-
tive, delivering reasonable resolution (-1-2 puminxy and -5-10 pmin
zdimensions) within a reasonable timeframe™.

High-speed and high-resolution light-sheet microscopy methods,
such as lattice light-sheet microscopy, have been developed to track
individual cellsin 3D. However, these approaches are not applicable to
cleared samples that are several centimeters in size, due to the short
working distance of the required high-NA objectives. Millimeter-sized
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specimens can be imaged at submicrometer resolution using
approaches such as axially swept® or tiling scan’ light-sheet micros-
copy. Even subdiffraction (-60-90 nm) resolutions are achievable by
combining expansion microscopy withlattice light-sheet microscopy™.

Creating submicrometer-thick light sheets with centimeter-scale
lengths (or scannable over centimeters) and high-NA objectives with
centimeters of working distance would substantially enhance the
capabilities of light-sheet microscopy. However, substantial physical
and engineering limits remain to be overcome. Recent adaptations of
innovations from the electronics industry to the life sciences, as pio-
neered in the ExA-SPIM project, have demonstrated that substantial
progress in field of view and working distance is possible®.

Arelated limitation involves the extensive scan time required for
imaging large samples. Currently, data collection for an entire adult
mouse body canrequire4 d to 2 weeks of continuous scanning. Ideally,
this process should be completed within amatter of hours. Accelerat-
ing scanning will hinge on advances in both hardware and software
development specific to light-sheet microscopy. For example, the
development ofimaging lenses with larger fields of view and working
distances, combined with methods to create longer, uniform light
sheets”, either physically or through digitally scanned light sheets,
and employing axial sweeping® or tiling scan modes>**® will be criti-
cal for mapping larger human organs, including the heart, the kidney
andthebrainat the cellularlevel. Additionally, developing methods to
parallelize image acquisition by using multiple light sheets simultane-
ously could substantially increase the speed of data acquisition®”. The
integration of machine learning into scanning systems, as discussed
below, hasthe potential toincrease the quality of scans and to decrease
scan time and datasize.

Very large specimens, such as whole human organs, pose addi-
tional challenges due to the limited working distance of the detection
objective and quick deterioration of the light sheet within the sample.
Currently, the most practical solution forimaging very large samples
involves cutting these samples into pieces compatible with a given
imaging setup. Alternatively, using consecutive centimeter-thick tis-
sue slices (‘slabs’) allows for imaging with tilted light-sheet geom-
etries (such as inverted selective plane illumination microscopy*’
or light-sheet microscopy*) or with oblique plane light-sheet micro-
scopes*, which permit scanning large samples with arbitrarily large
lateral dimensions (albeit with limited thickness) without sacrificing
resolution. These approachesrender the organ-scaleimaging problem
tractable, enabling theimaging of human organs such as the kidney”,
albeit at the cost of minor slicing artifacts and increased computational
complexity for slice registration.

Human involvement is necessarily minimal during long-term
imaging. However, the changing optical properties and information
content of the sample ideally require adjustments during auto-
mated image acquisition to maximize image quality and to minimize
scanning time. The ideal solution involves designing smart micro-
scopes that perform on-the-fly data analysis and automatically
adjust microscope and scanning parameters while samples are being
imaged. This approach can (1) skip image planes lacking valuable
information, such as blank tiles, (2) provide optimal light-sheet
illumination based on the signal level at each depth, (3) adjust addi-
tional microscope settings, such as light-sheet thickness and cam-
era exposure to optimize the signal-to-noise ratio throughout the
imaging process, (4) identify and report on the quality of labeling
and imaging during the process to assess whether it is worth scan-
ning the entire sample and (5) learn from previous scans to optimize
future scans of similar samples.

Initial efforts in various imaging modalities have been directed
toward, for example, performing automated adaptive alignment,
compensating for changing sample distortions and growth, improving
autofocusing®**™*¢ or conducting on-the-fly basic analysis of image
content®', However, to design truly ‘smart’ imaging systems that

substantially increase the efficiency of large-tissue imaging, it will be
essential tointegrate machine learninginto the microscope controls™.

What is onthe horizon for cleared-tissue imaging
Substantial challenges remainin fully unlocking the potential of tissue
clearing. A key challenge is the limited multiplexing capability beyond
the few targets currently feasible. Broad fluorophore spectra, strong
blue-green autofluorescence and the limited spectral region available
with currentinstruments and labels limit the number of colors that can
be used in asingle scan. Expanding the usable spectral range into the
near-infrared (800-1,100 nm) or long-wavelength (1,200-1,600 nm)
windows could alleviate this crowding. Adding fluorescence lifetime
contrast could also substantially boost resolvable labels™. Alterna-
tively, intrinsically narrow-band Raman microscopy offers multiplexing
capabilities®, albeit with more complex instrumentation and currently
lower signal-to-noise ratios limiting its adoption. In terms of labeling,
multi-round antibody or RNA staining and in situ sequencing, well
established for cells and small tissues® " and already implemented
inindividual rodent organs forimmunolabeling®*, could substantially
increase the number of targets imaged in whole organisms.
Regardinginstrumentation,improved detectors and higher data
transfer speeds will enhance acquisition rates while maintaining high
signal-to-noise ratios. Simultaneously, as expression level variations
acrosstissues stretch the systems’ dynamic range, smart microscopes,
new signal-amplification strategies and improved detector technolo-
gieswill be critical for realizing the full potential of multidimensional
3Dimaging.

Deep molecular profilingin 3D

Historically, whole-tissue imaging and large-scale molecular profiling
have been distinct domains. Single-cell transcriptomics and proteom-
icsenable the assessment of a cell'smolecularidentity but necessitate
tissue dissociation and a biased selection of tissues, thereby losing
morphology and the broader context (Fig. 2b). This limitation restricts
our understanding of the connectionbetween tissue structure and cell
function. Additionally, rare cells, which are often critical for physiology,
can be lost among the multitude of other cells.

Similarly, early pathological changes often originate inindividual
cells that are undetectable against the tissue background. Identify-
ing and profiling the initial cellular stages of disease could enable
presymptomatic diagnosis and treatment. Currently, tissue sectioning
for various spatial omics methods is the most common approach for
isolatingregions of interestidentified inimaging data. Asecond-level
isolation can be achieved using laser capture microscopy to obtain
even single cells for transcriptomics®® and, more recently, proteom-
ics*”°, However, the critical loci for many diseases, such as microme-
tastases or initial Alzheimer’s plaques, occupy only a tiny fraction
of the total tissue volume, and their exact locations are unknown
a priori, making it challenging to identify the optimal regions for
further analysis.

Tissue clearing of whole specimens can help overcome this bottle-
neck by providing the cellular resolution necessary to identify even the
rarest cell types and the smallest pathological changes, but perform-
ing molecular profiling after extensive clearing procedures presents
challenges. However, we have demonstrated that proteomics analysis
in DISCO-cleared tissues yields results indistinguishable from those
of fresh tissue®. RNA preservation in some clearing techniques is suf-
ficient to perform in situ hybridization in 3D tissues™>**°, including
multiplexed imaging in brain samples®®®.

Inthe future, methods to directly extract samples of interest from
clearedtissues with high efficiency, similar to the robot-assisted extrac-
tion we have used for proteomics analysis (Fig. 3a)’, or approaches
for 3D in situ labeling (maybe similar to Light-Seq®®) (Fig. 3b) might
increase the throughput and multiplexing capability of molecular
profiling inwhole tissues (Fig. 2c).
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Fig. 3| Conceptualizing possible approaches for 3D omics. a, Small samples
can be physically extracted using minimally sized biopsies and automated
procedures. Currently, samples can be as small as 60 cells®’. ROI, region of
interest. b, Building on current small-scale approaches, in the future, cells

of interest in whole organisms can be labeled in situ, for example, using
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photochemistry, and thenisolated using cell sorting. FSC, forward scatter; SSC,
sidescatter. ¢, Inthe future, we might be able to read out molecular information
directly in the large volumes of whole organisms, building on current approaches
such as seqFISH and MERFISH>°,
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datatypes and species. Center: adapted with permission fromref. 73, Elsevier.
Right:reproduced fromref. 126, CCBY 4.0). b, A future body-wide CCF will need
to span scales ranging from meters to nanometers to integrate all data that can
be obtained using the full complement of methods in our arsenal. A hierarchy of
CCFs might be necessary to accommodate all scales.

Spatial omics methods are increasingly being integrated with
tissue imaging to combine molecular data with spatial context. These
approachesincludeinsitusequencing, capture, barcoding and hybridi-
zation techniques, such as MERFISH (recently reviewed in ref. 63).
Although these methods are currently slice based, they have yielded
substantial insights, particularly in oncology and neuroscience® %,
However, sectioning introduces bias by limiting analysis to pre-selected
regions, thereby constraining the ability to characterize heterogeneity
and discover rare features. For instance, to fully reveal the molecular
heterogeneity of micrometastases, it is essential to identify them
throughout the entire organism rather than in just a few tissue slices,

which at best represent less than 0.01% of the entire organismin a
section-based experiment.

In principle, most spatial omics methods could be adapted to 3D
cleared-tissue samples, enabling more comprehensive, unbiased and
scalable 3D analyses.

Some potential future developments in spatial omics

Ultimately, our goaliis to map every single cell analyzed with omics tech-
nologies backtoits precise positionin the 3Dimaging data (Fig. 3¢c). This
could, for example, be achieved through cell barcoding. In principle,
barcodingevery single cell within a sizable 3D volume for subsequent
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Monitor image reproduced with permission fromref. 17, Elsevier.

molecular analysis should be feasible. The barcode diversity required
tolabel the approximately 300 million cells of amouse liver®’ is within
the capabilities of current barcoding approaches, requiring barcodes
of at least 15 bases (more for efficient error correction). However,
reading these barcodes in cleared tissue with single-cell precision
remains beyond our current capabilities. Approaches similar to MER-
FISH or seqFISH could be adapted for 3D imaging, enabling a direct
readout of molecular information from the imaging data®*. Finally,
imaging-based techniques could be complemented by advanced
imaging-free molecular tomography methods™.

Allmethods face immense detection range requirements, up to
12 orders of magnitude in the proteome, for example’. This poses
substantial challenges for fully profiling heterogeneous samples.
Advancesinsensitivity, dynamic range and the extraction of signals
from incomplete data will be crucial for resolving 3D molecular
maps.

The ultimate goalis to develop dynamic 4D approaches that profile
spatially mapped cellsinliving, transparent mammals over time. Such
approaches could yield developmental and disease insights that are
impossible to achieve with static tissue data.

Mapping molecular data to common reference frameworks

To enable comparability and integration of data from different experi-
ments and groups, developing common coordinate frameworks (CCFs)
for high-resolution molecular and spatial data is essential (Fig. 4)7.
Existing CCFs, such as the Allen Brain Atlas, facilitate multimodal
data registration, even across species’. CCFs can be static for stable

structures, like the brain, or dynamic for variable systems, such as the
vasculature. The design of CCFs is complicated by natural variations
inorgansize and shape across individuals, which can beinfluenced by
factorssuch as age, sex, genetic background, environmental exposures
or disease states. The requirement to span length scales from metersto
nanometers further complicates matters. It remains debated whether
asingle CCF suffices across scales or whether a hierarchy of different
models is necessary. Artificial intelligence (Al)-assisted mapping can
already automatically register new data into reference atlases at the
organ scale’. However, even approximate or relative cell locations
would still offer valuable context (for example, proximity to vessels
for cancer cells).

Ultimately, CCFs are envisioned to serve as open platforms for
community-wide data integration and sharing. Initiatives such as
the Human Cell Atlas underscore the importance of seamlessly inte-
grating spatial details with community data as key objectives for the
future”. Dedicated repositories for spatial and single-cell data have
deepened insights by facilitating integrated analyses. Expanding this
open-science concept toinclude next-generation molecular anatomy
maps will further propel discovery.

Deep learning for large data analysisin 3D

Inthe previoussections, I discussed how rapid developmentsin experi-
mental techniques enable the unbiased investigation of biological
processes, which presents animportant step toward removing human
biases from sample and marker selection, enabling hypothesis-free
discovery research.
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The next step toward creating unbiased and scalable 3D molecular
atlases involves the development of robust algorithms. These algo-
rithms must be capable of not only analyzing imaging and molecular
data separately but also integrating them to generate biological
insights (Fig.5).In terms of image analysis, computer vision algorithms
have automated many time-consuming steps, while sophisticated
post-processing pipelines have substantially improved data quality.
Simultaneously, increasingly sophisticated algorithms are extract-
ing the most meaningful data from various omics”®’”” and imaging’®”
datatypes.

Recent advances in self-supervised and unsupervised learning,
exemplified by algorithms such as Gemini (Google Bard) and ChatGPT
(OpenAl) in natural language processing, in image and video genera-
tion with tools such as Midjourney, Dall-E and Sora, along with Seg-
ment Anythinginimage analysis, have outpaced traditional methods.
Self-supervised and unsupervised learning approaches are especially
pertinent for histological data, characterized by its abundance of
unannotated datasets, including the vast number of histopathologi-
cal images generated daily in clinics. A prime example of a potent
self-supervised algorithm is contrastive learning, which learns simi-
larities and dissimilarities between images. This approach promises to
deliver efficient methods for tasks such as cell phenotype classification,
segmentation and disease classification®’. For instance, a contrastive
learning algorithm might learn to recognize various features of cell
morphology, such asshape, size and texture, by training on segments
of both pathological and healthy histology images. This internal rep-
resentation of features can then be fine-tuned with a smaller set of
pixel-annotated slides, accurately segmenting cancerous cells and
thereby enhancing diagnostic accuracy.

Deep learning for image analysis

Algorithm development for a wide array of challenges in biological
imaging is now predominantly guided by supervised deep learning
approaches. In the realm of next-generation histology, several areas
have been identified where deep learning-based methods and other
machine learning techniques are poised to make substantial break-
throughs. Conceptually, Al applications can enhance image quality,
segment distinct entities within images (such as cells, subcellular
organelles or tumors) and classify various objects (including organs
and celltypes) contained in the images. These applications have been
comprehensively reviewed recently’®, and I will be highlighting the
aspects most relevant to large-scale imaging endeavors.

Deep learning for improving image quality and imaging speed
Gatheringa fullimaging dataset for acomplete mouse or human organ
cantakefromafew daysto2weeks, depending onthe desired resolution
and the number ofimaging channels. Approximately half of this period
is consumed by manual adjustmentsin the light-sheet microscope, such
asfilter changes, focus realignments, corrections for color distortions
and moving the specimen. These procedures could be streamlined
by implementing the ‘smart microscope’ strategy described above,
which automates many of these adjustments. Therest of the scanning
time involves illuminating the sample and capturing images. Using
algorithmicimprovements to enhance image quality has the potential
to shorten exposure times, substantially cutting down the total time
required to gather comprehensive datasets. Moreover, robust compu-
tational techniques for the efficient separation of colors in multicolor
3D images after acquisition (without manual filter changes) would
further decrease delays associated with microscope adjustments.
Reconstruction ofimages fromnoisy data has received substantial
attentioninrecentyears, mainly for live celland neuroscience applica-
tions®, but these techniques could also play a pivotal role in reducing
exposure times for 3D histology applications. In the best scenarios,
signal-to-noise ratios can be increased by up to 60-fold, dramatically
reducing the time required for image acquisition. Interestingly, in

certain situations, even high-quality ground truth datasets are not
necessary for training denoising neural networks®’. Yet, specialized
methods specifically developed and tested for large-scale 3D imaging
datahave not beenwidely reported.

The current state-of-the-art for acquiring high-quality multicolor
images involves changing filters for each imaging plane individually,
capturing all colors one after the other before proceeding to the next
plane. This is due to the inevitable drift in both the sample and the
microscope over extended imaging sessions spanning several days.
Although this method is very time consuming, it makes it easier to
combine the different channels. Al solutions could potentially address
the challenge of aligning these channels and enable the simultaneous
capture of multiple colors, greatly speeding up the process of gathering
image stacks. Despite the seemingly simple concept, applying linear
unmixing® and phasor®® approaches faces substantial challenges due
to the complexity of capturing multicolorimages in large specimens. An
Al-based approach might offer anew way to overcome these obstacles.

Deep learning for image classification, segmentation and
augmentation

To understand the immense amounts of imaging data, it is crucial to
differentiate objects from the background andto classify these objects
into functional classes (for example, organs, cells, subcellular com-
partments). Image segmentation and classification have been central
challenges in image analysis, spurring the deep learning revolution
in computer vision”. Segmentation addresses a pixel-level classifica-
tion challenge. Early research in biology focused on segmenting cells
and subcellular compartments, achieving success across various data-
sets®°. In many instances, using these networks necessitates substan-
tial adaptation to meet specific user needs. By contrast, nnU-Net is a
flexible segmentation network that automates its configuration process,
including the optimization of preprocessing, network architecture,
training and post-processing for each new image analysis task, and deliv-
ers results comparable to those of specifically optimized methods”.

Deep learning can also be applied to the segmentation of larger
objects. For example, we and others have applied deep learning to
identify metastases’>”*, to reconstruct the whole mouse brain vascula-
ture’” or to segment organsin cleared mice’™. Recently, unsupervised
approachessuchas contrastive learning have shown promise forimage
analysis in more complex applications, for example, for discriminat-
ing cell phenotypes in microscopy images®. For this, practical opti-
mization functions, which can provide specific shape priors for the
biological objects (such as connectivity and structure homology),
areimportant’?.

Deep learning canalso reveal information beyond what the human
eye cansee. The concept of ‘virtual staining’ or ‘augmented microscopy’
has proven powerful in generating histological stains from autofluo-
rescence or other label-free data and the transformation of one stain
intoanother (recently reviewed inref. 98). Virtual staining was able to
generate virtual immunostainings from other imaging data to label
subcellular compartments from autofluorescence of cultured cells®
ortoreconstruct various diagnosticimmunohistochemistry stains for
cancer diagnosis from simple H&E stains'°. Multiplexed immunofluo-
rescence data canalso be generated fromindividual channelsin clinical
histological slides'”'. However, the methods have yet to be generalized
toa3D histology setting, with few exceptions such as the generation of
virtual cytokeratin 8 staining from H&E stains in human prostate cancer
samples" or basic label-free reconstruction of tissue architecture'*,
More work needs to be done to generate high-quality training data
and to identify the best use cases for augmented microscopy in 3D
histology, as even basic H&E staining, 3D imaging and Al-based analysis
of prostate cancer samples has recently been shown to increase the
predictive power of histopathology'®.

Generation of 3D ground truth data, that is, labeling and cate-
gorizing imaging and molecular data by experts for training deep
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learning-based approaches, remains a major bottleneck. Thousands,
if not millions, of such labels are typically required to train deep
neural networks. While innovations such as the use of virtual real-
ity visualization'** can speed up image annotation in 3D, it is still a
laborious and error-prone process. Community efforts to generate
more high-quality, interlaboratory, 3D datasets with cell-level resolu-
tion would be of substantial value for algorithm developers, as they
have been for two-dimensional (2D) approaches and medical image
analysis”'®. Also, increasing the participation of the wider community
mightincrease the amount of available training data, for example, by
gamifying image annotation'®. To ensure comparability of results from
differentlaboratories, it will also be essential to define quality metrics
for humanimage annotation data.

As the power of supervised algorithms depends heavily on the
size of the ground truth data, we also need unsupervised, human-free
approaches for ground truth generation.

Clever experimental strategies or methods to generate synthetic
training data might also be able to provide substantial amounts of
ground truth data with minimal human post-processing involvement.

Deep learning forimaging and molecular dataintegration

To achieve a holistic, system-wide description of the entire sample
and its pathologies, deep learning methods that integrate data from
multipleimaging and molecular modalities will be needed to identify
spatial and molecular features and classify them according to their
physiological or pathological function.

One major aspect is to identify a unified data representation to
combine all datasources foramachine learning model. The recent suc-
cess of LLMs has shown that text representations are very powerful for
many tasks. Still, theinformation loss when representing images as text
or, alternatively, astabular dataisimmense. Therefore, Ibelieve thata
dynamic representation that efficiently embeds pixel information is
required for digital histology. Highly promising as representations of
multimodal datasets are heterogeneous and knowledge graphs, which
canintegrate different data types and allow the application of highly
powerful and explainable graph neural networks'” ', Importantly, this
multimodal dataintegration will allow a single deep learningmodel to
make overall predictions, forexample, toidentify and classify acancer
lesionin a histological sample.

A major analytical challenge will be the analysis of 3D molecular
dataandtheirintegration with 3D imaging data. Many of the principal
problems are also encountered by the current generation of 2D spatial
omics methods. Similar to these approaches, I expect that the initial
3D omics methods will either have a low spatial resolution (as our
DISCO-MS method®') or will have low transcriptome and proteome
coverage.

Low spatial resolution can be partially overcome by integrating
spatial datawith single-cell reference data that allow deconvolution of
the expression profile obtained from the many cellsin the experimen-
tal volume into cell type compositions. These methods are relatively
advanced for 2D spatial transcriptomics data, where methods such
as cell2location'?, SpatialDWLS™ and RCTD"? reach high accuracy in
predicting cell compositions. I expect that these or similar methods
willbe applicable to 3D transcriptomic datawith minor modifications.
Microscopy datacanalso be directly used toincrease the resolution of
spatial methods using deep learning' and advanced statistical meth-
ods™. Similar methods have not been reported for proteomics data,
where single-cell experiments are still in their infancy.

Low molecular coverage can be addressed by the imputation
of missing values, which relies on expression profiles determined
experimentally. For 2D data, several methods have been suggested.
These either use scRNA-seq data references by themselves' or com-
bine them with spatial correlations and imaging data"*"¢. Adapting
these methods to 3D spatial transcriptomics data, especially when
incorporating 3D spatial correlations and microscopy data, will likely

necessitate substantial optimizations. In proteomics, imputation
methods for bulk samples'” are commonly used and are now being
extended to single-cell experiments"®. Further analysis tasks, such
as identifying genes that vary across space and exploring how cells
communicate, have been pursued in 2D contexts (reviewed in depth
inref.77). Recently, graph-based algorithms have become a powerful
tool for analyzing spatial data™"*'2°,

The quality of deep learning algorithms critically depends on the
training data, and biases in the training data can be amplified by AI'”".
Therefore, itis essential to continuously work on developing methods
tovalidate Al outputs and to ensure that training data selectionis as var-
iedandrepresentative as possible. This includes covering the full range
of data, from categories with a lot of examples to those with very few.
Additionally, making deep learning models understandable and inter-
pretable remains a challenge. Despite substantial research efforts'*?,
complete solutions for the increasingly complex models are still lack-
ing. Improving explainability is critical for ensuring that researchers
and clinical experts cantrust and effectively use Al-generated insights.

Outlook and conclusions

The ultimate goal of biomedical research is to measure or accurately
predict the molecular and structural identity of every single cell in
an organism at any time. Transcriptomics and proteomics informa-
tion fromisolated cells has already expanded our views on how diver-
sity in biological systems governs biological functions. In parallel,
tissue-clearing-based 3D imaging of intact biological specimens at the
celllevel has started toreveal the true integrated anatomy of biological
systems. In the near future, we will witness an accelerated merging of
these two realms by achieving cellular-, even subcellular-level struc-
turaland molecular profiling in the same intact biological specimens.

Expanding tissue clearing to the fourth dimension, that is, time,
by live transparency could add another layer of information. However,
most of the major animal models such asrodents are not transparent.
While rendering a living mouse entirely transparent is probably out
of reach, achieving even partial transparency would already repre-
sent enormous progress. Chemical approaches, the basis of current
tissue-clearing methods, are unlikely to succeed in living organisms
asmost of the chemicals used are toxic, but agenetic approach might
be more fruitful. In the more immediate future, improved probes in
the different near-infrared windows that can be used in mammalian
tissue in the ~600-nm and 1,700-nm range'> can greatly increase the
imaging depthin mice already, especially ifthey can be combined with
adaptive optics'*.

Increasing the resolution of whole-body imaging from the cur-
rently routinely achieved cellular resolution to subcellular and even
molecular resolution will ultimately be possible in the absence of any
fundamental physical barriers. Improvementsin the working distance
of high-NA optics, further advancesin clearing methods and the adap-
tation of super-resolution methods to whole-mouse imaging will all
contribute to this aim. On a more practical note, it will also be impor-
tanttoincreaseimaging speedto complete high-resolutionscansina
reasonable time and to develop smart data handling infrastructures
to deal with the enormous amounts of data that would be produced
by such high-resolution experiments.

On the molecular profiling side, ideally, we should obtain
the entire proteomic and transcriptomic information (including
post-transcriptional and post-translational modifications). Currently,
our ability to detect low-abundance molecules, especially in samples
where a high dynamicrange is required, remains limited'”. Additional
methods for increasing the detection sensitivity, especially for RNA
and protein variants, will be needed to achieve the ultimate level of
molecular profiling.

Finally, an important aspect is general usability, that is, non-
experts should be able to perform labeling, clearing, imaging and
data analysis as easily as western blotting or confocal microscopy

Nature Methods | Volume 21| July 2024 | 1153-1165

1161


http://www.nature.com/naturemethods

Perspective

https://doi.org/10.1038/s41592-024-02327-1

today. This will require the development of user-friendly clearing and
labeling machines, along with easy-to-use Al algorithms. The com-
mercialization of single-cell methods has been instrumental in pro-
pelling the transcriptomics field to its position as the major unbiased
tool of biomedicine. We will need a similar push in tissue clearing,
light-sheet microscopy and 3D spatial molecular profiling to enable
routine large-scale data collection. Similarly, we need Al-assisted
analysis pipelines that combine high precision with interpretable
decision-making algorithms for common analysis tasks. Together,
easily accessible experimental and computational methods will enable
the routine application of end-to-end deep 3D histology inbasic, trans-
lational and clinical research.

Ageneral problem of allmethods providing large-scale datais the
extraction of scientific or practically actionable insights. Al, in par-
ticular, deep learning, will continue to be our major toolin translating
structural and molecular datainto meaningful insights that we can use
to generate solutions to major problems, including treating diseases.
Recent developments in organizing data, integrating and connecting
different data sources and making information accessible to humans
(forexample, knowledge graphs, large language models, text embed-
dings and graph learning strategies) will need to be connected to the
output of end-to-end deep 3D histology pipelines to make maximum
use of the data.

Usabilityisalso limited by the enormous computational resources
required for handling, storing and analyzing the large amounts of
imaging and molecular data obtained in a typical experiment and for
making them available to the scientific community. We find that an
integrated approach, inwhichthe dataare directly stored and analyzed
on a high-performance computing cluster and then the processed
data are made available to the individual researchers, works best in
our hands. Still, making terabytes worth of data available to the com-
munity remains asubstantial challenge in terms of computational and
long-term financial resources.

Inconclusion, high-resolution3D imaging of cleared tissues will be
instrumental in our quest to develop an organism-wide understanding
of physiological and pathological processes. While we still face techni-
calchallenges inimaging, molecular profiling and deep learning-based
dataanalysis, tissue clearing is already facilitating the investigation of
biomedical questions while avoiding the human biases that limit our
ability to discover. A continuous acceleration and automation of 3D
tissue analysis from dataacquisitionto dataanalysis will therefore allow
ustoobtainacentury’sworth of insightsinto disease mechanisms and
drugtargetsinjust afew years.
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