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Deep 3D histology powered by tissue 
clearing, omics and AI

Ali Ertürk    1,2,3,4 

To comprehensively understand tissue and organism physiology and 
pathophysiology, it is essential to create complete three-dimensional 
(3D) cellular maps. These maps require structural data, such as the 3D 
configuration and positioning of tissues and cells, and molecular data on 
the constitution of each cell, spanning from the DNA sequence to protein 
expression. While single-cell transcriptomics is illuminating the cellular 
and molecular diversity across species and tissues, the 3D spatial context 
of these molecular data is often overlooked. Here, I discuss emerging 3D 
tissue histology techniques that add the missing third spatial dimension 
to biomedical research. Through innovations in tissue-clearing chemistry, 
labeling and volumetric imaging that enhance 3D reconstructions and 
their synergy with molecular techniques, these technologies will provide 
detailed blueprints of entire organs or organisms at the cellular level. 
Machine learning, especially deep learning, will be essential for extracting 
meaningful insights from the vast data. Further development of integrated 
structural, molecular and computational methods will unlock the full 
potential of next-generation 3D histology.

Histology has been used to examine the microanatomy of tissues at 
the cell level and to link tissue structure to function for more than two 
centuries1. Traditional histology requires sectioning tissues to gener-
ate thin, transparent slices from otherwise opaque biological tissues, 
which then allows imaging cellular and molecular details. Yet, serial sec-
tioning and imaging are impractical for larger organs or whole rodent 
bodies, which means that scientists have had to choose samples based 
on preconceived ideas, leading to confirmation bias and limiting the 
potential for discovering unanticipated mechanisms and phenomena.

The problem is most apparent at the whole-organism level when 
studying interconnected systems of multiple or all organs. Therefore, 
new approaches for assessing the whole specimen could lead to a 
fundamental shift away from biased (that is, focused on pre-selected 
tissues and their molecules) to unbiased assessment of biological pro-
cesses. The power of such holistic approaches has already been shown 
in many studies in lower organisms2,3. To bring the same level of analysis 
to mice, humans and other opaque higher organisms, tissue-clearing 
approaches that enable 3D imaging of intact biological specimens 

at the cellular and subcellular level have emerged as promising tech-
nologies. Combining tissue clearing with omics approaches and deep 
learning analysis will further accelerate the study of biological systems.

A prime example of a process that spans multiple scales is can-
cer development and cancer metastasis. Cancer is both a local and a 
body-wide phenomenon4. To fully understand the whole metastatic 
cascade and to develop metastasis-specific treatments, we need tools 
to find and characterize individual cancer cells in the context of the 
whole body. This will allow us to characterize their molecular diver-
sity and to assess the efficacy of drugs (that is, their targeting and the 
induction of desired effects) down to the single-cell level in every part 
of preclinical animal models and human samples.

Not only cancer but most diseases also have a systemic com-
ponent, just as normal physiology and development do. Also, 
next-generation treatment modalities such as engineered T cells5, 
somatic gene editing6 and regenerative medicines such as stem cells7 
and engineered tissues8 (including organoids9) all require accuracy 
and control at the cellular level to be truly effective and must be 
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that enable the imaging of intact specimens with cellular or subcellular 
resolution (Fig. 1)13. When combined with light-sheet microscopy, tissue 
clearing enables the investigation of samples ranging in size from whole 
mouse and human embryos to entire mouse bodies and human organs 
at the cellular level14–17. Ongoing refinements of clearing and labeling 
methods aim to optimize results across diverse organs and tissues.

In recent years, we have seen diverse applications of tissue clear-
ing in biological research. For example, in mice, tissue clearing has 
helped to identify brain regions regulating feeding18, parental behav-
ior19 and mood and anxiety20 as well as dopaminergic neuronal circuits 
in the substantia nigra21 and cortical brain regions downstream of 
whisker-evoked sensory processing19. In the mouse gut, tissue clear-
ing has revealed interactions between the peripheral nervous system 
and local macrophages22 while tissue clearing has shed light on the 
morphogenesis of human exocrine glands and neurovascular and 
skeletomuscular structures in the developing human head23.

To make tissue-clearing methods widely usable, it is essential to 
develop more standardized protocols. While we have witnessed the 
continuous development of various tissue-clearing methods, they are 
mostly tailored for specific uses. Similar to the user-friendly single-cell 
RNA sequencing (scRNA-seq) technologies, such as the 10x platform, 
that have revolutionized single-cell biology, standardizing proto-
cols and instruments will enhance the accessibility of tissue-clearing 
methods.

I foresee that tissue clearing and labeling will become increasingly 
automated to standardize and accelerate laborious sample processing. 
Meanwhile, making open-source light-sheet microscopes available 
for large-scale 3D imaging will help to democratize the imaging of 
cleared tissues. We also need easy-to-use software tailored for common 

assessed at a holistic level. Clinical pathology would also benefit 
from a more complete characterization of tumors and tissue sam-
ples, as is already being explored in early clinical investigations using 
tissue-clearing techniques for tumor biopsies10,11.

In addition to the challenges caused by tissue selection, the anal-
ysis of imaging data can introduce additional biases. For example, 
filter-based data analysis in commercial visualization software requires 
human input to define thresholds, which is largely subjective. Optimal 
image analysis pipelines, however, aim to be as independent of human 
subjectivity as possible to limit interobserver and intra-observer vari-
ability. Recent developments in machine learning-based image analysis 
are now bringing us closer to this goal. Although these approaches 
require further development to achieve full objectivity, that is, to oper-
ate independently of human-generated training data, deep learning 
methods already surpass humans in many data analysis tasks12.

In sum, biomedical research needs to evolve beyond the analysis 
of structural and molecular biology in selected tissue sections, expand-
ing its focus to entire organs and organisms. Here, I will outline a path 
for combining unbiased volumetric imaging with unbiased molecular 
profiling of biological samples, a pursuit that I consider both a major 
goal and a grand challenge in biomedical research. Finally, this Perspec-
tive will discuss recent advances in deep learning approaches aimed 
at the unbiased and integrated analysis of large-scale imaging and 
molecular datasets.

Deep imaging of whole organisms using optical 
tissue clearing in 3D
The inability of classical histology to preserve the 3D spatial context 
has spurred the development of optical tissue-clearing techniques 

Peripheral nerves of mouse
body (PGP9.5 staining)

a b

TLS in mouse with cancer Whole human organ clearing

5 mm 5 mm 1 mm

2 mm

Depth, 16 mm

TLS
(CD3+CD23+)
4T1 tumor cells

Fig. 1 | Optical clearing enables imaging of whole mouse bodies and human 
organs. a, Imaging of optically transparent whole mice stained with antibodies 
specific to the peripheral nerve marker PGP9.5, also known as ubiquitin carboxy-
terminal hydrolase L1 (left) to reveal the complexity of the nervous system 
(physiological state, 4 weeks old) or markers (CD3+CD23+) for tertiary lymphoid 

structures (TLS) (right) to reveal these in a mouse with cancer. Adapted from ref. 
27, CCBY 4.0. b, Whole human organs, such as the heart, can be made optically 
transparent, stained and imaged using light-sheet microscopy. Bottom, dextran-
labeled vessels are shown in green, and plaques as autofluorescence are shown in 
gold. Adapted with permission from ref. 61, Elsevier).
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analysis tasks, yet flexible enough to allow optimizations for diverse 
applications. Unlike scRNA-seq, imaging data vary substantially in 
terms of resolution, complexity and labels, requiring tailored analysis 
methods, now primarily based on deep learning, for segmentation and 
classification. Thus, while the standardization of basic procedures and 
analyses will ease access and ensure data comparability across groups, 
retaining flexibility in both clearing and analysis protocols is crucial.

Imaging more specifically
Labeling specific cells and molecules in whole specimens has 
represented a major bottleneck for tissue-clearing applications. 
Small-molecule dyes, while extensively used in many clearing pro-
tocols, can only stain a limited range of biomolecules. Methods such 
as SWITCH24, CLARITY25 and immunolabeling-enabled 3D imaging of 
solvent-cleared organs (iDISCO)26 have enabled the use of antibodies 
in mouse organs. We recently developed wildDISCO27, a method that 
enables the use of full-length antibodies for staining entire mouse 
bodies, thus making the full arsenal of thousands of commercial anti-
bodies available for whole-organism studies (Fig. 2a). RNA and DNA 
molecules can be labeled and imaged in some clearing protocols; how-
ever, these are currently challenging to apply to large specimens on a 
routine basis15,28–30.

The limitations of labeling methods can be partially overcome by 
combining them with unbiased molecular profiling (omics) methods 
(Imaging more, faster and smarter). I expect that future developments 
will introduce new methods to increase the number of detectable 
molecules, for example, through 3D in situ sequencing in cleared tis-
sues or by substantially enhancing our ability for multiplex labeling in 
cleared tissue. Furthermore, there is a pressing need to develop new 

technologies for antibody labeling of very large specimens, such as 
human organs.

The extended periods required to complete current labeling 
protocols, ranging from many days to weeks, represent another bot-
tleneck for the widespread application of unbiased 3D imaging. Sub-
stantial efforts are needed to develop engineering solutions capable 
of achieving large-specimen labeling within minutes to hours, akin to 
the increases in clearing speed already achieved for small samples31,32. 
Through these advancements, we will be able to image increasingly 
larger and, therefore, more intact biological samples.

Imaging more, faster and smarter
Imaging labeled cells and molecules in large, cleared tissues involves a 
tradeoff between resolution and the size of tissues that can be imaged. 
Objectives with higher numerical apertures (NA) tend to have a shorter 
working distance, thereby reducing the maximum depth that can be 
accessed in a tissue. Simultaneously, there is a general inverse relation-
ship between field of view and NA, necessitating more images to cover 
the same volume at a higher resolution, thus reducing overall imaging 
speed. Although various imaging modalities have been employed for 
cleared samples, each affected by tradeoffs among different imaging 
parameters, light-sheet microscopy has emerged as the most effec-
tive, delivering reasonable resolution (~1–2 µm in xy and ~5–10 µm in 
z dimensions) within a reasonable timeframe33.

High-speed and high-resolution light-sheet microscopy methods, 
such as lattice light-sheet microscopy, have been developed to track 
individual cells in 3D. However, these approaches are not applicable to 
cleared samples that are several centimeters in size, due to the short 
working distance of the required high-NA objectives. Millimeter-sized 
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Fig. 2 | Three-dimensional omics for spatial molecular maps. a, Current 
imaging methods can provide whole-body maps at cellular resolution but 
only for a few markers. b, scRNA-seq and single-cell proteomics can provide 
high-sensitivity analysis of individual cells from tissues but lose spatial context. 

t-SNE, t-distributed stochastic neighbor embedding. c, Future 3D spatial omics 
technologies will provide whole-body maps of the distribution of biomolecules 
in whole animal bodies.
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specimens can be imaged at submicrometer resolution using 
approaches such as axially swept33 or tiling scan34 light-sheet micros-
copy. Even subdiffraction (~60–90 nm) resolutions are achievable by 
combining expansion microscopy with lattice light-sheet microscopy35.

Creating submicrometer-thick light sheets with centimeter-scale 
lengths (or scannable over centimeters) and high-NA objectives with 
centimeters of working distance would substantially enhance the 
capabilities of light-sheet microscopy. However, substantial physical 
and engineering limits remain to be overcome. Recent adaptations of 
innovations from the electronics industry to the life sciences, as pio-
neered in the ExA-SPIM project, have demonstrated that substantial 
progress in field of view and working distance is possible36.

A related limitation involves the extensive scan time required for 
imaging large samples. Currently, data collection for an entire adult 
mouse body can require 4 d to 2 weeks of continuous scanning. Ideally, 
this process should be completed within a matter of hours. Accelerat-
ing scanning will hinge on advances in both hardware and software 
development specific to light-sheet microscopy. For example, the 
development of imaging lenses with larger fields of view and working 
distances, combined with methods to create longer, uniform light 
sheets37, either physically or through digitally scanned light sheets, 
and employing axial sweeping33 or tiling scan modes34,38 will be criti-
cal for mapping larger human organs, including the heart, the kidney 
and the brain at the cellular level. Additionally, developing methods to 
parallelize image acquisition by using multiple light sheets simultane-
ously could substantially increase the speed of data acquisition39. The 
integration of machine learning into scanning systems, as discussed 
below, has the potential to increase the quality of scans and to decrease 
scan time and data size.

Very large specimens, such as whole human organs, pose addi-
tional challenges due to the limited working distance of the detection 
objective and quick deterioration of the light sheet within the sample. 
Currently, the most practical solution for imaging very large samples 
involves cutting these samples into pieces compatible with a given 
imaging setup. Alternatively, using consecutive centimeter-thick tis-
sue slices (‘slabs’) allows for imaging with tilted light-sheet geom-
etries (such as inverted selective plane illumination microscopy40 
or light-sheet microscopy41) or with oblique plane light-sheet micro-
scopes42, which permit scanning large samples with arbitrarily large 
lateral dimensions (albeit with limited thickness) without sacrificing 
resolution. These approaches render the organ-scale imaging problem 
tractable, enabling the imaging of human organs such as the kidney17, 
albeit at the cost of minor slicing artifacts and increased computational 
complexity for slice registration.

Human involvement is necessarily minimal during long-term 
imaging. However, the changing optical properties and information 
content of the sample ideally require adjustments during auto-
mated image acquisition to maximize image quality and to minimize 
scanning time. The ideal solution involves designing smart micro-
scopes that perform on-the-fly data analysis and automatically 
adjust microscope and scanning parameters while samples are being 
imaged. This approach can (1) skip image planes lacking valuable 
information, such as blank tiles, (2) provide optimal light-sheet 
illumination based on the signal level at each depth, (3) adjust addi-
tional microscope settings, such as light-sheet thickness and cam-
era exposure to optimize the signal-to-noise ratio throughout the 
imaging process, (4) identify and report on the quality of labeling 
and imaging during the process to assess whether it is worth scan-
ning the entire sample and (5) learn from previous scans to optimize 
future scans of similar samples.

Initial efforts in various imaging modalities have been directed 
toward, for example, performing automated adaptive alignment, 
compensating for changing sample distortions and growth, improving 
autofocusing38,43–48 or conducting on-the-fly basic analysis of image 
content49–51. However, to design truly ‘smart’ imaging systems that 

substantially increase the efficiency of large-tissue imaging, it will be 
essential to integrate machine learning into the microscope controls52.

What is on the horizon for cleared-tissue imaging
Substantial challenges remain in fully unlocking the potential of tissue 
clearing. A key challenge is the limited multiplexing capability beyond 
the few targets currently feasible. Broad fluorophore spectra, strong 
blue–green autofluorescence and the limited spectral region available 
with current instruments and labels limit the number of colors that can 
be used in a single scan. Expanding the usable spectral range into the 
near-infrared (800–1,100 nm) or long-wavelength (1,200–1,600 nm) 
windows could alleviate this crowding. Adding fluorescence lifetime 
contrast could also substantially boost resolvable labels53. Alterna-
tively, intrinsically narrow-band Raman microscopy offers multiplexing 
capabilities54, albeit with more complex instrumentation and currently 
lower signal-to-noise ratios limiting its adoption. In terms of labeling, 
multi-round antibody or RNA staining and in situ sequencing, well 
established for cells and small tissues55–57 and already implemented 
in individual rodent organs for immunolabeling24, could substantially 
increase the number of targets imaged in whole organisms.

Regarding instrumentation, improved detectors and higher data 
transfer speeds will enhance acquisition rates while maintaining high 
signal-to-noise ratios. Simultaneously, as expression level variations 
across tissues stretch the systems’ dynamic range, smart microscopes, 
new signal-amplification strategies and improved detector technolo-
gies will be critical for realizing the full potential of multidimensional 
3D imaging.

Deep molecular profiling in 3D
Historically, whole-tissue imaging and large-scale molecular profiling 
have been distinct domains. Single-cell transcriptomics and proteom-
ics enable the assessment of a cell’s molecular identity but necessitate 
tissue dissociation and a biased selection of tissues, thereby losing 
morphology and the broader context (Fig. 2b). This limitation restricts 
our understanding of the connection between tissue structure and cell 
function. Additionally, rare cells, which are often critical for physiology, 
can be lost among the multitude of other cells.

Similarly, early pathological changes often originate in individual 
cells that are undetectable against the tissue background. Identify-
ing and profiling the initial cellular stages of disease could enable 
presymptomatic diagnosis and treatment. Currently, tissue sectioning 
for various spatial omics methods is the most common approach for 
isolating regions of interest identified in imaging data. A second-level 
isolation can be achieved using laser capture microscopy to obtain 
even single cells for transcriptomics58 and, more recently, proteom-
ics59,60. However, the critical loci for many diseases, such as microme-
tastases or initial Alzheimer’s plaques, occupy only a tiny fraction 
of the total tissue volume, and their exact locations are unknown 
a priori, making it challenging to identify the optimal regions for 
further analysis.

Tissue clearing of whole specimens can help overcome this bottle-
neck by providing the cellular resolution necessary to identify even the 
rarest cell types and the smallest pathological changes, but perform-
ing molecular profiling after extensive clearing procedures presents 
challenges. However, we have demonstrated that proteomics analysis 
in DISCO-cleared tissues yields results indistinguishable from those 
of fresh tissue61. RNA preservation in some clearing techniques is suf-
ficient to perform in situ hybridization in 3D tissues15,28–30, including 
multiplexed imaging in brain samples28,29.

In the future, methods to directly extract samples of interest from 
cleared tissues with high efficiency, similar to the robot-assisted extrac-
tion we have used for proteomics analysis (Fig. 3a)61, or approaches 
for 3D in situ labeling (maybe similar to Light-Seq62) (Fig. 3b) might 
increase the throughput and multiplexing capability of molecular 
profiling in whole tissues (Fig. 2c).
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Fig. 3 | Conceptualizing possible approaches for 3D omics. a, Small samples 
can be physically extracted using minimally sized biopsies and automated 
procedures. Currently, samples can be as small as 60 cells61. ROI, region of 
interest. b, Building on current small-scale approaches, in the future, cells 
of interest in whole organisms can be labeled in situ, for example, using 

photochemistry, and then isolated using cell sorting. FSC, forward scatter; SSC, 
side scatter. c, In the future, we might be able to read out molecular information 
directly in the large volumes of whole organisms, building on current approaches 
such as seqFISH and MERFISH55,56.
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Spatial omics methods are increasingly being integrated with 
tissue imaging to combine molecular data with spatial context. These 
approaches include in situ sequencing, capture, barcoding and hybridi-
zation techniques, such as MERFISH (recently reviewed in ref. 63). 
Although these methods are currently slice based, they have yielded 
substantial insights, particularly in oncology and neuroscience64–68. 
However, sectioning introduces bias by limiting analysis to pre-selected 
regions, thereby constraining the ability to characterize heterogeneity 
and discover rare features. For instance, to fully reveal the molecular 
heterogeneity of micrometastases, it is essential to identify them 
throughout the entire organism rather than in just a few tissue slices, 

which at best represent less than 0.01% of the entire organism in a 
section-based experiment.

In principle, most spatial omics methods could be adapted to 3D 
cleared-tissue samples, enabling more comprehensive, unbiased and 
scalable 3D analyses.

Some potential future developments in spatial omics
Ultimately, our goal is to map every single cell analyzed with omics tech-
nologies back to its precise position in the 3D imaging data (Fig. 3c). This 
could, for example, be achieved through cell barcoding. In principle, 
barcoding every single cell within a sizable 3D volume for subsequent 

Whole-body level

a

b
Whole-organ level Functional structure level Cellular level

Registration Integration

Unified anatomical reference atlas Common framework enables 
multimodal integration

Diverse inputs
• Whole-brain histology
• Single-cell measurements
• Gene expression

30 cm 5 cm 0.5 mm 20 µm

Fig. 4 | CCFs are essential for comparing and integrating different datasets. 
a, The Allen Brain Atlas as an example of a common coordinate and integration 
system: a common anatomical reference framework allows registration across 
individuals and modalities (whole-brain histology, single-cell physiology, 
multiomics). Common references, in turn, enable multimodal integration across 

data types and species. Center: adapted with permission from ref. 73, Elsevier. 
Right: reproduced from ref. 126, CCBY 4.0). b, A future body-wide CCF will need 
to span scales ranging from meters to nanometers to integrate all data that can 
be obtained using the full complement of methods in our arsenal. A hierarchy of 
CCFs might be necessary to accommodate all scales.
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molecular analysis should be feasible. The barcode diversity required 
to label the approximately 300 million cells of a mouse liver69 is within 
the capabilities of current barcoding approaches, requiring barcodes 
of at least 15 bases (more for efficient error correction). However, 
reading these barcodes in cleared tissue with single-cell precision 
remains beyond our current capabilities. Approaches similar to MER-
FISH or seqFISH could be adapted for 3D imaging, enabling a direct 
readout of molecular information from the imaging data55,56. Finally, 
imaging-based techniques could be complemented by advanced 
imaging-free molecular tomography methods70.

All methods face immense detection range requirements, up to 
12 orders of magnitude in the proteome, for example71. This poses 
substantial challenges for fully profiling heterogeneous samples. 
Advances in sensitivity, dynamic range and the extraction of signals 
from incomplete data will be crucial for resolving 3D molecular 
maps.

The ultimate goal is to develop dynamic 4D approaches that profile 
spatially mapped cells in living, transparent mammals over time. Such 
approaches could yield developmental and disease insights that are 
impossible to achieve with static tissue data.

Mapping molecular data to common reference frameworks
To enable comparability and integration of data from different experi-
ments and groups, developing common coordinate frameworks (CCFs) 
for high-resolution molecular and spatial data is essential (Fig. 4)72. 
Existing CCFs, such as the Allen Brain Atlas, facilitate multimodal 
data registration, even across species73. CCFs can be static for stable 

structures, like the brain, or dynamic for variable systems, such as the 
vasculature. The design of CCFs is complicated by natural variations 
in organ size and shape across individuals, which can be influenced by 
factors such as age, sex, genetic background, environmental exposures 
or disease states. The requirement to span length scales from meters to 
nanometers further complicates matters. It remains debated whether 
a single CCF suffices across scales or whether a hierarchy of different 
models is necessary. Artificial intelligence (AI)-assisted mapping can 
already automatically register new data into reference atlases at the 
organ scale74. However, even approximate or relative cell locations 
would still offer valuable context (for example, proximity to vessels 
for cancer cells).

Ultimately, CCFs are envisioned to serve as open platforms for 
community-wide data integration and sharing. Initiatives such as 
the Human Cell Atlas underscore the importance of seamlessly inte-
grating spatial details with community data as key objectives for the 
future75. Dedicated repositories for spatial and single-cell data have 
deepened insights by facilitating integrated analyses. Expanding this 
open-science concept to include next-generation molecular anatomy 
maps will further propel discovery.

Deep learning for large data analysis in 3D
In the previous sections, I discussed how rapid developments in experi-
mental techniques enable the unbiased investigation of biological 
processes, which presents an important step toward removing human 
biases from sample and marker selection, enabling hypothesis-free 
discovery research.

AI in histological image analysis
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• Tissue, organ and cell segmentation
• Cell classification
• Multicolor unmixing
• Super-resolution
• Rapid image reconstruction
• Omic sample identification

Whole-sample imaging and 
guided ROI isolation for omics
studies
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Transcriptomics
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• Spatial omics deconvolution
• Single-cell and spatial omics data integration
• Spatial atlas integration (CCF)
• Data imputation
• Detection of spatial patterns
• Integration of imaging and molecular data

AI multimodal disease understanding
• Multimodal data representations
    - Heterogeneous knowledge graphs
    - Tabular data concepts
    - Text embeddings
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    - Multimodal transformer embeddings
    - Large language models
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    - Diagnosis → disease classification
    - Drug targeting prediction
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Fig. 5 | AI tools are essential at all stages of 3D omics analysis. The large size and multidimensional nature of the combined imaging and molecular data require 
computational tools starting from the optimization of image acquisition to image analysis, omics data integration and extraction of biological and medical insights. 
Monitor image reproduced with permission from ref. 17, Elsevier.
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The next step toward creating unbiased and scalable 3D molecular 
atlases involves the development of robust algorithms. These algo-
rithms must be capable of not only analyzing imaging and molecular  
data separately but also integrating them to generate biological 
insights (Fig. 5). In terms of image analysis, computer vision algorithms 
have automated many time-consuming steps, while sophisticated 
post-processing pipelines have substantially improved data quality. 
Simultaneously, increasingly sophisticated algorithms are extract-
ing the most meaningful data from various omics76,77 and imaging78,79 
data types.

Recent advances in self-supervised and unsupervised learning, 
exemplified by algorithms such as Gemini (Google Bard) and ChatGPT 
(OpenAI) in natural language processing, in image and video genera-
tion with tools such as Midjourney, Dall-E and Sora, along with Seg-
ment Anything in image analysis, have outpaced traditional methods. 
Self-supervised and unsupervised learning approaches are especially 
pertinent for histological data, characterized by its abundance of 
unannotated datasets, including the vast number of histopathologi-
cal images generated daily in clinics. A prime example of a potent 
self-supervised algorithm is contrastive learning, which learns simi-
larities and dissimilarities between images. This approach promises to 
deliver efficient methods for tasks such as cell phenotype classification, 
segmentation and disease classification80. For instance, a contrastive 
learning algorithm might learn to recognize various features of cell 
morphology, such as shape, size and texture, by training on segments 
of both pathological and healthy histology images. This internal rep-
resentation of features can then be fine-tuned with a smaller set of 
pixel-annotated slides, accurately segmenting cancerous cells and 
thereby enhancing diagnostic accuracy.

Deep learning for image analysis
Algorithm development for a wide array of challenges in biological 
imaging is now predominantly guided by supervised deep learning 
approaches. In the realm of next-generation histology, several areas 
have been identified where deep learning-based methods and other 
machine learning techniques are poised to make substantial break-
throughs. Conceptually, AI applications can enhance image quality, 
segment distinct entities within images (such as cells, subcellular 
organelles or tumors) and classify various objects (including organs 
and cell types) contained in the images. These applications have been 
comprehensively reviewed recently78, and I will be highlighting the 
aspects most relevant to large-scale imaging endeavors.

Deep learning for improving image quality and imaging speed
Gathering a full imaging dataset for a complete mouse or human organ 
can take from a few days to 2 weeks, depending on the desired resolution 
and the number of imaging channels. Approximately half of this period 
is consumed by manual adjustments in the light-sheet microscope, such 
as filter changes, focus realignments, corrections for color distortions 
and moving the specimen. These procedures could be streamlined 
by implementing the ‘smart microscope’ strategy described above, 
which automates many of these adjustments. The rest of the scanning 
time involves illuminating the sample and capturing images. Using 
algorithmic improvements to enhance image quality has the potential 
to shorten exposure times, substantially cutting down the total time 
required to gather comprehensive datasets. Moreover, robust compu-
tational techniques for the efficient separation of colors in multicolor 
3D images after acquisition (without manual filter changes) would 
further decrease delays associated with microscope adjustments.

Reconstruction of images from noisy data has received substantial 
attention in recent years, mainly for live cell and neuroscience applica-
tions81–83, but these techniques could also play a pivotal role in reducing 
exposure times for 3D histology applications. In the best scenarios, 
signal-to-noise ratios can be increased by up to 60-fold, dramatically 
reducing the time required for image acquisition. Interestingly, in 

certain situations, even high-quality ground truth datasets are not 
necessary for training denoising neural networks84. Yet, specialized 
methods specifically developed and tested for large-scale 3D imaging 
data have not been widely reported.

The current state-of-the-art for acquiring high-quality multicolor 
images involves changing filters for each imaging plane individually, 
capturing all colors one after the other before proceeding to the next 
plane. This is due to the inevitable drift in both the sample and the 
microscope over extended imaging sessions spanning several days. 
Although this method is very time consuming, it makes it easier to 
combine the different channels. AI solutions could potentially address 
the challenge of aligning these channels and enable the simultaneous 
capture of multiple colors, greatly speeding up the process of gathering 
image stacks. Despite the seemingly simple concept, applying linear 
unmixing85 and phasor86 approaches faces substantial challenges due 
to the complexity of capturing multicolor images in large specimens. An 
AI-based approach might offer a new way to overcome these obstacles.

Deep learning for image classification, segmentation and 
augmentation
To understand the immense amounts of imaging data, it is crucial to 
differentiate objects from the background and to classify these objects 
into functional classes (for example, organs, cells, subcellular com-
partments). Image segmentation and classification have been central 
challenges in image analysis, spurring the deep learning revolution 
in computer vision87. Segmentation addresses a pixel-level classifica-
tion challenge. Early research in biology focused on segmenting cells 
and subcellular compartments, achieving success across various data-
sets88–90. In many instances, using these networks necessitates substan-
tial adaptation to meet specific user needs. By contrast, nnU-Net is a 
flexible segmentation network that automates its configuration process, 
including the optimization of preprocessing, network architecture, 
training and post-processing for each new image analysis task, and deliv-
ers results comparable to those of specifically optimized methods91.

Deep learning can also be applied to the segmentation of larger 
objects. For example, we and others have applied deep learning to 
identify metastases92,93, to reconstruct the whole mouse brain vascula-
ture94,95 or to segment organs in cleared mice74. Recently, unsupervised 
approaches such as contrastive learning have shown promise for image 
analysis in more complex applications, for example, for discriminat-
ing cell phenotypes in microscopy images80. For this, practical opti-
mization functions, which can provide specific shape priors for the 
biological objects (such as connectivity and structure homology), 
are important96,97.

Deep learning can also reveal information beyond what the human 
eye can see. The concept of ‘virtual staining’ or ‘augmented microscopy’ 
has proven powerful in generating histological stains from autofluo-
rescence or other label-free data and the transformation of one stain 
into another (recently reviewed in ref. 98). Virtual staining was able to 
generate virtual immunostainings from other imaging data to label 
subcellular compartments from autofluorescence of cultured cells99 
or to reconstruct various diagnostic immunohistochemistry stains for 
cancer diagnosis from simple H&E stains100. Multiplexed immunofluo-
rescence data can also be generated from individual channels in clinical 
histological slides101. However, the methods have yet to be generalized 
to a 3D histology setting, with few exceptions such as the generation of 
virtual cytokeratin 8 staining from H&E stains in human prostate cancer 
samples11 or basic label-free reconstruction of tissue architecture102. 
More work needs to be done to generate high-quality training data 
and to identify the best use cases for augmented microscopy in 3D 
histology, as even basic H&E staining, 3D imaging and AI-based analysis 
of prostate cancer samples has recently been shown to increase the 
predictive power of histopathology103.

Generation of 3D ground truth data, that is, labeling and cate-
gorizing imaging and molecular data by experts for training deep 
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learning-based approaches, remains a major bottleneck. Thousands, 
if not millions, of such labels are typically required to train deep 
neural networks. While innovations such as the use of virtual real-
ity visualization104 can speed up image annotation in 3D, it is still a 
laborious and error-prone process. Community efforts to generate 
more high-quality, interlaboratory, 3D datasets with cell-level resolu-
tion would be of substantial value for algorithm developers, as they 
have been for two-dimensional (2D) approaches and medical image 
analysis91,105. Also, increasing the participation of the wider community 
might increase the amount of available training data, for example, by 
gamifying image annotation106. To ensure comparability of results from 
different laboratories, it will also be essential to define quality metrics 
for human image annotation data.

As the power of supervised algorithms depends heavily on the 
size of the ground truth data, we also need unsupervised, human-free 
approaches for ground truth generation.

Clever experimental strategies or methods to generate synthetic 
training data might also be able to provide substantial amounts of 
ground truth data with minimal human post-processing involvement.

Deep learning for imaging and molecular data integration
To achieve a holistic, system-wide description of the entire sample 
and its pathologies, deep learning methods that integrate data from 
multiple imaging and molecular modalities will be needed to identify 
spatial and molecular features and classify them according to their 
physiological or pathological function.

One major aspect is to identify a unified data representation to 
combine all data sources for a machine learning model. The recent suc-
cess of LLMs has shown that text representations are very powerful for 
many tasks. Still, the information loss when representing images as text 
or, alternatively, as tabular data is immense. Therefore, I believe that a 
dynamic representation that efficiently embeds pixel information is 
required for digital histology. Highly promising as representations of 
multimodal datasets are heterogeneous and knowledge graphs, which 
can integrate different data types and allow the application of highly 
powerful and explainable graph neural networks107–109. Importantly, this 
multimodal data integration will allow a single deep learning model to 
make overall predictions, for example, to identify and classify a cancer 
lesion in a histological sample.

A major analytical challenge will be the analysis of 3D molecular 
data and their integration with 3D imaging data. Many of the principal 
problems are also encountered by the current generation of 2D spatial 
omics methods. Similar to these approaches, I expect that the initial 
3D omics methods will either have a low spatial resolution (as our 
DISCO-MS method61) or will have low transcriptome and proteome 
coverage.

Low spatial resolution can be partially overcome by integrating 
spatial data with single-cell reference data that allow deconvolution of 
the expression profile obtained from the many cells in the experimen-
tal volume into cell type compositions. These methods are relatively 
advanced for 2D spatial transcriptomics data, where methods such 
as cell2location110, SpatialDWLS111 and RCTD112 reach high accuracy in 
predicting cell compositions. I expect that these or similar methods 
will be applicable to 3D transcriptomic data with minor modifications. 
Microscopy data can also be directly used to increase the resolution of 
spatial methods using deep learning113 and advanced statistical meth-
ods114. Similar methods have not been reported for proteomics data, 
where single-cell experiments are still in their infancy.

Low molecular coverage can be addressed by the imputation 
of missing values, which relies on expression profiles determined 
experimentally. For 2D data, several methods have been suggested. 
These either use scRNA-seq data references by themselves115 or com-
bine them with spatial correlations and imaging data114,116. Adapting 
these methods to 3D spatial transcriptomics data, especially when 
incorporating 3D spatial correlations and microscopy data, will likely 

necessitate substantial optimizations. In proteomics, imputation 
methods for bulk samples117 are commonly used and are now being 
extended to single-cell experiments118. Further analysis tasks, such 
as identifying genes that vary across space and exploring how cells 
communicate, have been pursued in 2D contexts (reviewed in depth 
in ref. 77). Recently, graph-based algorithms have become a powerful 
tool for analyzing spatial data116,119,120.

The quality of deep learning algorithms critically depends on the 
training data, and biases in the training data can be amplified by AI121. 
Therefore, it is essential to continuously work on developing methods 
to validate AI outputs and to ensure that training data selection is as var-
ied and representative as possible. This includes covering the full range 
of data, from categories with a lot of examples to those with very few. 
Additionally, making deep learning models understandable and inter-
pretable remains a challenge. Despite substantial research efforts122, 
complete solutions for the increasingly complex models are still lack-
ing. Improving explainability is critical for ensuring that researchers 
and clinical experts can trust and effectively use AI-generated insights.

Outlook and conclusions
The ultimate goal of biomedical research is to measure or accurately 
predict the molecular and structural identity of every single cell in 
an organism at any time. Transcriptomics and proteomics informa-
tion from isolated cells has already expanded our views on how diver-
sity in biological systems governs biological functions. In parallel, 
tissue-clearing-based 3D imaging of intact biological specimens at the 
cell level has started to reveal the true integrated anatomy of biological 
systems. In the near future, we will witness an accelerated merging of 
these two realms by achieving cellular-, even subcellular-level struc-
tural and molecular profiling in the same intact biological specimens.

Expanding tissue clearing to the fourth dimension, that is, time, 
by live transparency could add another layer of information. However, 
most of the major animal models such as rodents are not transparent. 
While rendering a living mouse entirely transparent is probably out 
of reach, achieving even partial transparency would already repre-
sent enormous progress. Chemical approaches, the basis of current 
tissue-clearing methods, are unlikely to succeed in living organisms 
as most of the chemicals used are toxic, but a genetic approach might 
be more fruitful. In the more immediate future, improved probes in 
the different near-infrared windows that can be used in mammalian 
tissue in the ~600-nm and 1,700-nm range123 can greatly increase the 
imaging depth in mice already, especially if they can be combined with 
adaptive optics124.

Increasing the resolution of whole-body imaging from the cur-
rently routinely achieved cellular resolution to subcellular and even 
molecular resolution will ultimately be possible in the absence of any 
fundamental physical barriers. Improvements in the working distance 
of high-NA optics, further advances in clearing methods and the adap-
tation of super-resolution methods to whole-mouse imaging will all 
contribute to this aim. On a more practical note, it will also be impor-
tant to increase imaging speed to complete high-resolution scans in a 
reasonable time and to develop smart data handling infrastructures 
to deal with the enormous amounts of data that would be produced 
by such high-resolution experiments.

On the molecular profiling side, ideally, we should obtain 
the entire proteomic and transcriptomic information (including 
post-transcriptional and post-translational modifications). Currently, 
our ability to detect low-abundance molecules, especially in samples 
where a high dynamic range is required, remains limited125. Additional 
methods for increasing the detection sensitivity, especially for RNA 
and protein variants, will be needed to achieve the ultimate level of 
molecular profiling.

Finally, an important aspect is general usability, that is, non- 
experts should be able to perform labeling, clearing, imaging and 
data analysis as easily as western blotting or confocal microscopy 
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today. This will require the development of user-friendly clearing and 
labeling machines, along with easy-to-use AI algorithms. The com-
mercialization of single-cell methods has been instrumental in pro-
pelling the transcriptomics field to its position as the major unbiased 
tool of biomedicine. We will need a similar push in tissue clearing, 
light-sheet microscopy and 3D spatial molecular profiling to enable 
routine large-scale data collection. Similarly, we need AI-assisted 
analysis pipelines that combine high precision with interpretable 
decision-making algorithms for common analysis tasks. Together, 
easily accessible experimental and computational methods will enable 
the routine application of end-to-end deep 3D histology in basic, trans-
lational and clinical research.

A general problem of all methods providing large-scale data is the 
extraction of scientific or practically actionable insights. AI, in par-
ticular, deep learning, will continue to be our major tool in translating 
structural and molecular data into meaningful insights that we can use 
to generate solutions to major problems, including treating diseases. 
Recent developments in organizing data, integrating and connecting 
different data sources and making information accessible to humans 
(for example, knowledge graphs, large language models, text embed-
dings and graph learning strategies) will need to be connected to the 
output of end-to-end deep 3D histology pipelines to make maximum 
use of the data.

Usability is also limited by the enormous computational resources 
required for handling, storing and analyzing the large amounts of 
imaging and molecular data obtained in a typical experiment and for 
making them available to the scientific community. We find that an 
integrated approach, in which the data are directly stored and analyzed 
on a high-performance computing cluster and then the processed 
data are made available to the individual researchers, works best in 
our hands. Still, making terabytes worth of data available to the com-
munity remains a substantial challenge in terms of computational and 
long-term financial resources.

In conclusion, high-resolution 3D imaging of cleared tissues will be 
instrumental in our quest to develop an organism-wide understanding 
of physiological and pathological processes. While we still face techni-
cal challenges in imaging, molecular profiling and deep learning-based 
data analysis, tissue clearing is already facilitating the investigation of 
biomedical questions while avoiding the human biases that limit our 
ability to discover. A continuous acceleration and automation of 3D 
tissue analysis from data acquisition to data analysis will therefore allow 
us to obtain a century’s worth of insights into disease mechanisms and 
drug targets in just a few years.
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