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Simple Summary: This paper argues the importance of considering domain knowledge when
dealing with missing data in healthcare. We identify fundamental missingness scenarios in healthcare
facilities and show how they impact the missing data analysis methods.

Abstract: Despite the extensive literature on missing data theory and cautionary articles emphasizing
the importance of realistic analysis for healthcare data, a critical gap persists in incorporating domain
knowledge into the missing data methods. In this paper, we argue that the remedy is to identify
the key scenarios that lead to data missingness and investigate their theoretical implications. Based
on this proposal, we first introduce an analysis framework where we investigate how different
observation agents, such as physicians, influence the data availability and then scrutinize each
scenario with respect to the steps in the missing data analysis. We apply this framework to the
case study of observational data in healthcare facilities. We identify ten fundamental missingness
scenarios and show how they influence the identification step for missing data graphical models,
inverse probability weighting estimation, and exponential tilting sensitivity analysis. To emphasize
how domain-informed analysis can improve method reliability, we conduct simulation studies under
the influence of various missingness scenarios. We compare the results of three common methods
in medical data analysis: complete-case analysis, Missforest imputation, and inverse probability
weighting estimation. The experiments are conducted for two objectives: variable mean estimation
and classification accuracy. We advocate for our analysis approach as a reference for the observational
health data analysis. Beyond that, we also posit that the proposed analysis framework is applicable
to other medical domains.

Keywords: missing data analysis; observational health data; missingness scenarios; missing data
assumptions; missingness distribution shift

1. Introduction

Healthcare data encompass a wide range of variables related to various diseases and
health conditions collected from different facilities under the supervision of distinct and
even contrasting guidelines. It is, therefore, naive to expect a medical dataset in which
a sufficient number of informative variables are available for all patients. This is why
data-driven research in healthcare almost always faces the challenges of missing data.

As two out of many existing approaches, data scientists may choose to simply discard
the incomplete data samples and use only the complete ones for analysis (complete-case
analysis) or utilize complex deep learning models to fill in the missing entries and create a
complete semi-synthetic dataset (imputation). In any case, the reliability of the methods
depends on the nature of the missingness problem, e.g., how a variable distribution changes
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when the variable is observed or missed, or why physicians decide to measure a variable for
a patient and not the other. Inevitably, we must make assumptions about these questions,
which are often not testable using the data alone [1,2]. Hence, we can trust the analysis
result only if the assumptions are made explicit, the method conforms to them, and the
sensitivity of the results to departures are investigated [1].

Even though the scholarly discourse on missing data consistently highlights this con-
cern [3–7], surprisingly, the applied machine learning (ML) research in healthcare often
suffers from ambiguous missingness problem statements [6] and the lack of transparent
reports of assumptions for methods which are detached from the reality of healthcare facili-
ties [4]. The complete randomness of missingness is assumed even though observations
in healthcare facilities are clearly conducted by guidelines and protocols [6,7]. Missing
data methods are often chosen inconsistently when training and evaluating prediction
models [8]. The problem intensifies, as the survey and review articles on missing data in
healthcare [5,9–12] are often limited to merely imputing the medical datasets without the
scrutiny of assumptions.

We believe that the remedy is a formalization of the events and scenarios within
healthcare facilities that result in missing data. Having a curated catalog of common and
influential scenarios along with their theoretical implications for the missing data analysis,
medical data scientists can examine the data collection environment of their datasets. They
can determine which scenarios apply to their situation, and tailor their analysis accordingly.

In this regard, this paper introduces a framework for identifying missingness scenarios
in a data collection environment and translating them to the language of missing data
theory. We apply this framework to the healthcare domain, introducing and analyzing ten
fundamental missingness scenarios for observational data in healthcare facilities.

1.1. Contribution and Scope

Addressing a theory–application gap in healthcare, this paper falls under the transla-
tional research category. We mainly focus on missingness scenarios in healthcare facilities
such as clinics and hospitals. We exclude planned clinical studies, as they comprise consid-
erably different scenarios (e.g., case drop-out and planned missingness). We achieve the
goal of the paper through the following steps:

• We introduce an analysis framework for identifying and analyzing the missingness
scenarios in different domains of application.

• We introduce ten fundamental and prevalent scenarios in healthcare facilities that lead
to the observation, recording, or missingness of data. Table 1 gives an overview of
the scenarios.

• To make the theory–application connection, we introduce theoretical inquiries to be
made about each missingness scenario. Table 2 gives an overview of the inquiries.

• For each scenario, we make the inquiries above and analyze the theoretical implica-
tions, along with various examples from the medical data analysis literature.

• To demonstrate the effect of domain-informed assumption on the method reliability,
we perform a simulation study, showing how domain-agnostic analysis may lead to
different levels of bias depending on the active scenarios and different estimands.

We propose this paper as a reference point for correct data analysis and reporting using
observational health data. The methodology of this paper is not limited to the selected
missingness scenarios and can be applied to less common yet equally essential scenarios
that the readers may encounter. For the scope of the paper, we mainly focus on problem
formulation and missing data assumptions, minimally going into detailed discussions
about the implementation of missing data algorithms and methods. Nevertheless, when
required, we provide sufficient references to influential works in the missing data literature.
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Table 1. Overview of missingness scenarios in healthcare facilities, analyzed in this paper.

Scenario No. Title

Scenarios related to patients

1 Patient complete non-visit
2 Missing follow-up visit due to health status
3 Missing measurements due to health-related events during hospitalization
4 Missing measurements due to patient’s refusal

Scenarios related to physicians

5 Missing measurements due to diagnostic irrelevance

Scenarios related to healthcare facilities

6 Missing measurements outside protocols requirements
7 Unavailability or shortage of resources
8 Unrecorded observations

Scenarios related to data pre-processing

9 Omission of data samples based on inclusion/exclusion criteria
10 Omission of invalid data entries

Table 2. Overview of theoretical inquiries for missingness scenarios analyzed in this paper.

Inquiry No. Description

At identification step

1 What missingness mechanism is induced by a scenario
2 Whether a scenario is subjected to missingness parametric distribution shift
3 Whether a scenario permits no-direct-effect assumption
4 Whether a scenario permits no-interference assumption
5 Whether a scenario induces selection bias

At estimation step

6 Whether a scenario induces monotone missingness patterns

At sensitivity analysis step

7 Whether a scenario gives informed guesses about sensitivity parameters

1.2. Structure

To present a clear image of the problem at hand and the existing research gap, we
introduce the general ideal approach to missing data analysis and highlight the influential
body of works regarding this approach in Section 2. The methodology of the paper,
presented in Section 3, is divided into three separate parts: After introducing the analysis
framework in Section 3.1, first, we identify the key missingness scenarios in healthcare
facilities in Section 3.2 and then analyze the scenarios within the framework of missing data
theory in Section 3.3. We conduct experiments to show the significance of domain-informed
missing data analysis in Section 4. Discussions, limitations, and proposals for future works
are presented in Section 5.

2. Theoretical Background
2.1. An Ideal Approach to Missing Data Analysis

The ideal approach to the analysis with missing data comprises a correct formulation
of the analysis target, a correct estimation of it, and finally investigating the effect of
possible errors in the formulation and estimation steps. This approach, established and
adopted in the missing data literature [2,13] makes a common skeleton for the missing
data methodologies. It is only in the details of each step of this approach where the
methodologies differ. We elaborate on the approach, depicted in Figure 1, as follows:
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1. Analysis begins by formulating the objective (e.g., risk factors for a disease) as a
mathematical expression, namely an estimand, which should be learned using incom-
plete data.

2. Next, assumptions about the missingness status of the variables in the estimand are
collected. Such information could include, for example, how other variables influence
the missingness in another variable, or which model is the most suitable for describing
the chance of observation or missingness. As depicted in Figure 1, the assumptions
must be directly informed by the actual setting of the problem at hand.

3. In light of the assumptions, it is determined whether and how the estimand can be
learned from the incomplete data. This step is referred to as identification (or recovery),
and the estimand is called identifiable if the answer to the identification step is positive.
The identification property is the direct product of the objective and the problem
setting. It may be the case that an objective cannot be recovered from the available
data. A trivial example of unidentifiability is to estimate the mean value of a variable
while it is completely unavailable.

4. The next step is to learn the estimand using the available data, e.g., by employing ML
methods. This step is referred to as estimation. The right method and learning setting
is also influenced by the problem assumptions.

5. Finally, to increase the reliability and robustness of the results, the results’ sensitivity
to model perturbations and violation of assumptions is measured (sensitivity analysis).
Similar to steps 3 and 4, this step is also influenced by the assumptions when choosing
meaningful perturbation ranges according to the problem at hand.

Figure 1. The ideal analysis process under missing data, consisting of (1) estimand formulation,
(2) assumption specification, (3) identification, (4) estimation, and (5) sensitivity analysis.

2.2. Research Gap

Related to the introduced ideal approach in the previous section, Table 3 presents
examples of related works supporting each analysis step: (1) correct formulation of different
estimands, (3) identification theory for missing data problems, (4) efficient estimation for
missing data, and (5) sensitivity analysis.

Regarding step 2 (assumption specification), which is the focus of this paper, caution-
ary articles exist for advocating domain-informed analysis [3,5,7], and providing high-level
strategies for correct interpretation and reporting of missingness scenarios [4,14]. Several
papers have performed such domain-informed analyses (for example, Mirkes et al. [15] and
Millard et al. [16]), yet only for specific diagnoses (trauma and COVID-19), limited to unique
missingness complications (selection bias) and estimands (outcome prediction). To our knowl-
edge, no comprehensive taxonomy and analysis of missingness scenarios exists for observational
data in healthcare facilities.

Our paper is particularly inspired by Moreno-Betancur et al. [17] and Marino et al. [18].
These works develop general guidelines for treating missing data in epidemiology and clinical
(point-exposure) studies, mainly focusing on missingness scenarios and circumstances that suit
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these settings. To name a few, they consider the case dropout, where participants are removed
from the remaining of the study if they miss a measurement session, and the assumption
of no hidden confounders, which is the product of a curated study design. As outlined in
Section 3.2, different and more diverse reasons for missingness exist in healthcare facilities,
where patient admission, data observation, and data collection, do not always follow a
designed plan as they would in clinical studies.

Despite this difference, their motivation and approach for identifying and analyzing
missingness scenarios remain relevant for observational health data—a foundational prin-
ciple upon which this paper is built. The increasing need for developing missing data
methods is reflected in the findings of the survey and systematic review papers, including
that of Ismail et al. [12], which reported a three-fold increase in the publication of impu-
tation techniques for machine learning algorithms alone. This shows the need for a clear
guideline for reliable missing data analysis in all healthcare domains, including that of
observational data within healthcare facilities.

Table 3. Examples of literature supporting the steps of the missing data analysis process, presented
in Figure 1.

Step Subject Matter References

1 Estimand formulation under missing data [2,19–22]
2 Domain-informed missing data formulation and assumptions * [15,16]
3 Missing data identification theory [2,23–28]
4 Estimation with missing data [20,21,29–32]
5 Sensitivity analysis for unidentifiable missingness [33–36]

* Research gap.

3. Methods
3.1. Analysis Framework

Developing the missingness scenario-to-theory mapping would first require knowing
what lies at both ends of the mapping. Then, the mapping itself must be developed,
determining the theoretical implications of every scenario.

To identify scenarios, first, we investigate the steps through which the data end up in
the analysis dataset:

1. First, a piece of evidence is obtained through observation or measurement;
2. After observation, the data must be recorded in the database which is the source of

the analysis dataset;
3. Finally, the recorded data must be retrieved for creating the dataset and kept (not

removed) for data analysis.

An interruption in any of these steps will lead to missing data (unavailability),
i.e., when data are not observed, not recorded, or not included for the analysis.

Depending on the process, these three steps may occur naturally until a specific event
interrupts them. For instance, occupation information is normally obtained and recorded
unless patients refuse to provide it, while MRI images are generally not available for
patients unless the attending physicians order them. Therefore, depending on the features
of the data and the data collection environment, we must investigate either the scenarios
that lead to the interruption of usual data availability, or actively making the data available
despite the default conditions.

Another point of investigation concerns the agents that are responsible and directly
influence data observation, recording, and inclusion. We identify four agents for the
case study of healthcare facilities: (1) patients, (2) attending physicians and medical staff,
(3) healthcare facility elements, including the medical devices, medical data software, etc.,
and (4) medical data scientists, analyzing the resulting datasets.

Cross-investigation of the data availability steps results in identifying the missingness
scenarios. In particular, one shall study whether and how an agent influences data obser-
vation, recording, and inclusion in the dataset. This includes either the interruption of a
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usual availability process, or actively deciding to observe or collect the data. The cross-
investigation can be performed for any type of case study. In the scope of this paper, we
apply it to the domain of observational data from healthcare facilities. Section 3.2 provides
the result of the investigation. As a summary, Table 1 presents the identified scenarios.

Once the scenarios are extracted, we must scrutinize each to find out their implication
for many assumptions that restrict the effectiveness of the analysis steps, namely, iden-
tification, estimation, and sensitivity analysis. We do so by collecting a set of inquiries
made about each scenario, which influence the assumptions in the analysis step. Clearly,
different methods may require different inquiries. Therefore, the analysis presented in
this paper might slightly differ if the reader considers different identification, estimation,
or sensitivity analysis methods. Within the scope of this paper, we choose widely utilized
and well-established methodologies for the sake of wider applicability; the methodologies
are identification theory for graphical models, inverse probability weighting estimation,
and exponential tilting sensitivity analysis. They will be introduced in detail in Section 3.3.
As a summary, Table 2 presents the inquiries analyzed in this paper. Figure 2 presents a
schematic of the analysis framework.

Figure 2. A schematic of the analysis framework in this paper: on the left, a cross-investigation of the
data availability steps and agents guides us toward the existing scenarios (blue dots). Each scenario
then will be subject to inquiries about various missing data assumptions on the right.

3.2. Missingness Scenarios in Healthcare Data

Observational data from healthcare facilities, such as clinics and hospitals, comprise
information about outpatient and inpatient (hospitalization) visits. Variables in healthcare
data include patient demographic information (e.g., age and gender), medical history,
signs and symptoms (e.g., blood pressure value and pain symptom), lab tests (e.g., blood
chemistry test), diagnoses, and prescribed medications. The variable list is extended for
inpatient visits, including higher resolution observations and prescription information (e.g.,
oxygen saturation from bedside monitoring, and the input/output chart). In addition, new
variables are collected during different hospitalization modes, such as ICU hospitalization.
For more information about collected observations in healthcare facilities, see the docu-
mentation of publicly available datasets such as the MIMIC-IV electronic health record
dataset [37].

Health variables are available through various data observation, recording, and in-
clusion scenarios that are influenced by the four agents introduced above. In this section,
we explore ten fundamental and prevalent scenarios that drive the data-availability steps
in healthcare facilities. For each scenario, we provide real-world examples within the
text, as well as in Appendix A. The majority of examples are extracted from the clinical
prediction model (CPM) literature, introduced by Tsvetanova et al. [8]. CPMs make a
crucial portion of AI applications in healthcare, and this work has performed an extensive
investigation to highlight highly relevant and well-known CPM models.
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3.2.1. Scenarios Related to Patients

By default, data are only collected during a patient’s visit to a healthcare facility,
resulting in a gap in data for the time between visits. At the same time, the sub-population
that has not visited the healthcare facility is not observed at all. These are situations where
we inevitably encounter the missing data problem unless additional data sources are used
to complement the primary dataset.

It is naive to assume that visits are decided randomly and unrelated to the patient’s
health condition. This motivates the following key missingness scenario:

Scenario 1 (Patient complete non-visit): Sub-populations with no healthcare
facility visits during data collection are not included in the dataset.

In Scenario 1, a specific sub-population is completely missing, e.g., due to health
status. For instance, healthy people with no serious health complications infrequently visit
clinics with different intentions such as preventive check-ups. Likewise, the data of patients
deceased before any visit (e.g., dead-on-arrival) are often absent from the facility database.
Other factors, such as socioeconomic status, can also influence the non-visit. References to
Scenario 1 are presented in Appendix A.1.

Scenario 2 describes another type of non-visit, namely missing follow-ups for patients
with at least one recorded visit.

Scenario 2 (Missing follow-up visit due to health status): Patients may miss a
follow-up visit due to death, facility transfer, or if they decide not to continue
the treatment.

The difference between Scenarios 1 and 2 lies mainly in the reasons for missingness;
patients have potentially different reasons not to visit a healthcare facility for the first
time, or to drop the follow-up visits, possibly despite the physician’s recommendations.
References to Scenario 2 are presented in Appendix A.2.

Health status factors influence not only the visits but also measurements during the
visits. As highlighted by Scenario 3, location transfer within the facility due to health
conditions influences the observed variables.

Scenario 3 (Missing measurements due to health-related events during hos-
pitalization): Observations may be interrupted or limited by extreme health
conditions or transfer to a different location.

In Scenario 3, observations may be interrupted due to events such as the occurrence
of code blue and the resulting disconnection of devices for resuscitation [11,38], or patient
transfer, e.g., to the operation room or ICU ward [14]. These events may also lead to ob-
serving new health variables that had not been recorded prior to the event, e.g., monitoring
during operation [37]. References to Scenario 3 are presented in Appendix A.3.

Another reason for missingness in a variable is the patient’s refusal to take a test or
consent to data sharing as stated by Scenario 4.

Scenario 4 (Patient’s refusal): Patients may actively refuse specific observa-
tions or decline consent to data sharing.

Overall, patients’ personal decisions, whether for medical (e.g., pain intolerance) or
non-medical (e.g., fear of examination) reasons, may induce missingness. References to
Scenario 4 are presented in Appendix A.4.

3.2.2. Scenarios Related to Physicians

During a visit, the attending physicians decide which variables to observe. Bickley
and Szilagyi [39] describe the examination and diagnosis practice as a step-by-step process
in which physicians use basic observations such as vital signs and symptoms to form a
first diagnostic belief, referred to as impression. To prove or rule out the possible diagnoses,
physicians then order more specific, expensive, and sometimes invasive tests. Therefore,
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as Scenario 5 states, the primary reason for taking or skipping a measurement is the
diagnostic information it provides, compared to the cost of observation (e.g., monetary,
time, and/or harm to the patient.).

Scenario 5 (Missing measurements due to diagnostic irrelevance): Vari-
ables that are less relevant to the physician’s impressions are less likely to
be observed.

Scenario 5 concerns diagnostic flowcharts and score systems in a dataset (see Elovic
and Pourmand [40]). These provide rules for selecting the following observation until the
final diagnosis. Nevertheless, observation patterns may not entirely reflect one particular
guideline, as many guidelines are used during the data collection phase within a cohort,
and other scenarios also affect the data.

One should note the implications and subtle differences between these tools when
conducting a missingness analysis. For example, in flowcharts, the value range for the
parent variable(s) determines the next observation. In contrast, in a score system, the cumu-
lative score of all related variables determines whether more observations are necessary for
concluding the decision [41]. References to Scenario 5 are presented in Appendix A.5.

3.2.3. Scenarios Related to Healthcare Facilities

Measurement decisions are not only determined by physicians but also by protocols
and guidelines in healthcare facilities as stated by Scenario 6.

Scenario 6 (Missing measurements outside protocol requirements): Data
collection protocols decide the measurements in different conditions during
hospitalization.

For instance, hospital protocols may mandate specific data (e.g., demographic infor-
mation and basic blood tests) to be collected upon admission. Similarly, there are measure-
ments only performed in particular conditions, e.g., pre- and post-surgical measurements.
It is, therefore, crucial to consider the role of protocols within healthcare facilities when
investigating the causes of missingness or observation of variables. References to Scenario 6
are presented in Appendix A.6.

Scenarios 5 and 6 assume that measurements can always be taken if required. While
this may generally be true, especially for routine tests, a measurement may sometimes be
hindered by the unavailability or shortage of necessary resources. Diagnostic tests may be
dropped or delayed for a patient due to prioritization in long waiting queues or temporary
unavailability of equipment or staff. Scenario 7 describes the situation where measurement
orders were not realized despite physicians’ decisions.

Scenario 7 (Unavailability or shortage of resources): The physician’s or-
der for observation may not be realized due to unavailability or shortage
of resources.

References to Scenario 7 are presented in Appendix A.7.
Another assumption for Scenarios 5 and 6 which does not always hold is that the

measurements and physicians’ observations are all recorded in the database. As stated
by Scenario 8, variables might be observed and influence medical decisions, yet they are
withheld from the dataset.

Scenario 8 (Unrecorded observations): Some variables are not recorded in the
database or used in the data analysis, even though they have been observed
and relied upon in medical practice.

There might be aspects characterizing the overall patient’s health, which are not
explicitly recorded but implicitly considered in the decision-making process. In addition,
certain modalities of data may not be efficiently recorded or integrated into the medical
record. Further, some modalities, such as textual data, may be excluded from data analysis
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due to complexity. All these reasons are mainly determined by the quality of data collection
software in healthcare facilities, the physician’s style of practice, and the choice of data
modalities for analysis. References to Scenario 8 are presented in Appendix A.8.

3.2.4. Scenarios Related to Data Pre-Processing

For the analysis of collected and recorded data, the first step is dataset selection and pre-
processing. Depending on the analysis objective, data scientists apply inclusion/exclusion
criteria based on demographic information, patient cohort, or variable availability. As stated
by Scenario 9, this should be considered a missingness scenario induced in the data
analysis step.

Scenario 9 (Data sample omission based on inclusion/exclusion criteria):
Samples are included or excluded depending on data and missingness char-
acteristics, such as measurement availability, values within a specific range,
or patient cohort.

References to Scenario 9 are presented in Appendix A.9.
Another common reason for data omission during pre-processing is the presence of

invalid, unextractable, or erroneous values as stated by Scenario 10.

Scenario 10 (Missingness of invalid data entries): Data rows with invalid or
erroneous entries are removed from the data during data pre-processing.

Examples are omission due to poor handwriting or corrupted medical chart pages [14],
negative age values, or entries specified by ERROR code. References to Scenario 10 are
presented in Appendix A.10.

3.3. Analysis of Missingness Scenarios

This section presents the foundation of the missing data theory necessary for analyzing
the introduced scenarios in Section 3.2. After briefly explaining the missing data problem
formulation, we describe the steps required for solving the problem under missing data,
according to Figure 1. Throughout the steps presentation, we identify theoretical questions
to answer for each scenario to bridge the gap between the analysis and application domains.
We call these questions inquiries about the scenarios. Extensive details for the inquiries are
presented in Appendix C.

3.3.1. Setting and Notation

Let the random vector X ∈ Rd comprise d study variables Xi ∈ X, i ∈ {1, . . . , d}.
For ease of reference, we denote a specific variable of interest beside X (e.g., the class
labels in the ML classification problem) as Y. Furthermore, we denote independence
between Xi, Xj as Xi ⊥⊥ Xj. Independence by conditioning on a variable Xh is denoted as
Xi ⊥⊥ Xj|Xh.

In reality, the variable Xi is realized for all patients, though it may or may not always
be available (i.e., observed, recorded, and present in the dataset). We therefore refer to Xi
as a counterfactual variable since this is what the data would have been if they had always
been available, possibly contrary to reality. Corresponding to each Xi, we define a binary
variable Ri ∈ {0, 1}, called the missingness indicator, to express Xi’s availability: we set
Ri = 1 when Xi is available, and Ri = 0 otherwise. The version of Xi which is masked by
missingness is called proxy variable, denoted as X∗i ∈ R∪ {NaN} where NaN represents the
missing entries. By this definition, a proxy variable is modeled as

X∗i =

{
Xi, Ri = 1,
NaN, Ri = 0.

(1)

The distribution of R is determined by the subset of scenarios from Section 3.2, which
describe the data observation and recording in a healthcare facility and dataset selection
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for analysis. A data availability policy π represents the union of scenarios such that
the missingness distribution follows the policy, i.e., R ∼ π. Subsequently, the resulting
distribution given a policy π is denoted as pπ . We denote three special policies to reference
in the paper: (1) the initial policy during data collection as πinit, (2) the full-availability
policy as πfull, under which X is always available, and (3) any other policy as πnew, which
is neither πinit nor πfull. This notation yields p(X) = pπfull(X∗|R = 1).

Example 1 (missingness under availability policies). Suppose a variable X1 is realized for
four patients, giving X1 = (2, 3, 4, 7)⊤. If the fourth patient has missing values under a policy
πinit, we have X∗1 = (2, 3, 4, NaN)⊤. In this case, the mean estimations for X and X∗ are defined as
Eπinit(X∗1 |R = 1) = 3 and E(X) = Eπfull(X∗1 |R = 1) = 4. Under a new policy πnew where only
the X ≥ 4 observations are available, we have Eπnew(X∗1 |R = 1) = 5.5

An availability policy for Xi is, in general, parameterized by all variables (including Xi
itself) as well as other missingness indicators, i.e., {X, R\i}. To encode these dependencies,
we model the joint (X, R) distribution using m-graphs Mohan et al. [2]. An m-graph under
the availability policy π, denoted as Gπ(V), is a causal directed acyclic graph (DAG) with
the node set V = {X ∪X∗ ∪ R}. The edges in the structure Xi → X∗i ← Ri are deterministic,
representing Equation (1). While non-graphical approaches for missing data exist, we focus
on m-graphs for their effectiveness and popularity in this paper. Section 3.3.3 will provide
more details about m-graphs.

Example illustrations of m-graphs are depicted in Figure 3, where three m-graphs
model different policies for a similar (X1, X2) distribution.

X1 X2

R1 R2

X∗1 X∗2

(a)

X1 X2

R1 R2

X∗1 X∗2

(b)

X1 X2

R1 = 1 R2 = 1

X∗1 X∗2

(c)
Figure 3. Three example m-graphs, modeling the joint distribution (X, X∗, R) for a bivariate dataset:
(a) (R1, R2) ∼ πinit ≡ (πinit,1, πinit,2(R1, X1)) represents the missingness distribution induced by miss-
ingness scenarios at data collection; (b) (R1, R2) ∼ πnew ≡ (πnew,1(X1), πnew,2(R1, X1)) represents
a new missingness distribution due to a change in the scenarios for R1; (c) (R1, R2) ∼ πfull ≡ (1, 1)
represents the full-availability case (no missingness scenario). Dashed edges are deterministic, encoding
the definition in Equation (1).

3.3.2. Defining the Estimand

In the first step of data analysis, an objective must be set by the domain expert and the
data scientist and translated into an estimand, which will be fitted to the data. Examples
include finding the weights of a prediction model for patient morbidity or the mean value
of a biomarker for a population. Based on the form of the estimand, and whether and
how it depends on the unavailable data distribution under missingness, we may face
diverse challenges.

A basic question of interest is the mean of an outcome variable Y (e.g., the mean value
of a test or the chance of recovery). If Y is partially available under the policy πinit, one
may formulate the question directly as Eπinit(Y

∗|RY = 1), which reads as the “mean of Y
when it is available”. However, we are often interested in estimating the entire population
regardless of the missingness status “had Y for all samples been available for analysis”.
This objective, referred to as the counterfactual mean estimation, is presented as

E(Y) = Eπfull(Y
∗|RY = 1). (2)



J. Pers. Med. 2024, 14, 514 11 of 32

Example 2 (counterfactual mean LDL cholesterol level). As part of public health research, we
aim to estimate the nationwide average LDL cholesterol level, denoted as Y. Available datasets are
collected from a hospital where LDL levels are not available for all the patients.

• Eπinit(Y
∗|Ry = 1) gives the average observed value in the hospital.

• As a possible new policy, Eπnew(Y
∗|Ry = 1) gives the average value if the LDL level had been

observed for all patients in the hospital.
• E(Y) = Eπfull(Y

∗|Ry = 1) gives the target estimand, i.e., the nationwide average LDL level.

As a more advanced objective, we may be interested in developing a prediction model
for the outcome variable Y using the covariate vector X, i.e., E(Y|X = x), which reads
as “conditional mean of Y given X”. We often choose an ML model for estimation, such
as a multi-layer perceptron neural network f (x; w), parameterized by w. The weights
of the network are learned by minimizing a loss function, e.g., the mean squared error
(MSE): E[(y− f (x; w))2]. Model performance at deployment can also be evaluated using
the same formula.

Given a fully observed outcome and missing covariates, the estimand

Eπinit

[
(y− f (x∗, rX ; w))2

]
(3)

formulates the MSE loss for the available X. The estimand in Equation (3) suits the situation
where the prediction model is to be deployed in an environment with the same observation
policy, meaning that all missingness scenarios are the same during deployment as during
the data collection stage. In Equation (3), we may use the information in RX , e.g., we train
(maximum) 2d separate sub-models g(xj), Rj = 1 for each unique value (pattern) of R [20].

Example 3 (Health status estimation at hospital discharge). We aim to develop a prediction
model for the 6-month outcome based on the observed variables during hospitalization, queried
at discharge. The model deployment will not influence the physicians’ decisions. The fact that
the hospitalization data are being analyzed retrospectively can justify the assumption that the
observation and recording policy will not change at deployment. The MSE loss for this case is given
by the estimand in Equation (3).

Alternatively, we may be interested in learning a prediction model that is deployed in
healthcare facilities with different missingness scenarios, e.g., with varying guidelines of ob-
servation and protocols (Scenarios 5 and 6), for a different patient cohort (Scenarios 1 and 9),
or in the same healthcare facility but with a change of observation policy because the physi-
cians would measure different variables to “feed” it to the prediction model. In particular,
suppose a training dataset generated given the m-graph in Figure 3a will be deployed in
an environment modeled by the m-graph in Figure 3b. The estimand for such a case is

Eπnew

[
(y− f (x∗, rX ; w))2

]
, (4)

which reads as “MSE loss under new missingness scenarios at deployment”, where πnew
represents the new policy.

Example 4 (Change in hospital discharge protocols). Suppose the hospital in Example 3 adopts
a new discharge protocol mandating performing a medical test for all patients before discharge.
The MSE loss under the newly adopted policy is given by the estimand in Equation (4).

A special case of Equation (4) is when the prediction model is expected to make predic-
tions always using full covariates (Figure 3c). The estimand for this case is
Eπfull [(y− f (x; w))2], with only one missingness pattern, the full-availability R = 1⃗. This
objective is employed for most clinical prediction models (see Tsvetanova et al. [8]).
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For more examples, Appendix B presents the estimands for prediction using decision
trees and feature importance.

Example 5 (Clinical prediction model). Suppose a clinical prediction model is developed using
an incomplete dataset. As a result of successful development, physicians will use the model while
they actively collect all study variables every time to feed to the model. The MSE loss at deployment
is given by Eπfull [(y− f (x; w))2].

3.3.3. Identification

As shown in the previous step, estimands may query different missingness distribu-
tions, while the only available distribution is given by the data collection policy πinit. If an
estimand queries πinit, such as Equation (3), it can be computed directly using the training
dataset D. On the other hand, estimands such as (2) and (4) query different distributions
and hence are subjected to the distribution shift problem. In the identification step, we find
a procedure that computes a consistent estimate of an estimand under a target distribution
using the available πinit [2].

To elaborate further, we consider an estimation approach under distribution shift,
namely, importance sampling: for a functional θ of the distribution at deployment q(X, R), θ
is estimated using the data collection distribution p(X, R) as∫

θ(x, r) · q(x, r)dxdr =
∫

θ(x, r) · λ(x, r)p(x, r)dxdr, (5)

where the fraction λ(X, R) = p(X, R)/q(X, R) is called the importance ratio. By Equation (5),
samples are drawn from p(.) but re-weighted by their “importance” in reflecting q(.).
Equation (5) states that a θ estimation is possible given the p(X, R) samples when λ is
known for all (x, r) over the support of p.

The importance ratio can be re-written using the selection model factorization [42] as

λ(X, R) =
q(X)q(R|X)

p(X)p(R|X)
. (6)

The conditional terms p(R|X) and q(R|X) in the fraction are the data collection and de-
ployment availability policies, respectively. Assuming no additional counterfactual data dis-
tribution shift, i.e., p(X) = q(X), Equation (6) is simplified as λ(X, R) = q(R|X)/p(R|X),
i.e., the ratio of missingness models at the data collection and deployment stages. When
the availability policy does not change at deployment, the ratio is re-written as

λ(X, R) =
pπinit(R|X)

pπinit(R|X)
= 1, (7a)

and when a new policy is adopted at deployment, it is re-written as

λ(X, R) =
pπnew(R|X)

pπinit(R|X)
. (7b)

While the following arguments are valid for Equation (5) in general, we consider
a special case where the full-availability policy πfull is running at deployment (e.g., the
estimand in Equation (2)). In this case, we trivially have λ(X, R) = 0 for all incomplete data
since the numerator pπfull(X, R) is zero when R ̸= 1⃗. This means that only the complete
cases (R = 1) are used for computation, for which λ = 1/pπinit(R = 1|x). The resulting
estimator according to Equation (5) is expressed (for estimation using D) as

θ̂IPW =
1
N ∑

X,R∼D
θ(x, r) · 1(r = 1)

pπinit(R = 1|x) , (8)
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for N samples, where 1(r = 1) selects only the complete cases. Equation (8) is known as the
inverse-probability weighting (IPW) estimator. The denominator in Equation (8) is referred to
as the propensity score, often denoted as PS(x).

The challenge of identification lies in the conditioning set of importance ratio terms,
as they generally depend on the counterfactual distribution (X), which is only partially
available. As a solution, we assume an m-graph for the problem and seek independence
properties among (X, R) variables that allow us to express the importance ratio in terms of
factors that can be estimated using the available distribution (X∗, R). For the scope of this
paper, we mainly focus on identification with respect to m-graphs [2,43]. See Section 3 of
Mohan et al. [2] for other identification approaches.

Example 6 (Identification with respect to an m-graph). Suppose a functional θ(X1, X2) is
to be estimated, given the data collection and deployment policies πinit and πfull, respectively.
The propensity score for IPW estimator is pπinit(R1 = 1, R2 = 1|X1, X2), which cannot be
estimated using D. Assuming the m-graph in Figure 3a, we proceed as follows (we drop the
distribution index for brevity):

• Factorize: PS(X1, X2) = p(R1 = 1|X1, X2)p(R2 = 1|R1 = 1, X1, X2)
• The assumed m-graph gives R1 ⊥⊥ X1, X2 and R2 ⊥⊥ X2|R1, X1. The propensity score is thus

rewritten as p(R1 = 1)p(R2 = 1|R1 = 1, X1)
• By the missingness definition in Equation (1), we express the second term using the proxy

variable and rewrite the propensity score as p(R1 = 1)p(R2 = 1|R1 = 1, X∗1 ).

Both factors in the propensity score can be estimated using (X∗, R)

In conclusion, identification in this manner requires an m-graph model, and within it,
the causal relations of the missingness indicators are specifically important. It is therefore
necessary to discover what kind of causal structures the missingness scenarios induce for
R. In particular, we specify the parents and ancestors (direct and indirect causes) for the
R nodes as stated by Inquiry 1. The causes of R nodes are commonly referred to as the
missingness mechanism.

Inquiry 1 (missingness mechanism): Causal relations that a scenario implies
for R nodes.

To facilitate identifying the causes, we categorize all potential causes to search for
in the following three categories:

1. (X and R components) First, the candidates for causes of R are the study variables
and their corresponding missingness indicators within the dataset. Examples can be
found in Figure 3a,b, where X is a cause of indicator R.

2. (latent/hidden confounders) Variables that have not been collected and available in
the dataset may also causally influence R. More importantly, they may confound
two or more study variables within the estimand, and may therefore hinder the
identification process.

3. (exogenous causes) Other variables that may lie outside the dataset and do not con-
found the study variables of interest are considered exogenous causes, having, in gen-
eral, no identification implications.

Missingness in health-related variables such as lab test items is mainly caused by
physicians under Scenario 5 (missing due to diagnostic irrelevance), where they make
measurement decisions based on the observed history. Therefore, in this case, R indicators
for health variables have incoming edges from the previous measurements (recorded or
unrecorded). Other potential causes include the health status under Scenarios 1 (patient
complete non-visit) and 2 (missing follow-up visit due to health status). Examples of
the latent/hidden confounders include socioeconomic variables as well as variables in
secondary datasets with information about the non-visit population under Scenario 1.
As for the exogenous causes, many causes may be recognized, such as simply forgetting
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to enter the data for a patient, under Scenario 8 (unrecorded observations). However, one
should be cautious about treating all medically unrelated variables as exogenous causes,
as they may still confound the study variables and missingness indicators. A detailed
analysis of missingness scenarios with respect to Inquiry 1 is presented in Table A1.

Inquiry 1 explores the structural distribution shift caused by a change in the m-graph
between the data collection and deployment stages. Another possibility is that the m-graph
stays invariant, but the causal relations are subjected to a parametric shift. For example,
assume the m-graph in Figure 3a holds for both data collection and deployment, but the
missingness probability in X2 changes from σ(R1 + 2X1) to σ(0.2R1 + 5X1). As stated by
Inquiry 2, it is crucial to explore the potential parametric shift at deployment due to a
change in the observation and recording policies.

Inquiry 2 (Missingness distribution shift): Whether a scenario is subjected to
missingness parametric distribution shift at deployment.

Parametric shift may occur in Scenario 5 (missing due to diagnostic irrelevance), if the
definition of normal/abnormal ranges for a health marker changes. In this case, the results
of primary tests still influence the performing decision of later tests, however, via different
rules. As another example, a parametric shift may occur in Scenario 7 (missing due to
resource unavailability), if the monetary cost of a medical test decreases as a result of
equipment upgrade or insurance plans, leading physicians to order the test more often.
A detailed analysis of missingness scenarios with respect to Inquiry 2 is presented in
Table A2.

Example 7 (parametric shift due to decreased test costs). Consider a primary test X1 and a
secondary and more expensive test X2. Patients with abnormal primary test values (X1 > 5) are
more likely to give the X2 test. After a cost reduction for the X2 test, the overall frequency of the test
(R2 = 1) increases such that now the relative number of tests for patients with abnormal X1 values
is ρ times larger than before, yet the association between X1 and R2 is retained. This statistics gives

pπnew(R2 = 1|X1 > 5)
pπinit(R2 = 1|X1 > 5)

= ρ,

which is the importance ratio for (X1 = 1, R2 = 1) samples in Equation (5). We leave it to the read-
ers to calculate other importance ratios based on assumed statistics about this hypothetical problem.

So far, the described identification methodology has been based on the selection model
factorization in Equation (6) and the no-distribution-shift assumption for the counterfactual
variables. However, there might exist missingness scenarios under which this assumption
is violated. A case of violation is when the observation and measurement decisions directly
affect the counterfactual variables. In terms of m-graphs, this translates to an R→ X edge.
The assumption that such a causal relation does not exist is referred to as no-direct-effect
(NDE) [22], discussed in the m-graph identifiability literature [25]. Since the violation of
NDE influences the identification procedure, it is crucial to know whether the problem
setting permits it as stated by Inquiry 3.

Inquiry 3 (no-direct-effect assumption): Whether a scenario implies outgoing
edges from missingness indicators to counterfactual variables.

A crucial case of NDE violation occurs when invasive tests such as biopsy affect the
health status of patients. The effect of observation may be exerted on the corresponding
counterfactual variable itself or other variables. This effect may also be exerted indirectly,
e.g., through temporarily stopping a certain medication before a medical test. For example,
due to the contraindication of radiology contrast agents and metformin, it is recommended
that for diabetic patients, medication is stopped before performing angiography [44]. Note
that under violation of the NDE assumption, the problem definition stated in Section 3.3.2
becomes ill posed and requires further elaborations. An example of a problem definition
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under NDE violation is discussed in Example 8. A detailed analysis of missingness scenarios
with respect to Inquiry 3 is presented in Table A3.

Example 8 (Problem definition under NDE violation). Assume the following m-graph X →
Y ← RX, describing an (X, Y) dataset with fully observed Y, where the measurement of X
negatively influences Y. This problem cannot be analyzed unlike Example 1, as the counterfactual
realizations cannot be described ignoring the missingness status. As a hypothetical data generation
mechanism, suppose the X − Y relation follows Y = wX + ϵ, ϵ ∼ N (0, 1) in the absence of
any measurement (RX = 0). When X is measured (RX = 1), the Y distribution changes to
Y = wX + w0 + ϵ. Therefore, Eπinit(Y) ̸= Eπfull(Y). Possible questions to pose with regard to a
target quantity θ are as follows:

• If the observation policies remain unchanged;
• If we begin to always observe X;
• If we knew the value of X but without negative influences on Y, e.g., using a new testing

technology.

Another common assumption for the missing data problem is the no-interference
assumption, stating that the measurement decisions for one individual do not affect other
individuals [22]. This is similar to the independent and identically distributed assumption
in general ML problems: having interfered measurements, the independent and identically
distributed assumption cannot be made for the R distribution. It is therefore important
to check whether the no-interference assumption is permitted for observation scenarios
as stated by Inquiry 4.

Inquiry 4 (No-interference assumption): Whether a scenario causes interfer-
ence among the availability status of data samples.

Similar to the NDE assumption, one may find realistic scenarios where the no-
interference assumption is violated. In general, competing for limited resources under
Scenario 7 (unavailability or shortage of resources) or for available hospitalization services
under Scenario 1 and 2 (complete non-visit and missing follow-up) imply interference.
A detailed analysis of missingness scenarios with respect to Inquiry 4 is presented in
Table A4.

Finally, we discuss a unique case of missingness, where data samples are completely
omitted from the dataset prior to any analysis. This case can be modeled in m-graphs via
an R† node that influences all Ri such that if R† = 0, then Ri = 0, ∀i (Figure 4). The risk in
this situation lies in the fact that we cannot infer the occurrence of such omissions from
a dataset without additional information, which may thus lead to the wrong conclusion
that the dataset is complete and free of missingness. This case is commonly referred to as
selection bias in causal inference literature. Selection bias is argued in Inquiry 5.

Inquiry 5 (Selection bias): Whether a scenario causes the omission of an
entire data sample in the form of selection bias.

Clearly, sample omission can be a result of non-visit under Scenario 1 and inclu-
sion/exclusion criteria under Scenario 9. Whether or not this should be conceived as a bias
depends on whether the target parameter (e.g. Y in Equation 2) is believed to vary between
the observed and the unobserved sub-populations. A detailed analysis of missingness
scenarios with respect to Inquiry 5 is presented in Table A5.
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X1 X2 Y

R1 R2 RY

R†

Figure 4. An example m-graph to model selection bias, determined by the Y values. Blue edges
represent the deterministic masking relation between R† and Ris.

3.3.4. Estimation

There are several methods for estimation with missing data, including likelihood-
based methods such as the Expectation Maximization (EM) algorithm, multiple imputation
(MI), IPW estimator, and outcome regression (OR) [27,42]. In the scope of this paper, we
continue with the importance sampling approach in Equation (5), in particular, the IPW
estimator in Equation (8) and the estimation of the propensity score.

Even though a successful identification step guarantees that the propensity score
can be estimated using the available data, we still face some challenges, e.g., when the
missingness pattern is non-monotone. A missingness pattern is called monotone if there
is at least one ordering of the variables such that observing the j-th variable ensures that
all variables k > j in the ordering are all observed for all samples (Figure 5a). Estimation
of the propensity score has a straightforward solution for monotone patterns. Example 9
showcases propensity score estimation for identifiable monotone missingness.

Example 9 (Propensity score estimation for identifiable monotone missingness). For the
missingness in Figure 5a, we have ∑4

j=1 p(Sj|X) = 1, while PS(X) ≡ p(S1|X). Assuming
identifiability, each p(Sj|X) can be estimated using only the variables available in Sj. As a result,
the propensity score is estimated as

PS(X) = 1− p(S2|X1, X2, X3)− p(S3|X1, X2)− p(S4|X1). (9)

While methods have been developed for an effective estimation under non-monotone
missingness [27,31], it is beneficial to adopt monotone solutions if applicable. In that
regard, Inquiry 6 argues whether a missingness scenario individually induces monotone
missingness patterns.

Inquiry 6 (Monotonicity): Whether a scenario induces missingness with
monotone patterns.

If an individual missingness scenario is active, monotonicity can be directly inferred
from the emerged patterns, revealed by a simple sorting of the variables with respect to
their missingness ratio (Figure 5a). However, in practice, several scenarios influence a
dataset. In such cases, the monotone pattern attributed to one scenario is broken by other
scenarios. If we can attribute the emerged non-monotone pattern to a dominant monotone-
inducing scenario along with less effective non-monotone scenarios (hypothetically in
Figure 5b), then methods exist based on resolving the missing entries up to recovery of the
monotone pattern, e.g., via imputation, and proceeding with IPW estimation for monotone
missingness [45]. A noteworthy scenario likely inducing monotonicity is the sequential
observations of physicians under Scenario 5 (missing due to diagnostic irrelevance). Given
a specific diagnostic flowchart, it is reasonable to assume that more specific secondary tests
shall not be made unless primary tests are conducted. As said, this pattern may be broken
for many reasons, including more than one diagnostic flowchart being used and other
scenarios such as 4 (patient’s refusal) or 7 (resource unavailability). A detailed analysis of
missingness scenarios concerning Inquiry 6 is presented in Table A6.
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(a) (b)
Figure 5. Two missingness patterns: (a) monotone; (b) non-monotone. The monotone pattern is
described by four S1 − S4 patterns. One can infer, using prior knowledge, that the non-monotone
pattern in (b) is a result of some non-monotone missingness scenarios, interrupting the monotone
pattern in (a).

3.3.5. Sensitivity Analysis

The assumptions made for handling missing data may not hold under all circum-
stances. They might be too strong for practical implementation, or we may expect the
environment to undergo some perturbations that violate them. To ensure the robustness of
the analysis, it is crucial to measure the sensitivity of results to departures from the assump-
tions and report the variation. Sensitivity analysis is usually performed by perturbing the
m-graph model.

In addition, it is possible that due to the nature of the problem, assumptions do not
lead to a successful identification. In this case, we may impose stronger assumptions
that lead to identifiability, model the departures from the actual assumptions, and finally
measure the sensitivity to different degrees of magnitude of those departures.

Example 10 (Sensitivity analysis for the unidentifiable self-masking missingness). Consider
an outcome variable Y that is subjected to missingness under the following mechanism Y → RY.
The estimand E(Y) is unidentifiable under this mechanism, referred to as self-censoring [25] or
self-masking [20].

We can assume that the mean of the unobserved population is δ units away from the ob-
served population, additively Eπinit(Y|R = 0) = Eπinit(Y

∗|R = 1) + δ, or multiplicatively
Eπinit(Y|R = 0) = δEπinit(Y

∗|R = 1) [6,33]. We then measure the variation of Eπfull(Y
∗|R = 1)

assuming a range of values for the sensitivity parameter δ.

For reliable meaningful sensitivity analysis results, it is crucial to interpret the sensitiv-
ity parameters based on meaningful real-world quantities. Inquiry 7 states that scenarios
may carry valuable information for choosing meaningful parameters.

Inquiry 7 (Meaningful sensitivity parameters): Given a scenario, what are
the meaningful units and ranges of parameters for sensitivity analysis.

Specific to the importance sampling approach and Equation (8), the unidentifiable
terms appear in the importance ratio. The importance ratio captures the differences in
the levels of availability for different covariate strata. To make an informed guess about
this quantity, we may refer to other research works or collaborations with health domain
experts. For instance, Zamanian et al. [36] suggest that the sensitivity parameters for
physicians’ observations (Scenario 5) are related to the odds of making an observation
for relatively healthy or sick patients, which can be inferred based on the guidelines,
protocols, and referring to the attending physicians. The sensitivity parameter for this
case is formulated for the model in [36], assuming a logistic model for missingness, by the
following odds-ratio term:

δ = log
O(R|healthy)

O(R|sick)
, (10)
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where O(R|X) = p(R = 0|X)/p(R = 1|X). Equation (10) follows the so-called exponential
tilting model, where the multiplicative departure for R is modeled as an exponential
term [34].

Likewise, the parameters for hospital visits (Scenario 1) are related to the odds of
visiting a healthcare facility for healthy and sick populations, formulated similarly as
Equation (10), for which some information can be extracted from epidemiologic studies and
public health reports. Overall, the form of the sensitivity model depends on the estimand
and the estimator. Yet, a similar ratio as in Equation (10) often appears in the analysis,
which must be specified. A detailed analysis of missingness scenarios concerning Inquiry 7
is presented in Table A7.

4. Experiment
4.1. Setup

In this section, we perform a simulation experiment to demonstrate the impact of
different scenarios and their corresponding assumptions on the results of the missing data
analysis. Simulation allows us to induce different missingness scenarios in a controlled
manner and evaluate the reliability of analysis compared to the ground truth. Details
regarding the study design and implementation of simulations, medical use case, missing-
ness scenarios, estimands, algorithm derivations, and missing data methods are presented
in Appendix D.

Figure 6 presents three m-graphs with a shared counterfactual causal DAG for cardio-
vascular disease (CVD) influenced by baseline variables and measurements, namely age,
body mass index (BMI) at admission, (systolic) blood pressure (BP), and CVD outcome.
The causal DAG was inspired by the work of Bakhtiyari et al. [46].

For the CVD causal model, three combinations of missingness scenarios were induced:

Case 1: (Figure 6a) We induced Scenario 10, where invalid entries were dropped from
the dataset.

Case 2: (Figure 6b) In addition to Scenario 10, we induced Scenario 1, where the healthy
sub-population in terms of CVD visited the healthcare facility less frequently.

Case 3: (Figure 6c) In addition to Scenario 10, we induced Scenario 5, assuming that age
and BMI values were always measured and influenced the measurement of BP
while they may have not been always recorded (Scenario 8).

Age BMI BP CVD

RAge RBMI RBP RCVD

(a)

Age BMI BP CVD

R†

RAge RBMI RBP RCVD

(b)

Age BMI BP CVD

RAge RBMI RBP RCVD

(c)

Figure 6. Example m-graphs for cardiovascular disease under the influence of different constellations
of missingness scenarios: Scenario 1 (patient complete non-visit), 5 (missing measurements due
to diagnostic irrelevance), 8 (unrecorded observations), and 10 (omission of invalid data entries).
Given these scenarios, the three m-graphs induce the following: (a) Scenario 10; (b) Scenario 1 + 10;
(c) Scenario 5 + 8 + 10. Top row nodes and edges are the shared counterfactual sub-graph. Blue edges
encode the missingness mechanisms.

For each case, we estimated two objective estimands:

Estimand 1: (Counterfactual mean BP) We estimated the counterfactual mean blood pres-
sure.

Estimand 2: (Classification accuracy for CVD) We evaluated the MSE loss for a trained
prediction model for CVD under the full-availability policy. The estimand
was Eπfull [(y− f (x))2]. The model f (.) was a logistic regression classifier
trained on a mean-imputed dataset. The focus of this study was only to
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estimate the performance of the existing model at deployment. Therefore,
perfect model training or fine-tuning was not necessary.

Finally, the analysis was performed using three different missing data methods:

Method 1: We performed complete-case analysis (CCA). For the mean BP estimand, we
took the average BP value for the observed cases. For the model performance
estimand, we tested f (.) using complete cases only.

Method 2: We used the Missforest imputation method [29] for the incomplete datasets.
The analyses were then carried out using the imputed dataset.

Method 3: We performed IPW estimation using Equation (8). After the identification
step, propensity scores were estimated via re-weighted complete cases.

We modeled the structure of the m-graphs for each case and simulated their dis-
tribution parameters in 20 iterations by sampling the uniform randomly from a search
space. In this way, various simulation cases were generated, following the imposed struc-
ture [47]. For each iteration, we reported the estimation bias regarding absolute error
using the ground truths, namely, the counterfactual mean BP (on a log scale) and factual
classification accuracy.

4.2. Results

Figure 7a presents the estimation bias for the estimands 1 and 2 on a log scale.
For method 1 (CCA), only case 1 aligns with its assumption, giving the most negligi-
ble bias among the three cases. For method 2 (Missforest), cases 1 and 3 align with their
assumption, yet interestingly, case 3 has the highest bias. Method 3 (IPW) is designed to be
domain-informed. Higher biases in case 3 for methods 2 and 3 can be attributed to possible
model misspecifications for the propensity score estimation. Overall, the domain-informed
IPW estimation gives the lowest bias.

Figure 7b presents the results for the classification accuracy estimation at deployment.
The average classification accuracy of the logistic regression model was 0.77 across all cases.
Throughout the experiment, three methods suffered from approximately up to 0.1 bias
(13% of the average accuracy), except for the CCA estimation in case 2 with up to 0.25 bias
(33% of the average accuracy).

The experiments reflect an important message of this paper, that estimation bias
may considerably vary for missing data methods under different circumstances, while it
cannot be discovered during the training phase.Therefore, the only trustworthy approach
to missing data is to rely on realistic assumptions and domain-informed methods.

(a) (b)

Figure 7. Estimation bias results for two objective estimands: (a) the counterfactual mean BP,
(b) classification accuracy of the logistic regression model for CVD. Cases and methods are presented
as the x-axis ticks and box plot colors, respectively.

5. Discussion

In order to overcome the challenges of a missing data problem, it is recommended
to report the problem transparently [3,4], collect complementary datasets from various
sources [7,14], and choose a suitable method accordingly. However, the question remains:
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what kind of data should we collect and incorporate into the analysis, and how should the
missing data be reported?

This paper propounds a framework for analyzing missingness in observational health
data. Via the recognition and categorization of fundamental scenarios, we provide a basis
for understanding the data collection processes in healthcare facilities. According to this
framework, focusing on human agents (physicians, patients) and environments (hospitals,
clinics) helps discover and report the scenarios. As shown in this paper, the implications
of scenarios must be formulated for identification, estimation, and sensitivity analysis
steps. Once the corresponding assumptions are specified, a suitable method can be selected.
During the analysis, complementary datasets can be utilized when they enable and facilitate
the analysis steps, e.g., when new variables make the missingness mechanism identifiable
(Inquiry 1) or when a dataset offers meaningful interpretations of the sensitivity parameters
(Inquiry 7).

This paper is intended for not only the medical data scientists but also the developers
of missing data methods in the ML community as a response to the recurring theme of
devising sophisticated (deep learning) imputation models [48–50]. While imputation (or
IPW) methods with high learning capabilities may considerably enhance the estimation
step, most assumptions and inquiries concern the identification and sensitivity analysis
steps (Inquires 1–5 and 7). Therefore, to ensure the method’s effectiveness, it is necessary to
actively scrutinize the assumptions, especially if the application domain is safety-critical.

In fact, methodology papers often report the conditions using Rubin’s at-randomness
categorization [23], according to which a missingness mechanism can be completely-at-
random (MCAR), at-random (MAR), and not-at-random (MNAR). However, this catego-
rization has been a blessing and a curse; even though it effectively formalizes the first step
of identification addressed by Inquiry 1, it was introduced in the original work specifically
for Estimand (2) and was later extended for the joint-distribution estimand p(X, Y) [25].
The works we criticize often make at-randomness assumptions disconnected from the
reality of the use case and denuded of their context, ignoring the requirements of the
estimand. If these works were more sensitive to the nuances of the problem and adhered to
the standard missing data analysis process, they would positively influence the medical
data analysis works that adopt them. We suggest that future works discuss the assumptions
in a form similar to the inquiries in this paper and present some real-world examples for
validity and violation cases.

Limitations and Future Works

The current paper studied ten fundamental and prevalent scenarios considering
healthcare facilities. Nevertheless, new and different scenarios may arise under new data
observation, recording, and collection circumstances. Likewise, the inquiries in this paper
were made regarding the general frame of the missing data theory, which is relevant for
most analysis methods. It is conceivable that specific methods have unique assumptions
and, therefore, further inquiries to explore. Nevertheless, the analysis process in this paper
can be applied to new scenarios and inquiries.

The scope of this paper is limited to observational data from healthcare facilities. Other
similar health domains, such as medical wearable sensors, can be similarly analyzed by
employing the analysis framework presented in Section 3.1, e.g., one can study the scenarios
induced by patients (e.g., missing measurement due to taking off the smartwatch because
of irritation) or technical issues (operating system issues or low battery), and subject them
to the same inquiries introduced in this paper.

In addition, exploring all the introduced scenarios scenarios in great detail would
have indeed exceeded the publication’s scope. While the answers to the inquiries presented
in Section 3.3 and Appendix C can be considered a constructive first step, future research
endeavors will benefit from deeper investigations into each individual missingness scenario
with greater granularity.
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Furthermore, it is worthy of note that the missing data problem lies in the broader
category of the data-coarsening processes,where the data veracity, representativeness,
or completeness is impaired. Other data-coarsening processes in healthcare include the pa-
tient recall bias [51], variations in medical outcome definition over time or depending on the
defining consortium [52], or coarsened representation of pertinent negative/positive val-
ues [14,53]. Extending our analysis framework to other data-coarsening problems in future
works could bridge further translational gaps in medical and healthcare data analysis.

Finally, obtaining a real-world healthcare facility dataset with reliable ground truth
for missing data is exceedingly challenging. Collecting such a dataset would require the
investigation of all missingness occurrences without disrupting the environment and the
missingness distributions. This is why we relied on the simulation experiment to be able to
investigate different aspects of various objectives, scenarios, and methods. Nonetheless,
we would obtain more insightful results if real-world datasets exist for validation, however
small scale or simple.
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Appendix A. References to Missingness Scenarios

Appendix A.1. Scenario 1

Cheng et al. [21] assumed higher HbA1c values in the data than the overall population
due to the non-visit of healthier patients. Wells et al. [14] indicated that data are missing,
partly because patients expired before seeking treatment.

Appendix A.2. Scenario 2

Wells et al. [14] assumed a bias in the systolic blood pressure value with respect to the
hospital visits, as healthier patients are less likely to utilize the healthcare system. Schafer
and Graham [1] suggested higher blood pressure measurements for hypertension patients
who returned for a follow-up visit. Ayilara et al. [9], Phung et al. [10] and Mirkes et al. [15]
highlighted the fragmentation of datasets due to the exclusion of deceased patients and
those who missed clinic visits. Lip et al. [54] reported a connection between unknown
outcome value (thromboembolism) due to missing follow-ups and the death of the patients.
In the study on Apgar score for evaluating newborn infants, Apgar [55] reported 1.5%.
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Appendix A.3. Scenario 3

Lip et al. [54] reported that some patients were not started on VKA treatment (an
inclusion criterion), partly because of comorbidities and intolerance of anticoagulation.

Appendix A.4. Scenario 4

Lip et al. [54] reported that some patients were not started on VKA treatment (an
inclusion criterion), partly because of poor compliance. Ayilara et al. [9] introduced a data
category, the Patient-Report Outcomes (PROs), whose missingness entirely depends on the
patient’s willingness to report. Penny and Atkinson [3] pointed out the case where offering
monetary incentives substantially increases response rates, though it is unknown whether
this would predispose a particular type of person to provide data.

Appendix A.5. Scenario 5

Zachariasse et al. [56] reported missing values in the documentation of vital signs,
which were measured at the nurse’s discretion during triage. As a result, some patients
had incomplete sets of vital signs recorded. Missing vital signs were assumed to be within
the normal range and were more often encountered in less severe patients.

Appendix A.6. Scenario 6

Zachariasse et al. [56] reported that some hospitals’ information (high care admission
and emergency surgery) was unavailable.

Appendix A.7. Scenario 7

Zachariasse et al. [56] reported high missingness in the triage urgency of one of the
emergency departments, resulting from “the absence of triage nurses during night shifts at
the start of the study”. Limb [57] described the patient discharge situation in NHS hospitals
after the emergence of the COVID-19 omicron variant in order to “release the maximum
number of beds”.

Appendix A.8. Scenario 8

Wells et al. [14] stated that an important variable related to diabetes research is the
length of time that patients fast before having blood drawn for the metabolic panel; however,
this variable is only recorded on paper and hence unavailable in the dataset. Gray et al. [58]
reported that, even though more variables were recorded in their dataset, they only ana-
lyzed ones that did not require a laboratory or third party to be measured. Falcoz et al. [59]
considered a dataset that was populated using a fixed pull-down menu and mentioned
that additional unrecorded features could influence the response variable.

Appendix A.9. Scenario 9

Lip et al. [54] included patients in the analysis only if they were without mitral
stenosis or previous heart valve surgery and did not use vitamin K antagonists (VKA)
or heparin upon discharge. Aguirre et al. [60] and Wishart et al. [61] excluded patients
who did not have surgery, with incomplete local therapy, and patients with fewer than
four nodes removed with a diagnosis of node-negative disease. Aguirre et al. [60] also
omitted patients who had metastasis or ductal carcinoma in situ, underwent conservative
surgery without having radiotherapy afterward, did not undergo sentinel lymph node
biopsy or axillary lymph node dissection, or whose cause of death was unknown. Gray
et al. [58] only considered patients older than 40. In contrast, Falcoz et al. [59] restricted
their study to patients older than 16. In their study of warning scores among hospitalized
patients assessed by a rapid response team, Fernando et al. [62] excluded cardiac arrest
cases, for which a different response team is responsible.
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Appendix A.10. Scenario 10

Aguirre et al. [60] removed observations with any missing data in HER2 status or
Ki67. Falcoz et al. [59] solely included patients with more than 95% complete information
and discarded patients with any missing values in the variables considered in the study.
Additionally, they excluded features with too many inconsistent or missing values. Blatch-
ford et al. [63] excluded patients with incomplete records and patients whose outcomes
could not be determined. Fernando et al. [62] reported excluding patients with incom-
plete demographics, missing outcomes, and those for whom the warning scores could not
be computed.

Appendix B. Other Estimands

Appendix B.1. Full-Availability Estimand for Decision Trees Learning

One way to train a decision tree is via computation of the Gini impurity index and
selection of a split that leads to the largest reduction in the index. The Gini index for a
(binary classification) dataset is given by

g(D) = 2η(1− η), (A1)

where η = p(Y = 1) is the positive class probability. Upon a split concerning a (binary)
covariate Xi as D = D1 +D2 with N1 and N2 sample sizes respectively, the new index is
calculated as

gXi (D) =
N1

N
g(D1) +

N2

N
g(D2), (A2)

The best split is found via arg maxXi g(D)− gXi (D).
Consider the objective of classification given the full availability at deployment. The es-

timand for this objective is written, according to Equation (A2), as Eπfull(gXi ) at each split.
This can be broken down into two estimations: (1) the class probability η for Di, i ∈ {1, 2},
and (2) the split ratios N1/N and N2/N, which requires estimation of one of N1 or N2.

Assuming D at a split is already conditioned by splits concerning the covariate set Xj;
the first estimand is then written as

Eπfull(Y|Xi, Xj). (A3)

For the second objective, suppose the realizations for Xi are Xi = (1, 1, 0, NaN)⊤. One
way to estimate N1 (or N2) is by directly estimating the missing entry for Xi. Hence,
the second estimand is written as

Eπfull(Xi|Xj). (A4)

Appendix B.2. Feature Importance

A method for calculating the importance of a covariate Xi in a supervised ML problem
is to compare the estimation accuracy with or without the covariate. Feature importance is
often posed under the full-availability policy. Therefore, the estimand for feature impor-
tance can be given by

Eπfull [(y− f (x; w))2 − (y− f (x\i; w))2] (A5)
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Appendix C. Tables of Inquiry Results

Table A1. Analysis of scenarios with respect to Inquiry 1—missingness mechanism.

Scenario
No.

Interpretation

1 Since all study variables are missing in the case of complete non-visit, a shared missing-
ness indicator R0 influences all the other Ri’s such that ∀i, Ri = 0 when R0 = 0. Based
on the potential reasons for complete non-visit, R0 may have incoming edges from the
main health outcome such as in fatal diseases (e.g., reflected in death status, possibly
available in external data sources such as the Social Security Death Index database [14]),
risk factors such as BMI, or non-medical factors such as socioeconomic status (e.g.,
reflected in the occupation and level of education variables in patient information [39]).
Figure 4 presents a schematic m-graph structure for this scenario.

2 Similar to Scenario 1, the missingness of follow-up visits can be modeled using a shared
indicator R†

j for the j-th visit. The simplicity of this scenario compared to Scenario 2 lies

in the likelihood that R†
j is influenced by observations at the j− 1-th visit. For instance,

missing follow-up can be influenced by the health status upon discharge or length of
stay for inpatient admissions.

3 Observed and partially observed causes of missingness include health markers directly
related to the reasons leading to the interruption of data measurement. For instance,
code-blue missingness may happen right after anomalies in vital sign readings. It is
unlikely for missingness under Scenario 3 to have exogenous causes since measurement
standards are in place for patients during their entire inpatient stay. Causes that might
confound missingness with other study variables include event location and timestamp
metadata, as they highlight the decision-making conditions.

4 Reasons for patients’ refusal are usually predicated on personal characteristics that are
not associated with other health-related variables. Thus, it is a fairly safe assumption to
consider them exogenous unless disproved explicitly. A possible health-related cause
for missingness under this scenario is refusal due to pain intolerance or distress, which
may indicate a negative health status at the moment. In this case, indicators of health
status can be considered the causes of missingness.

5 The missingness indicators under this scenario are influenced by observed health vari-
ables X, mediated by the attending physician unless X itself is subjected to missingness
under Scenario 8. In this case, the edge is received from the counterfactual counterpart
(since it influences missingness regardless of its observation status). As an extreme
case, a counterfactual variable that is completely missing under Scenario 8 is a latent
cause for missingness (see the corresponding entry for Scenario 8). Causes that might
confound missingness with other study variables include the attending physician’s
identifiers, which are proxies of medical practice styles.

6, 7 By definition, missingness under these scenarios can be predicted using the patient’s
location, transfer information, or type of resource required for making the observa-
tion. This information is considered crucial, being part of the management and billing
data; therefore, variables for this scenario are likely to be fully observed and available,
especially for datasets from large healthcare facilities.

8 Recording of the counterfactual study variables depends on the nature of the variable,
as well as the style of the medical practice of the attending physician and the recording
capabilities of the software tool. For instance, expensive and decisive tests such as
medical imaging or lab tests are generally recorded, while qualitative examination
results may escape from recording depending on the physician or if the software tool
does not provide an entry for it. Overall, there is a possibility that the reasons for
missingness under this scenario confound other study variables if they are also affected
by the medical practice style, e.g., when a physician with a tendency to record the most
variables also diagnoses and prescribes treatments more effectively.

9 Inclusion/exclusion criteria directly indicate the reason for missingness under this
scenario. For instance, age is the direct cause of missingness if, by design, data are
selected according to the age criteria.
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Table A1. Cont.

Scenario
No.

Interpretation

10 The potential reasons for invalid entries mentioned in this paper are likely unrelated to
the analysis of interest, as they are mostly related to human and software tool errors.
However, one should be cautious about treating all medically unrelated variables as
exogenous causes. Instead, whether these variables can realistically be confounders for
other variables should be investigated. For instance, socioeconomic or occupational
status may affect overall health and healthcare facility visits.

Table A2. Analysis of scenarios with respect to Inquiry 2—missingness distribution shift.

Scenario
No.

Interpretation

1, 2 Parametric shift may occur if the population distributions change. Examples include
(i) conducting analysis using hospital data but deploying them for patients in local
clinics or the general healthy population, such as in a preventive healthcare plan, (ii)
conducting analysis using data from a specific cohort but deploying them for another
cohort, and (iii) when the target population visits healthcare facilities more or less
frequently than during the data collection stage.

3 Shift occurs if the transfer protocols or observation protocols during hospitalization
change. Examples include (i) observing more, fewer, or different variables in different
hospital wards, and (ii) encountering data availability or unavailability after the transfer
despite being available during the data collection stage.

4 A no-shift assumption appears reasonable regarding patient refusal behavior for taking
a test or answering questions. However, it is essential to consider the possibility of a
shift due to data-sharing consent. In such cases, the data available for analysis could
differ from the data available to physicians at deployment.

5, 6, 7,
8

Shift occurs when there are changes in the observation policy of physicians, health-
care facility protocols, available equipment, or data collection software. Examples
include (i) alterations in the measurement decisions resulting from the deployment of
a prediction model, (ii) modifications in the utilized diagnostic flowcharts and scores,
(iii) fluctuations in the level of physicians’ expertise, and (iv) enhancing data collection
protocols following significant events such as an epidemic.

9 Inclusion/exclusion criteria typically imply a shift in missingness unless the same
criteria are applied for the admission of patients, which is highly unlikely in most cases.
An example of no-shift occurs when the data scientist restricts the general population to
the cohort of interest for deployment, using inclusion/exclusion criteria.

10 Shift occurs only when the reasons behind errors and invalid entries in the data change.

Table A3. Analysis of scenarios with respect to Inquiry 3—no-direct-effect assumption.

Scenario
No.

Interpretation

1 & 2 Non-visit possibly influences the health variables via a direct causal effect on the
treatments: patients usually do not receive treatment until being admitted (except in
the self-medication case). This means that the NDE assumption is mostly violated.
Take the example of missing follow-up after the first visit, compared to the unrecorded
observations in a realized follow-up visit. In the latter, missingness does not influence
the health status at the end of the follow-up visit. In contrast, in the former, the health
status, for example, may degrade due to discontinuation of diagnosis/treatment.
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Table A3. Cont.

Scenario
No.

Interpretation

3, 4, 5,
6, 7

Assuming most of the variables measured under these scenarios are related to the
patient’s health status, the validity of the NDE assumption under these scenarios
depends on the nature of the measurement. If the measurement directly influences the
patient’s health (e.g., invasive tests) or indirectly (temporary pause of a medication),
the NDE assumption is violated. Following the discussion on Scenarios 1 and 2, the NDE
assumption is likely violated for the treatment and medication variables since treatment
decisions usually depend on the observations.

8 Unless disproved explicitly, missingness under this scenario admits the NDE assump-
tion since recording the status of the variables cannot influence the variables by any
conceivable means.

9, 10 Since missingness under these scenarios is related to the data analysis and occurs after
the data collection step, the NDE assumption can be made.

Table A4. Analysis of scenarios with respect to Inquiry 4—no-interference assumption.

Scenario
No.

Interpretation

1, 2, 3,
4, 5, 8

Observations and measurements under these scenarios permit the no-interference
assumption, as the decisions are being generally made per individuals.

6 The healthcare facility protocols typically apply uniformly to individuals and remain
consistent over a short period. Hence, it is reasonable to make the no-interference
assumption in this scenario.

7 This scenario is the most critical and obvious example of violating the no-interference
assumption. In this scenario, a prioritization scheme is usually adopted to allocate
observation and measurement resources. Examples are (i) early discharge or no admis-
sion due to limited hospital capacity during the epidemic, and (ii) delayed or canceled
measurements for healthier patients during staff overload.

9, 10 Unless for particular reasons the data scientists do not induce interference by the
inclusion/exclusion criteria, the no-interference assumption holds. An example of a
violation of the no-interference assumption (though not to be conceived as a meaningful
scenario) is when performing sample selection based on the so-far selected samples
from different cohorts, e.g., when we only choose up to 20 patients from an age stratum.

Table A5. Analysis of scenarios with respect to Inquiry 5—selection bias.

Scenario
No.

Interpretation

1, 9 By their definitions, these scenarios induce selection bias, discarding the entire sample
(of a specific sub-population) from the dataset.

2 To miss a follow-up under this scenario implies that the patient still has recorded data
in the database. However, if analysis is limited to a specific follow-up (e.g., analysis of
health status in the second hospital visit), then patients with limited data are subjected
to selection bias.

3, 5, 6,
7, 8, 10

These scenarios by default concern data entries and do not cause missingness of an
entire data sample; hence, no selection bias occurs.

4 A situation where patients’ refusal can lead to selection bias missingness is when they
refuse to give data-sharing consent.
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Table A6. Analysis of scenarios with respect to Inquiry 6— monotonicity.

Scenario
No.

Interpretation

1, 9 Complete non-visit and sample exclusion induce only two complete-case and all-
missing patterns.

2 Missing follow-ups in clinical studies induce monotone missingness since by the study
design rules, the patients who are absent, for any reason, from a visit are excluded from
the remaining visits (case drop-out). However, such a rule does not apply in healthcare
facilities; therefore, this scenario, in general, leads to non-monotone missingness.

3, 4, 6,
7, 8, 10

The scenarios are not determined to induce a monotone missingness pattern, un-
less there is a specific reason related to the problem at hand.

5 Observations according to the diagnostic flowcharts and score tables induce a mono-
tone missingness pattern, where secondary measurements are not made unless the
primary ones are. However, many diagnostic flowcharts are utilized across all patients
in a healthcare facility dataset. The set of primary tests usually overlaps among dif-
ferent flowcharts; therefore, a monotone pattern may still emerge. The pattern graph
framework [27] provides a powerful methodology for dealing with missing data in
this situation.

Table A7. Analysis of scenarios with respect to Inquiry 7—sensitivity parameters.

Scenario
No.

Interpretation

1 Potential odds-ratio information for sensitivity analysis includes (i) difference in total
hospital visits between the healthy and sick sub-populations, (ii) difference in medical
care advantages received among different socioeconomic strata, and (iii) difference in
the death rates reported in the healthcare facility, and in total, specific to a disease.

2 Potential odds-ratio information for sensitivity analysis includes differences in the
number of visits for healthy vs. sick patients, between groups with different socioeco-
nomic status due to insurance plans, or morbidity rate for a specific diagnosis, possibly
obtained from epidemiological research.

3 Potential odds-ratio information for sensitivity analysis includes the difference in the
interrupted measurement level due to specific events, such as the code-blue.

4 For those types of missingness due to patients’ health-related refusal (such as intolerance
to pain), meaningful differences may be found for available and unavailable samples,
e.g., conceivable level of infection which may cause intolerable pain.

5 Potential odds-ratio information for sensitivity analysis directly includes the level of
measured variables, e.g., in different branches of the diagnostic flowcharts. For instance,
one may ask how later specific measurements may change if the results of the primary
tests flip (reflecting the unavailable sub-population).

6 Potential odds-ratio information for sensitivity analysis can be found by analyzing
healthcare facility protocols for specific measurements. Since these rules are justified
based on extensive research, informed sensitivity analysis might be possible via public
health works that analyze such protocols.

7 Potential odds-ratio information for sensitivity analysis includes differences in the level
of measurement for situations when the availability of resources changes, e.g., compar-
ing the waiting line for a medical test or number of admissions.

8, 10 Due to complete-randomness, no specific sensitivity parameter can be conceived in
general for this scenario.

9 The sensitivity parameters have interpretations similar to the complete non-visit sce-
nario, except that the data scientists have induced omission under this scenario. There-
fore, the sensitivity parameters and ranges may be obtained from the original dataset.
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Appendix D. Simulation

Appendix D.1. Cardiovascular Diseases (CVD) m-Graph

Bakhtiyari et al. [46] introduce a discovered causal DAG for CVD as depicted in
Figure A1. Even though the simulation study design can be made via any causal DAG
structure, we decided to add a medical context so that inducing different missingness
scenarios becomes more meaningful, which is in line with the concern of this paper. Nev-
ertheless, for simplicity, we chose one variable per each class of variables in Figure A1:
(1) BMI from class A—“Overweight, General Obesity, Visceral adiposity”, (2) blood pres-
sure (BP) from class M—“Cardiometabolic risk factors”, and (3) age from class C—“Age,
sex, smoking, educational status, physical activity, family history of CVD, medical treat-
ment”. Also, we chose not to induce any class U node latent confounders to keep the
identification straightforward.

(A)

(C)

(M)

(U)

(Y)

Figure A1. Causal DAG for cardiovascular disease in [46]. (A) Overweight, general obesity, visceral
adiposity. (M) Cardiometabolic risk factors. (C) Age, sex, smoking, educational status, physical
activity, family history of CVD, medical treatment. (U) Unmeasured confounders. (Y) Cardiovascu-
lar disease.

Appendix D.2. m-Graph Simulation

The m-graph structures for three cases were selected according to the analysis for
Inquiry 1 in Table A1. We used the PARCS Python package for causal simulation
(https://pypi.org/project/pyparcs/ (accessed on 4 April 2024)). Using PARCS, we can
partially specify a DAG as the data generation process for causal simulation and determine
a search space to (uniform) randomly select the DAG parameters for different simulation
iterations [47]. PARCS performs simulation with a DAG description object and a guideline for
partial randomization. The configurations used for simulation in this paper are presented
in Code 1, 2, 3, and 4.

Code 1: case 1 description
# counterfactual subgraph
## nodes
age: normal(?), correction[]
bmi: normal(?), correction[]
bp: normal(?), correction[]
cvd: bernoulli(?), correction[]

## edges
age->bmi: random
age->bp: random
bmi->bp: random
age->cvd: random
bmi->cvd: random
bp->cvd: random

# missing subgraph
R_age: bernoulli(?),

correction[target_mean=0.7]
R_bmi: bernoulli(?),

correction[target_mean=0.7]
R_bp: bernoulli(?), correction[target_mean=0.7]
R_cvd: bernoulli(?),

correction[target_mean=0.7]

Code 2: case 2 description
# counterfactual subgraph
## nodes
age: normal(?), correction[]
bmi: normal(?), correction[]
bp: normal(?), correction[]
cvd: bernoulli(?), correction[target_mean=0.6]

# missing subgraph
R_all: bernoulli(?),

correction[target_mean=0.7]
R_bmi: bernoulli(?),

correction[target_mean=0.7]
R_age: bernoulli(?),

correction[target_mean=0.7]
R_bp: bernoulli(?), correction[target_mean=0.7]

## edges
age->bmi: random
age->bp: random
bmi->bp: random
age->cvd: random
bmi->cvd: random
bp->cvd: random

# mechanism
cvd->R_all: random

Code 3: case 3 description
# counterfactual subgraph
## nodes
age: uniform(mu_=0.5, diff_=0.3)
bmi: uniform(mu_=0.5, diff_=0.3)
bp: normal(?), correction[]
cvd: bernoulli(?), correction[]

## edges
age->bp: random
bmi->bp: random
age->cvd: random
bmi->cvd: random
bp->cvd: random

# missing subgraph
R_bmi: bernoulli(?),

correction[target_mean=0.7]
R_age: bernoulli(?),

correction[target_mean=0.7]
R_bp: bernoulli(p_=0.5age+0.5bmi), correction[]

# mechanism
bmi->R_bp: random
age->R_bp: random

https://pypi.org/project/pyparcs/
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Code 4: randomization guideline
nodes:
bernoulli:
p_: [[f-range, -1, 1], [f-range, -7, -3, 3, 7], [f-range, -7, -3, 3, 7]]

normal:
mu_: [[f-range, -7, -1, 1, 7], [f-range, -7, -1, 1, 7], [f-range, -7, -1, 1, 7]]
sigma_: [[f-range, -7, -1, 1, 7], [f-range, -7, -1, 1, 7], [f-range, -7, -1, 1, 7]]

edges:
identity: none

Appendix D.3. Objectives

We estimated the counterfactual mean blood pressure under different scenario constel-
lations for the first part of the experiment. In the second part, while correct ML training
in the presence of missing data is a crucial topic, we were only interested in model perfor-
mance evaluation, regardless of the suitability of the model. Performance evaluation in
the presence of missing data is an under-explored yet critical topic, even more crucial than
model training. The reason is that bias in model training (with correct evaluation) leads
to poor training in the worst-case scenario. A poor performance evaluation leads to false
promises about a model’s suitability for deployment, which may turn out catastrophically.

We trained a logistic regression model according to the specifications of each case and
evaluated it three times using the CCA, Missforest, and IPW methods. Code specifications
for the classifier and missing data methods are presented in Table A8.

Table A8. Code specifications for the models and methods.

Specification Description

Classifier

Model Logistic Regression

Software Sklearn v1.4.1, using linear_model.LogisticRegression
Parameters Sklearn default parameters

Missforest imputer

Software Sklearn v1.4.1, using impute.IterativeImputer and
ensemble.RandomForestRegressor

Parameters Sklearn default parameters for both objects

Propensity score model

Model Logistic Regression
Software Sklearn v1.4.1, using linear_model.LogisticRegression
Parameters Sklearn default parameters

Appendix D.4. Identification

For case 1, we have R ⊥⊥ X, therefore we have PS(x) = 1, ∀x ∈ X. For case 2, we write
the propensity score as

pπinit(Rbp = 1|Age, BMI, BP, CVD). (A6)

The m-graph in Figure 6b gives Rbp ⊥⊥ Age, BMI, BP|CVD. Therefore, the weight
in (A6) is simplified as

pπinit(Rbp = 1|CVD). (A7)

More specifically, we have two scores for CVD = 0 and 1:

PS1 = p(R = 1|CVD = 1),

PS0 = p(R = 1|CVD = 0),
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or normalized for PS1 as

PS1 = 1, (A8)

PS0 =
O(CVD|R = 1)

O(CVD)
,

The numerator of PS0 in Equation (A8) can be estimated from the available data.
However, the denominator queries the odds of CVD in the entire population, including the
censored patients. This means that the estimand is unidentifiable due to the self-masking
edge CVD→ RCVD.

Regardless of the apparent dead-end, we can proceed with the analysis if population-
wide summary statistics about CVD are available. Such information can possibly be found
in the public health research literature. For the sake of simulation, we query the odds from
the ground truth dataset and employ it in the IPW estimation, knowing that, in reality, such
information must be sought outside the current dataset.

For case 3, we have R ⊥⊥ BP, CVD|Age, BMI. Hence, we write the propensity score es-
timand as pπinit(R|Age, BMI). This model, however, is expressed in terms of counterfactual
variables. According to the m-graph in Figure 6c, we factorize R as follows:

p(R|Age, BMI) = p(RAge)p(RAge)p(RCVD)p(RBP|Age, BMI). (A9)

Equation (A9) shows that the propensity score for both estimands can be estimated as

pπinit(RBP|Age∗, BMI∗, RBMI = 1, Age = 1). (A10)
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