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A B S T R A C T   

Background: Volume of interest (VOI) segmentation is a crucial step for Radiomics analyses and radiotherapy 
(RT) treatment planning. Because it can be time-consuming and subject to inter-observer variability, we 
developed and tested a Deep Learning-based automatic segmentation (DLBAS) algorithm to reproducibly predict 
the primary gross tumor as VOI for Radiomics analyses in extremity soft tissue sarcomas (STS). 
Methods: A DLBAS algorithm was trained on a cohort of 157 patients and externally tested on an independent 
cohort of 87 patients using contrast-enhanced MRI. Manual tumor delineations by a radiation oncologist served 
as ground truths (GTs). A benchmark study with 20 cases from the test cohort compared the DLBAS predictions 
against manual VOI segmentations of two residents (ERs) and clinical delineations of two radiation oncologists 
(ROs). The ROs rated DLBAS predictions regarding their direct applicability. 
Results: The DLBAS achieved a median dice similarity coefficient (DSC) of 0.88 against the GTs in the entire test 
cohort (interquartile range (IQR): 0.11) and a median DSC of 0.89 (IQR 0.07) and 0.82 (IQR 0.10) in comparison 
to ERs and ROs, respectively. Radiomics feature stability was high with a median intraclass correlation coeffi
cient of 0.97, 0.95 and 0.94 for GTs, ERs, and ROs, respectively. DLBAS predictions were deemed clinically 
suitable by the two ROs in 35% and 20% of cases, respectively. 
Conclusion: The results demonstrate that the DLBAS algorithm provides reproducible VOI predictions for 
radiomics feature extraction. Variability remains regarding direct clinical applicability of predictions for RT 
treatment planning.   
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Introduction 

Extremity soft tissue sarcomas (STS) constitute a rare and chal
lenging malignancy. Postoperative and preoperative radiation therapy 
(RT), which requires meticulous characterization and delineation of the 
tumor, are standard of care in high grade (G2 and G3) STS [1–4]. Im
aging data derived from computed tomography (CT) or magnetic reso
nance imaging (MRI) are a crucial information source for the treatment 
planning process [4,5]. 

The planning target volumes for RT are based on accurate volume of 
interest (VOI) segmentations of the STS gross tumor volume (GTV). 
Time-consuming manual delineation still represents the pivotal step in 
the radiation oncology workflow. The process of defining the optimal 
GTV for STS remains challenging because of their complex and unfa
miliar imaging anatomy within musculoskeletal and soft tissue struc
tures. Further, the presumed true GTV delineation can vary between 
different readers, as it may depend on different interpretations of tumor 
infiltration or edema in surrounding tissues [6,7]. Thus, GTV segmen
tation may be susceptible to inter-observer variability even in highly 
trained readers. A more objective approach would greatly improve 
robustness and reproducibility of tumor delineation in STS. 

In recent years, Deep Learning (DL) and Radiomics-based machine 
learning have emerged as research areas within the scope of artificial 
intelligence (AI) as novel methods for extracting additional information 
from medical imaging such as CT or MRI [8]. Several studies have shown 
these methods to be useful for prognostic assessment and tumor char
acterization in patients with STS [9–13]. 

Besides being essential for the treatment planning process, VOI 
segmentation is also important for Radiomics analyses by providing the 
basis for feature extraction or bounding box generation for DL applica
tions. The quality of these VOI definitions is a relevant factor for 
radiomic feature stability [14]. Recent advances using DL-based algo
rithms such as the U-Net may also reduce the time needed for VOI 
segmentation [15]. The use of such an algorithm additionally bears the 
potential to improve segmentation reproducibility and inter-observer 
variability. 

The purpose of this work was to develop a Deep Learning-based 
automatic segmentation (DLBAS) algorithm for VOI prediction of ex
tremity STS based on fat-saturated contrast-enhanced T1-weighted (T1- 
CE) MRI sequences. The final model derived from the training cohort 
was tested using an external patient cohort. The stability of the radiomic 
features extracted from the DL-based VOI predictions was assessed. In an 
additional benchmark study, the value of VOI prediction was assessed in 
a sub-cohort of the test cohort by evaluating the segmentation perfor
mance in comparison to manual and DL-assisted segmentations. The 
time taken for segmentation as well as the direct clinical applicability of 
VOI predictions as GTV delineations for RT treatment planning were 
also assessed. 

Methods 

Patient cohorts 

Based on T1-CE MRI sequences, we used a training cohort of 157 
patients from the University of Washington/Fred Hutchinson Cancer 
Center (UW/FHCC) to develop a U-Net-based algorithm for STS VOI 
segmentation. An independent cohort of 87 patients from the Technical 
University of Munich (TUM) was used as a test cohort. 

Volume of interest definition 

With the purpose of radiomic feature extraction and neural network 
development, the VOI was defined as the clearly delineable contrast- 
enhanced tumor bulk. Unclear areas of infiltration such as diffuse 
contrast enhancement in surrounding tissues that may be included into a 
GTV delineation for RT treatment planning were deliberately excluded. 

Manual VOI delineations of all MRI studies were performed by a board- 
certified radiation oncologist (author JCP) to serve as ground truth 
segmentations (GTs). 

Data preprocessing 

Data standardization was performed on the imaging data prior to 
model development and inference. All volumes were resampled to 1 mm 
isotropic resolution and normalized using z-score normalization. During 
training of the algorithm, we cropped a region of interest around the GT 
segmentation using a randomized distance to the tumor boundary be
tween 5–10 voxels in every direction. Using a randomized distance in
creases the variability in the bounding box selection, thus aiming at 
improving robustness of the segmentation algorithm. The coordinates 
for the cropping origin were manually input into the network, thus 
yielding a semi-automatic procedure. 

Neural network development 

The segmentation model is a modified version of the 3D U-Net ar
chitecture, consisting of an encoder part acting as feature extractor, and 
a decoder part bringing back the features to input image resolution. 
Horizontal connections are used to pass information between encoder 
and decoder at the different feature levels, as depicted in Fig. 1. 

We added squeeze and excitation blocks in the convolutions ac
cording to Roy et al. [16], as well as residual blocks [17] to aid gradient 
flow and avoid vanishing gradients. Furthermore, we included multi- 
head self-attention at the bottleneck of the network to enforce the 
network to look for spatial relationships that would be limited when 
only using convolutional windows [18]. The modified 3D U-Net was 
determined empirically during training. 

Optimization of Deep Learning models 

All models were developed in Pytorch with a 12 GB Titan XP [19]. 
The models were trained with a batch size of 1 and a learning rate of 
1x10-4 with an ADAM optimizer for 100 epochs, using early stopping 
during training on the validation loss to avoid overfitting. A combina
tion of Dice-loss and binary cross-entropy was used as a loss function. 
The Dice-loss was used to mitigate the class imbalance between the 
foreground and background. 

Network evaluation strategy 

The performance, reproducibility and generalizability of the algo
rithm was evaluated using stratified 5-fold cross-validation. During 
inference, the final segmentation output of the model is an ensemble of 
the 5-fold, averaging the soft-max activation function from the 5-folds 
and computing the maximum between the foreground and back
ground class. 

Radiomic feature extraction 

In total 104 radiomic features were extracted as previously described 
[11]. Further details regarding image discretization [40] and radiomics 
feature extraction [41] are described in the supplemental materials. See 
Supplemental Table S1 for all features. 

Segmentation benchmark 

In a subgroup composed of patients from the external test cohort, we 
performed a benchmark study: For each imaging study, two first-year 
residents (“early residents,” ERs, authors LE and JHS) manually per
formed VOI segmentations and modified the respective DLBAS pre
dictions following the segmentation approach used for definition of the 
GTs. Furthermore, two board-certified radiation oncologists (ROs, 
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authors SM and LS) manually defined segmentations. Independent of the 
radiation oncologist who defined the GT segmentations, these ROs 
delineated the primary gross tumor in a clinical approach including 
diffuse contrast enhancement extending beyond the tumor bulk as 
clinically indicated for RT treatment planning. The ROs also modified 
the DLBAS predictions using the same clinical approach. The purpose of 
examining these differing delineation methodologies between GT/ERs 
and ROs was to gauge the differences between clinically suited gross 
tumor volumes for the treatment planning process, in comparison to our 
VOIs that were developed specifically for radiomics feature extraction. 

Sample size calculation 

The total number of test subjects was chosen based on a sample size 
calculation. We calculated a necessary sample size of 19 subjects to be 
able to detect a moderate effect size (Cohen’s d 0.6) for a paired one- 
tailed t-test with a significance level of 0.05 and a power of 0.8 [20]. 
We rounded the sample size to 20 patients. 

Segmentation procedures 

Prior to segmentation, the MRI studies and DLBAS prediction label 
maps were transformed from their respective source file formats (“.nrrd” 
and “.nii.gz”) into Digital Information and Communications in Medicine 
(DICOM) file formats using the open-source Plastimatch software 
package [21]. The resulting DICOM files were then imported into the 
segmentation software. Segmentation for the benchmark study was 
performed in Eclipse 13.0 (Varian Medical Systems, Palo Alto, CA, USA) 
using two different segmentation methods: 

Manual segmentation: This method involved manual VOI segmen
tation from scratch using all available drawing tool functions. 

Deep Learning-assisted segmentation: This method involved assess
ment of the VOI segmentation generated by the DL network and sub
sequent manual correction of the label map using a drawing tool 
function as deemed necessary by the operator. The operators were told 
to adapt all automatic segmentations, including those that would have 
been directly clinically applicable. 

Segmentation randomization 

To reduce the case-specific learning effect of repetitive segmenta
tions, both segmentation methods were conducted in a randomized 
manner in two sessions with a four-week interval. The imaging studies 
were split in a cross-over design, so that each operator used both 

methods in each segmentation session. The segmentation sequence was 
randomized individually for each operator. 

Radiomic feature stability assessment 

The radiomic feature stability was assessed using ICC (3,1; two-way 
mixed effect) by comparing the features extracted from the DLBAS 
predictions with the features extracted from the segmentations defined 
manually by the ERs and ROs. Substudy analyses were conducted to 
examine feature stability dependent on varying shape feature values of 
the DLBAS predictions. For this, the benchmark test set was stratified 
based on the median values of the Flatness, Elongation, Sphericity and 
Surface/Volume-Ratio shape features, thus yielding two respective 
datasets of high and low values for further ICC analyses. We also tested a 
previously trained radiomics model for overall survival prediction using 
the DLBAS predictions [10]. Due to different inclusion and exclusion 
criteria the test patient cohort from the original publication was reduced 
from 71 to 64 patients. 

Segmentation performance assessment 

To analyze segmentation performance, VOI segmentations were 
compared with the original GTs by calculating the dice similarity co
efficients (DSC) as well as the Hausdorff distance (HD). After quantita
tive assessments of inter-observer variability between the performance 
metric samples within each group of ERs and ROs, the data samples were 
pooled for ERs and ROs, respectively. 

Assessment of spatial deviances 

The spatial deviance between the DLBAS prediction and the VOIs 
defined by the ERs or ROs were graphically analyzed using agreement 
maps. 

Segmentation time assessment 

The time taken for image segmentation was measured using a digital 
stopwatch from the beginning of each VOI segmentation process to its 
conclusion. The segmentation times were compared between both seg
mentation methods while pooling the data for both pairs of ERs and ROs. 

Need for manual correction 

To assess whether the DLBAS predictions may be directly applicable 

Fig. 1. Deep Learning segmentation network architecture.  
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as GTV delineations for the RT planning process, the frequency of a need 
for manual correction was noted during segmentation. For this purpose, 
a binary value (correction necessary vs. correction not necessary) was 
assigned to each DLBAS task by each of the respective ROs. 

Statistical analysis 

Data transformation and analysis were conducted using the R soft
ware environment for statistical computing and graphics (version 4.1.2) 
[22] within the RStudio [23] IDE. We used R Markdown [24], R 
Bookdown [25] and the tidyverse collection of R packages [26]. Sample 
normality was assessed using the Shapiro-Wilk test, histograms, and qq- 
plots [27,28]. The Wilcoxon signed-rank test was used for hypothesis 
testing [28]. The irr package [29] was used to calculate ICC. A p-value 
<0.05 was considered statistically significant. 

Results 

The patient characteristics of the subject cohorts are shown in 
Table 1. Histologies are presented in Table S2. 

When comparing the inter-rater variability of the ERs, the compar
ison of their respective manual segmentations yielded a median DSC of 
0.92 (IQR: 0.86–0.94) and a median HD of 9.0 (IQR: 15.3–18.9). 

For the ROs, the comparison of their respective manual segmenta
tions yielded a median DSC of 0.88 (IQR: 0.84–0.90) and a median HD of 
15.4 (IQR: 11.0–27.8). 

When examining the performance of the segmentation algorithm, the 
DLBAS achieved a median DSC of 0.88 (IQR: 0.81–0.92) against the GTs 
for the entire test cohort and 0.87 (IQR: 0.84–0.92) for the benchmark 
cohort. The median HD values were 12.0 mm (IQR: 8.7–17.0) and 12.3 
mm (IQR: 8.3–19.1), respectively. 

In comparison to the manual segmentations of ERs and ROs, the 
DLBAS yielded a median DSC of 0.89 (IQR: 0.85–0.92) and 0.82 (IQR: 
0.77–0.87), respectively. There was a statistically significant difference 
between these samples (p < 0.001). 

The comparison of the ERs and ROs against the DLBAS yielded a 
median HD of 9.9 mm (IQR: 6.6–17.5) and 20.3 mm (IQR: 12.4–32.6), 
respectively. There was a statistically significant difference between 
these samples (p < 0.001). 

A boxplot with DSC and HD results as performance metrics for the 
segmentation comparisons within the benchmark cohort is shown in 
Fig. 2. A boxplot with DSC and HD results as performance metrics for the 
segmentation comparisons of ERs and ROs with the GTs is shown in 
Fig. S1. 

We compared the radiomic features extracted from the GTs of all 
imaging studies in the test set with the DL-based VOI predictions. The 
features showed a high stability with a median ICC of 0.97 (interquartile 
range (IQR) 0.93–0.98). A total of 98/104 features (94%) showed an ICC 
greater than 0.8. 

We then examined the subset of the 20 imaging studies included in 
the benchmark study: The radiomic feature stability between the 
manual segmentations of the ERs and DL-based VOI predictions was also 
high with a median ICC of 0.95 (IQR 0.93–0.97). The radiomic feature 
stability between the manual segmentations of the ROs and DL-based 
VOI predictions was similar with a median ICC of 0.94 (IQR 
0.88–0.97). Here, a total of 89/104 features (86%) showed an ICC 
greater than 0.8. The results from the ICC substudy analyses examining 
the feature stability dependent on varying shape feature values of the 
DLBAS predictions are shown in Tables S4, S5 and S6. Here, smaller 
Elongation and Flatness values yielded higher ICC values across all 
radiomic features. In contrast, greater values for the Surface/Volume- 
Ratio and Sphericity yielded similarly high ICC values. Furthermore, 
the median ICC values were no lower than 0.92 for the GTs/DL-based 
VOI predictions, no lower than 0.89 for the ROs/DL-based VOI pre
dictions, and no lower than 0.89 for the ERs DL-based VOI predictions. 

Table 1 
Patient cohort characteristics.  

Characteristic Detail UW 
Training 

TUM 
Testing 

p-value 

Total patients  n = 157 n = 87 p <
0.001 

Median OS  49.2 months 43.2 months p =
0.535 

Age Mean 53.7 years 56.3 years p =
1.000 

Age Standard 
deviation 

16.1 years 18 years  

Location Lower extremity 108 (68.8%) 60 (69.0%) p =
0.753 

Location Upper extremity 28 (17.8%) 13 (14.9%)  
Location Pelvis 21 (13.4%) 14 (16.1%)  
Sex Female 71 (45.2%) 39 (44.8%) p =

1.000 
Sex Male 86 (54.8%) 48 (55.2%)  
T stage 1 28 (17.8%) 13 (14.9%) p =

0.689 
T stage 2 129 (82.2%) 74 (85.1%)  
T stage suffix a 7 (4.5%) 7 (8.0%) p =

0.386 
T stage suffix b 150 (95.5%) 80 (92.0%)  
N stage 0 157 

(100.0%) 
84 (96.6%) p =

0.083 
N stage 1 0 (0.0%) 3 (3.4%)  
M stage 0 152 (96.8%) 81 (93.1%) p =

0.309 
M stage 1 5 (3.2%) 6 (6.9%)  
Grading 1 27 (17.2%) 6 (6.9%) p =

0.082 
Grading 2 50 (31.8%) 32 (36.8%)  
Grading 2 80 (51.0%) 48 (55.2%)  
AJCC stage IA 3 (1.9%) 1 (1.1%) p =

0.001 
AJCC stage IB 13 (8.3%) 5 (5.7%)  
AJCC stage IIA 28 (17.8%) 10 (11.5%)  
AJCC stage IIB 33 (21.0%) 4 (4.6%)  
AJCC stage III 75 (47.8%) 61 (70.1%)  
AJCC stage IV 5 (3.2%) 0 (0.0%)  

Abbreviations: TUM: Technical University of Munich, UW: University of 
Washington. The listed p-values were determined for each grouped character
istic by the Chi-squared test. Fig. 2. Boxplot of segmentation performance metrics in the benchmark cohort.  
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The radiomics-based model based on the automated contours achieved a 
concordance index of 0.59 (0.44–0.73) while the manual contours 
achieved a similar concordance index of 0.60 (0.45–0.74). 

The spatial deviance between the DLBAS predictions and the 
respective manually defined segmentations of each pair of ERs and ROs 
were graphically assessed. Agreement maps were generated on a slice- 
by-slice basis in the transverse plane for each MRI scan. 

Key findings from the agreement maps of the ERs are addressed in 
the three rows of imaging studies depicted in Fig. 3. The agreement maps 
illustrate the challenge in clearly defining gross tumor boundaries in the 
presence of diffuse contrast enhancement in surrounding tissues. 

The key findings from the agreement maps of the ROs are addressed 
in the three rows of imaging studies depicted in Fig. 4. In contrast to the 
DL-based VOI predictions, the ROs included areas of diffuse contrast 
enhancement in their clinical approach to target delineation. 

When manually defining the VOI segmentations within the bench
mark subgroup, the ERs required a median time of 6.1 min (IQR: 
3.4–9.9), while the ROs required a median time of 3.7 min (IQR: 
2.7–5.3). When modifying the DL-predicted VOI segmentations, the ERs 
required a median time of 6.4 min (IQR: 2.2–11.7), while the ROs 
required a median time of 4.3 min (IQR: 0.5–6.3). The comparison of the 
time taken for segmentation between ERs and ROs within the bench
mark cohort is depicted in Fig. 5. There was a statistically significant 
difference in the time spent for manual segmentation between the ERs 
and ROs (p = 0.002). 

The timing comparison between the first session and the second 
session for ERs and ROs within the benchmark cohort yielded no sig
nificant difference (p = 0.747 and p = 0.347) and is shown in Supple
mental Table S3. 

The two ROs rated the DL-based VOI segmentations as directly 
applicable for the clinical RT planning process as a clinical GTV in 7/20 
(35%) cases and 4/20 (20%) cases, respectively. 

Discussion 

In this study, we developed a DL-based segmentation algorithm using 
a limited medical imaging dataset to predict VOI segmentations of ex
tremity STS for Radiomics analyses. 

There is a need for accurate and reproducible VOI segmentations to 
effectively extract stable radiomics features and apply these features for 
prognostic modeling [30–33]. To avoid the challenges and variability 
associated with manual segmentations [34], deep learning-based auto
matic segmentation has proven to be a powerful tool for radiomics 
feature extraction [35]. 

The algorithm presented in this article provided reproducible VOI 
predictions with good accordance compared to GT delineations from a 
radiation oncologist. When examining the ICC analysis results, the sta
bility of the radiomic features extracted from these segmentations was 
high. Substudy analyses yielded good stability independent of selected 
shape features of the VOI predictions. 

Both the radiation oncologist contouring the initial GTs as well as the 
ERs conducting VOI segmentations within the benchmark study focused 
on delineating the clearly definable gross tumor bulk while deliberately 
excluding unsure areas of potential tumor infiltration. These segmen
tations were intended to reduce inter-observer dependence and bias in 
radiomic feature extraction from the partial inclusion of healthy tissue 
with diffuse contrast-enhancement or from partial volume effects. Thus, 
the procedure was applied to generate VOIs as a basis for Radiomics- 

Fig. 3. Agreement maps for ERs and the DL network. Row 1: The GTV segmentations are similar between both ERs and the DL Network and show good visual 
congruence. Row 2: The DL Network prediction underestimated the muscular anatomical compartment that ERs included in their segmentation. Moreover, it falsely 
identified contrast enhancement such as blood vessels as GTV. Row 3: Both ERs and U-Net show the difficulties and subsequent discrepancies between label maps in 
cases with significant diffuse contrast enhancement extending beyond the tumor bulk. Whereas ER1 defined a conservative GTV, ER2 included most contrast. 
enhancement. The DL network shows some of both of these segmentation characteristics. 
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based machine learning, rather than GTVs directly suitable for the RT 
planning process. Our agreement maps revealed that the ROs, who used 
this latter approach for VOI definition, deliberately included equivocal 
areas in surrounding tissues for safe treatment planning. Moreover, the 
results confirmed decreased reproducibility between the GTs and the 
GTV definitions of the ROs. Here, the median DSC was 0.82 (IQR 0.10) 
for the manual segmentations. 

Even though the algorithm was not trained to generate GTVs for 
direct application in RT, the DL-based VOI predictions achieved clinical 
feasibility in a subset of patients. Thus, 7/20 (35%) and 4/20 (20%) 
segmentations in the benchmark cohort were deemed clinically suitable 
by the two ROs. A case-by-case analysis revealed that these cases showed 
sharp VOI definitions of the gross tumor without suspected infiltrative 
behavior. Overall, these observations demonstrate the need for stan
dardized definitions of the segmentation directed towards the intended 
use of the future model. Therefore, we believe that our model can guide 
future AI application for feature extraction and bounding box definition 
of DL models. However, specialized clinical application would mandate 
a specific retraining of the presented algorithm. 

Importantly, clinical applications of accurate and objective VOI 
delineation could also be impactful for diagnostic radiology. There is a 
critical need to develop more reliable forms of volumetric tumor char
acterization and response assessment models specific for STS, as these 
irregularly shaped tumors are often poorly characterizable using RECIST 
1.1 criteria [36]. Future directions may allow the use of machine 
learning-based radiomic signatures to inform on more specific STS 
response assessment for treatment effect. The analysis of the VOI-related 
signatures may allow better differentiation of pseudoprogression with 
increased treatment effect from true progression [37]. 

While the presented model showed high segmentation agreement 
with GTs (median DSC values greater than 0.8), time assessment within 
the benchmark study revealed that DL-assisted VOI definition did not 
yield time savings. Interviews of the two ERs revealed that manual re
view and adjustment on a slice-by-slice basis was time consuming, 

especially for large or complex and irregular target volumes. Thus, time- 
related advantages of using DLBAS may necessitate direct utilization of 
the model predictions for radiomic feature extraction without prior 
manual correction. 

Our study bears several limitations: Our cohort comprised a diverse 
set of STS subhistologies. The generation of sufficiently large patient sets 
remains challenging due to STS rareness and subhistology diversity. 
Subhistology-specific segmentation models may provide increased 
reproducibility as subhistologies can result in distinct sequence- 
dependent MRI signatures, e.g. myxoid liposarcomas appear T2 hyper
intense. Thus, future studies need to address the development of 
subistology-specific models with sufficiently large datasets. Also, to 
achieve effective neural network training, we only included STS located 
extraperitoneally or outside of the subperitoneal compartment. Thus the 
datasets comprised mostly tumors located in the upper and lower ex
tremities. A further 14,4% of tumors across both datasets were located in 
the muscular and subcutaneous tissues of the pelvis, and deemed fit for 
inclusion as part of the musculoskeletal system of the extremities. As 
such, the presented model was not designed to predict visceral STS 
located in the retroperitoneal space. 

A further limitation of the study design is the use of only a single fat- 
saturated contrast-enhanced T1-weighted (T1-CE) MRI sequence. The 
MRI sequence parameters are shown in Table S7. In a clinical setting, 
GTV segmentations for RT treatment planning require a dedicated 
planning CT as well as further MRI sequences for the best possible un
ambiguous tumor volume delineation. The presented segmentation al
gorithm was primarily designed to reproducibly predict the primary 
gross tumor as VOI for Radiomics analyses, as has been the focus of 
several recent MRI-based studies, such as for meningioma [38] or 
hypopharyngeal cancer [39]. While this work also evaluated the use
fulness of DLBAS predictions for direct clinical application in the clinical 
benchmark substudy, the decision for using only a single T1-CE MRI 
sequence was in accordance with contemporary guidelines for GTV 
definition [4,7]. This approach yielded the largest available sample size 

Fig. 4. Agreement maps for ROs and the DL network. Row 1: The DL Network focused on the tumor bulk and did not segment areas of diffuse contrast enhancement 
that were included by the two ROs. Row 2: The GTV segmentations show good overlap between the DL Network and both ROs. Row 3: The DL Network over
estimated the extent of the sarcoma by adding muscular tisse to the GTV. Moreover, it falsely predicted sarcoma in a small isle within the bone. 
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for our training and testing cohort, which is necessary to develop a 
robust DLBAS model. Nevertheless, future studies focusing on clinical 
GTV definition should include multiple MRI sequences. 

The design of the segmentation benchmark inherited several con
founding factors. To minimize case-specific learning effects from re
petitive segmentations, a 4-week interval was chosen alongside a cross- 
over design. There remains the risk that each second segmentation task 
was performed faster than the first. When comparing segmentation 
timings for each respective imaging study, we found no statistically 
significant difference in the segmentation duration. Finally, our model 
requires the upfront definition of a bounding box, thus yielding a semi- 
automatic procedure. For completely automatic predictions, a localiza
tion step is necessary. 

In conclusion, we provide a U-Net-based segmentation algorithm for 
MRI-based volume of interest prediction of extremity soft-tissue sar
comas. The resulting gross tumor delineations can be used as a repro
ducible basis for radiomic feature extraction or for bounding box 
definitions for DL analyses. Despite the observed values for segmenta
tion congruence between algorithm predictions and clinically intended 
delineations within the benchmark study, a specific retraining and 
addition of further MRI sequences is necessary to generate expert GTV 
definitions directly applicable for the RT planning process. The seg
mentation algorithm can be accessed at https://github.com/ 
RadOnc-AI/SoftTissueSarcomaSegmentation. 
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