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The precise spatial and temporal control of histone phosphorylations is
important for the ordered progression through the different phases of
mitosis. The phosphorylation of H2B at S6 (H2B S6ph), which is crucial
for chromosome segregation, reaches its maximum level during metaphase
and is limited to the inner centromere. We discovered that the temporal
and spatial regulation of this modification, as well as its intensity, are
governed by the scaffold protein RepoMan and its associated catalytically
active phosphatases, PP1α and PP1γ. Phosphatase activity is inhibited at
the area of maximal H2B S6 phosphorylation at the inner centromere by
site-specific Aurora B-mediated inactivation of the PP1/RepoMan complex.
The motor protein Mklp2 contributes to the relocalization of Aurora B
from chromatin to the mitotic spindle during anaphase, thus alleviating
Aurora B-dependent repression of the PP1/RepoMan complex and enabling
dephosphorylation of H2B S6. Accordingly, dysregulation of Mklp2 levels,
as commonly observed in tumour cells, leads to the lack of H2B S6
dephosphorylation during early anaphase, which might contribute to
chromosomal instability.

1. Introduction
All  phases  of  mitosis  are  accompanied by massive  changes  in  post-trans-
lational  modifications  (PTMs)  [1,2].  In  this  context,  changes  in  phosphor-
ylations  make an essential  contribution to  the  temporally  coordinated
control  of  the  different  phases  of  chromosome condensation,  spindle
assembly,  sister  chromatid segregation and cytokinesis  [3,4].  Among other
proteins,  these  transient  phosphorylations  are  also  found on histones
including H2A S1,  H2B S6,  H3 S10,  H3 T3,  H4 S1,  linker  histones
and histone variants  including the  histone protein  H3 variant  CENP-A
(centromere  protein  A)  [4].  A characteristic  feature  of  most  of  these
transient  mitotic  phosphorylations  is  their  highly  specific  temporal  and
spatial  distribution.  While  some mitotic  phosphorylations  are  restric-
ted to  the  inner  centromere  (H2B S6  and H3 T3),  others  occur  at
the  kinetochore-proximal  centromere  (CENP-A S7,  H2A T120),  whereas
phosphorylations  at  H3 S10  and H3 S28 are  found on chromosome
arms [5].  The temporal  order  and duration of  individual  phosphoryla-
tions  are  intricately  regulated to  precisely  match the  specific  function of
each phosphorylation.  This  regulation is  achieved by precise  timing of
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recruitment,  activation and control  of  protein  kinases  and their  antagonizing phosphatases.  In  addition,  some phosphor-
ylation sites  such as  H3 S10 are  modified by multiple  kinases  to  increase  the  redundancy and the  spectrum of
input  signals  [6–9].  One of  the  H3 S10 modifying kinases  is  Aurora  B,  which is  part  of  the  chromosomal  passenger
complex (CPC)  [10].  In  addition to  Aurora  B,  this  multi-protein  complex also  contains  adapter  proteins  controlling the
localization and activity  of  the  assembly,  namely,  Survivin  and Borealin  and the  inner  centromere  protein  (INCENP)
[10].  Borealin,  Survivin  and the  N-terminal  domain of  INCENP mediate  centromere  targeting of  the  CPC to  allow
locus-specific  phosphorylation [11–13].

Also,  the  activity  and localization of  phosphatases  is  controlled by differentially  composed multi-protein  complexes
[14,15].  The protein  phosphatase  1  (PP1)  family  of  serine/threonine  phosphatases  can interact  with  more than 200
regulatory  proteins  and is  involved in  the  dephosphorylation of  a  wide range of  protein  substrates  during mitosis,
meiosis  and other  processes  [16].  PP1 enzymes are  typically  composed of  one or  more  regulatory  subunits  and a
catalytic  subunit.  Mammals  express  four  PP1 catalytic  subunits,  namely PP1α,  PP1β and PP1γ1,  as  well  as  the  testis-
specific  PP1γ2 [17].  Regulatory  proteins  localize  PP1 to  specific  regions  and guide the  catalytic  subunits  to  their  cognate
substrates  [18,19].  Some of  the  targeting subunits  have a  known function during the  late  stages  of  mitosis,  namely,
RepoMan (recruits  PP1 onto  mitotic  chromatin  at  anaphase),  Ki-67  and PNUTS (PP1 nuclear  targeting subunit)  [20–22].
The association of  RepoMan with  PP1 subunits  is  dynamic  and controlled by regulatory  phosphorylations  mediated by
Aurora  B  or  CDK1/cyclin  B  [23–26].  As  the  counterpart  to  mitotic  kinases,  these  catalytic  and regulatory  PP1 subunits
are  of  great  importance  for  the  correct  timing of  substrate  dephosphorylation and chromosome segregation [27–30].
Consequently,  misregulated histone phosphorylation can lead to  the  appearance  of  chromosomal  instability  (CIN),  which
is  the  characteristic  of  many tumour cells  [31].

Recent  progress  in  biochemical  and computational  approaches  has  drastically  expanded our  knowledge on the
different  kinases  responsible  for  adding phosphate  groups to  their  respective  substrates  [32,33].  By contrast,  our
knowledge of  phosphorylation erasers  is  limited owing to  the  highly  complex subunit  composition of  the  subunits
of  phosphatase  complexes.

We have previously  discovered H2B S6ph as  a  new histone modification with  a  functional  role  in  mitosis  and
also  identified the  writer  (CDK1/cyclin  B)  and reader  (SET)  [34].  Here,  we set  out  to  identify  the  eraser  and the
molecular  mechanisms by which it  controls  the  spatiotemporal  distribution of  H2B S6ph.  We found that  PP1α and
PP1γ can independently  dephosphorylate  H2B S6ph at  the  onset  of  anaphase.  Both phosphatases  can associate  with  the
scaffold protein  RepoMan,  which is  phosphorylated by centromeric  Aurora  B to  interfere  with  chromatin  binding and
association with  the  catalytic  PP1 subunits.  Proper  dephosphorylation of  H2B S6  during early  anaphase  depends on
Mklp2-driven relocalization of  Aurora  B  from chromatin  to  the  central  spindle,  alleviating repression of  PP1/RepoMan.

2. Results
2.1. H2B S6 is dephosphorylated by PP1α and PP1γ
To facilitate  the  analysis  of  mitotic  H2B S6ph and to  enable  co-staining with  other  mitotic  regulators  we generated
a rat  monoclonal  antibody that  specifically  detects  this  histone modification.  Functional  analysis  of  different  hybrido-
mas showed that  antibody clone 1D4 is  suitable  for  Western blotting and immunofluorescence  analysis  and detects
H2B phosphorylation at  S6  with  high specificity  (electronic  supplementary material,  figures  S1  and S2).  Binding of
the  antibody to  its  cognate  sequence  is  not  affected by H2B K5 methylation,  but  impaired by H2B K5 acetylation
(electronic  supplementary material,  figure  S3a).  Since  this  histone modification is  not  changed during mitosis  (electronic
supplementary material,  figure  S3b,c),  all  changes  of  the  antibody signal  can be  assigned to  dynamic  H2B S6ph.  As
previous  work from us  has  shown that  H2B S6  dephosphorylation proceeds  via  PP1 [34],  it  was  relevant  to  identify
the  responsible  PP1 subunit(s).  In  vitro  experiments  were  performed where  recombinant  H2B was phosphorylated by
incubation with  CDK1 and cyclin  B,  followed by their  inactivation and the  addition of  purified PP1α,  PP1β and PP1γ.
Subsequent  detection of  H2B S6ph by immunoblotting revealed dephosphorylating activity  for  PP1α and PP1γ,  but  not
for  PP1β (figure  1a).  The contribution of  endogenous PP1α and PP1γ subunits  for  in  vivo  H2B S6  dephosphorylation
was analysed by knockdown experiments.  Diploid HCT116 cells  were  transfected with  siRNAs targeting the  different
PP1 phosphatases  and synchronized using a  thymidine  block/release  protocol,  as  schematically  shown in  figure  1b.  The
analysis  of  mitotic  cells  showed H2B S6ph at  the  inner  centromere  between prophase  and metaphase,  spatial  extension
of  the  phosphorylation during early  anaphase  and absent  H2B S6ph during late  anaphase  of  control  cells,  as  previously
described [34].  The knockdown of  PP1α and PP1γ either  alone or  in  combination reduced H2B S6ph dephosphorylation,
as  revealed by immunofluorescence  analysis  and its  statistical  analysis  (figure  1c,d;  electronic  supplementary  material,
figure  S4).  The highest  percentage of  H2B S6ph in  late  anaphase  was  seen after  combined downregulation of  PP1α and
PP1γ (figure  1d).  The additive  effect  of  the  combined knockdown of  both PP1α and PP1γ suggests  that  both subunits
are  able  to  dephosphorylate  H2B S6  independently.

PP1 is  commonly recruited to  its  targets  via  its  unique interaction motif  or  by targeting factors.  Mitotic  PP1
chromatin  targeting factors  include the  proliferation marker  Ki-67,  PNUTS and RepoMan [20–22].  To identify  the
targeting subunit  controlling mitotic  PP1α/γ-mediated H2B S6  dephosphorylation,  further  siRNA experiments  interfer-
ing with  the  expression of  these  proteins  were  performed.  The analysis  of  mitotic  cells  showed that  only  the
downregulation of  RepoMan led to  defective  dephosphorylation,  as  revealed by the  occurrence  of  H2B S6ph in  late
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anaphase  (figure  2a,b;  electronic  supplementary material,  figure  S5).  Further,  knockdown experiments  were  performed
by combinatorial  downregulation of  RepoMan together  with  PP1α and/or  PP1γ.  Downregulation of  RepoMan caused
reduced of  H2B S6  dephosphorylation after  early  anaphase,  but  this  effect  was  not  further  augmented by simultaneous
knockdown of  PP1α and/or  PP1γ,  as  revealed by immunofluorescence  (figure  2c)  and its  quantitative  analysis  (figure
2d).  These  data  are  consistent  with  the  notion that  RepoMan binds  PP1γ and also  to  a  significantly  lesser  extent  PP1α
[20,24],  as  also  confirmed by pull-down experiments  (electronic  supplementary  material,  figure  S6).

Although RepoMan plays a central role in dephosphorylating H3 S10 and H3 T3 [26,35], dephosphorylation of these sites
at the inner centromere occurred with different kinetics (figure 3a). The quantitative analysis of the phosphorylation status at
these sites in different immortalized cells and tumour cell lines during anaphase showed—consistent with previously published
data—H3 T3ph in a substantial percentage of anaphase cells [35,36], while H2B S6 modification has already declined (figure
3b). Of note, we never observed H2B S6ph in the absence of H3 T3ph during late anaphase. Also, the comparison between H2B
S6 and H3 S10 dephosphorylation during anaphase revealed distinct kinetics (figure 3c). H2B S6ph was never observed in the
absence of H3 S10ph during late anaphase and a quantitative analysis showed that a substantial fraction of cells showed H3
S10 modification in the absence of H2B S6 phosphorylation (figure 3d). Together, these data indicate that despite the shared
importance of the PP1/RepoMan system, the duration of histone modifications can occur with staggered timing.

2.2. RepoMan controls the restriction of H2B S6ph to the inner centromere
While the experiments performed so far show a function of PP1/RepoMan for the temporal control of H2B S6 phosphoryla-
tion, it was relevant to investigate its potential contribution to the spatial restriction of this modification. To address this
question, HCT116 cells were transfected with siRNAs specifically targeting PP1α, PP1γ or RepoMan. Cells were arrested at
prometaphase by a nocodazole block and chromosomal spreads were stained for the occurrence and chromosomal distribution
of H2B S6ph. While knockdown of the catalytic PP1 subunits alone did not affect the restriction of H2B S6ph to the inner
centromere, interference with RepoMan resulted in spreading of this modification along the entire chromosome, as revealed
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Figure 1. Identification of the PP1 subunits mediating dephosphorylation of H2B S6ph. (a) Purified H2B protein was phosphorylated by CDK1 and cyclin B in vitro to
allow for H2B S6ph. CDK1/cyclin B was inactivated by heating and 0.2 µg of recombinant PP1 subunits or glutathion-S-transferase (GST) as a control were added. After
further incubation for 30 min, proteins were analysed by Western blotting with the indicated antibodies, the positions of molecular weight markers are indicated. (b,c)
HCT116 cells were treated as schematically indicated in (b) and analysed for the occurrence of H2B S6ph during the various mitotic stages as shown (c), scale bar = 10
µm. (d) The occurrence of H2B S6ph during early and late anaphase detected in (c) was quantified and statistically analysed with a two-way ANOVA and Tukey multiple
comparisons correction from more than three independent biological replicates with n = 40, *p  ≤  0.05, **p  ≤  0.01, ***p  ≤  0.001.

3

royalsocietypublishing.org/journal/rsob 
Open Biol. 14: 230460

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

16
 J

ul
y 

20
24

 



by immunofluorescence (figure 4a) and its quantitative analysis (figure 4b). Downregulation of RepoMan either alone or in
combination with PP1α and PP1γ not only showed a spatial change in H2B S6 phosphorylation but also caused an increase in
the intensity of this histone modification (figure 4c). Together, these experiments reveal the central importance of the RepoMan
phosphatase scaffold for the control of the intensity as well as the temporal and spatial distribution of H2B S6ph.

2.3. Aurora B-mediated RepoMan modification mediates temporal control of H2B S6 dephosphorylation
We have previously observed that H2B S6ph is dependent on Aurora B kinase activity [34], but the underlying molecular
mechanism is not known. To investigate whether this inhibition depends on PP1, HCT116 cells were treated with siRNAs targeting
PP1α and PP1γ or adequate controls, followed by interference with Aurora B kinase activity using the specific inhibitor AZD-1152
[37]. The analysis of H2B S6ph on chromosomal spreads from nocodazole-treated cells showed that absent phosphorylation in
the presence of AZD-1152 was fully rescued upon downregulation of PP1α/γ (figure 5a), revealing that Aurora B restricts H2B
S6ph exclusively by a PP1-dependent mechanism. Previous work has shown that Aurora B-mediated phosphorylation of RepoMan
at S893 impairs its chromatin association, while phosphorylation at T394 and probably further sites in its vicinity disables PP1
association [23–25].

To investigate the potential contribution of these RepoMan modifications for the control of H2B S6ph, various RepoMan mutants
affecting binding to PP1 (T394A and RATA) or disabling RepoMan’s ability to associate with chromatin (S893D and RepoMan ΔC
(1-890)), were created, as schematically shown in figure 5b. To investigate the contribution of RepoMan’s PP1 binding capability
for H2B S6 dephosphorylation, HCT116 cells were treated with a RepoMan siRNA and transfected with siRNA-resistant forms of
RepoMan, RepoMan T394A and RepoMan RATA. The analysis of H2B S6ph in late anaphase showed that expression of RepoMan
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Figure 2. Control of temporal dynamics of mitotic H2B S6ph by RepoMan and PP1. (a,b) HCT116 cells were treated with siRNAs targeting the indicated PP1 scaffold
proteins are further treated as schematically shown in figure 1b. The occurrence of H2B S6ph during late anaphase was analysed by indirect immunofluorescence
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WT or the RepoMan T394A mutant (leading to increased PP1 association) resulted in absent H2B S6ph in late anaphase. By contrast,
expression of the RepoMan RATA mutant (abolishing PP1 binding) resulted in defective dephosphorylation (figure 5c). Similarly,
impaired (RepoMan S893D) or absent (RepoMan ΔC 1-890) chromatin association of this phosphatase scaffold protein reduced H2B
S6 dephosphorylation in late anaphase (figure 5d; electronic supplementary material, figure S7). Collectively, these data suggest
that centromere-associated Aurora B modifies RepoMan to prevent its ability to associate with chromatin and PP1, thus preserving
centromeric H2B S6ph. It will be interesting to study in the future also whether CDK1-mediated phosphorylations of RepoMan
contribute to the control of H2B S6 dephosphorylation.

2.4. Aurora B mediates spatial control of H2B S6ph
To further study a potential contribution of Aurora B to the spatial control of H2B S6ph, this kinase was fused to a H2B-EGFP
protein to allow its tethering along the entire chromosome. Expression of these fusion proteins led to the spreading of H2B
S6ph along the chromosome arms, as revealed by the analysis of chromosome spreads from mitotic cells (figure 6a; electronic
supplementary material, figure S8a) and their quantitative analysis (electronic supplementary material, figure S8b). Expression
of a kinase-inactive H2B-EGFP-Aurora B point mutant (H2B-EGFP-Aurora B KD) did not allow spreading of the H2B S6
phosphorylation, revealing the relevance of Aurora B kinase activity for this event. The remaining H2B S6 phosphorylation
at the inner centromere in the presence of H2B-EGFP-Aurora B KD is probably attributable to the activity of the endogenous
kinase, as suggested by completely absent phosphorylation in the presence of the specific Aurora B inhibitor AZD-1152 (figure
6a). These data suggest that Aurora B activity is necessary and sufficient to protect H2B S6ph from dephosphorylation by PP1/
RepoMan. Inappropriate localization of Aurora B to chromosome arms leads to the spreading of H2B S6ph, as schematically
displayed in figure 6b.

To substantiate these findings by an independent experimental approach, we interfered with centromere-specific localization
of Aurora B upon expression of H2B-EGFP-INCENP ∆cen, a mutant lacking its centromeric binding domain (aa 1–46) [11].
While some Aurora B remained attached to the centromere owing to the presence of the endogenous INCENP wild type (WT)
protein, cells expressing H2B-EGFP-INCENP Δcen showed extended localization of the truncated INCENP and of Aurora B on
the chromosome arms (figure 6c; electronic supplementary material, figure S9). Also in this model, non-centromeric localization
of Aurora B led to the spreading of H2B S6 phosphorylation along the chromosome arms. This effect was again fully dependent
on the kinase activity of Aurora B (figure 6d), corroborating the key role of Aurora B kinase activity for the spatial control of
H2B S6ph. Together, these results suggest a model where Aurora B kinase activity protects H2B S6ph from dephosphorylation
by PP1/RepoMan specifically at the inner centromere, while constitutive CDK1-mediated phosphorylation at the chromosome
arms is immediately antagonized by PP1/RepoMan (figure 6e).
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2.5. Mklp2-controlled mislocalization of Aurora B contributes to aberrant H2B S6ph in tumour cells
While H2B S6ph is lost after early anaphase in diploid cells [34], we wondered whether CIN observed in a number of tumour
cells is associated with the deregulation of H2B S6ph. Screening of a panel of different tumour cells and also control diploid
cells for mitotic H2B S6ph showed frequent phosphorylation during late anaphase for cell lines such as HT-29 (colorectal
adenocarcinoma) and U2OS (osteosarcoma), while other tumour cells showed proper timing of this phosphorylation (figure 7a).
H2B S6ph observed during late anaphase was particularly enriched at chromosomal aberrations of some cell lines, as displayed
for HT-29 or U2OS cells (figure 7b) and quantified for a larger cell panel (figure 7c).

As Aurora B is a key factor maintaining H2B S6ph during anaphase, we asked whether this persistent H2B S6ph might
be attributable to lacking translocation of Aurora B from chromatin to the central spindle during anaphase. Co-staining of
H2B S6ph and Aurora B in different cell types revealed that the appearance of H2B S6ph during late anaphase frequently
correlated with chromatin localization of Aurora B (figure 7d). We then asked whether this correlation also occurs in tumour
cells displaying frequent H2B S6ph during late anaphase. All cell lines analysed, regardless of their high (RPE-1, HCT116) or
low (U2OS, HT-29) chromosomal stability, showed a striking correlation between appropriate H2B S6 dephosphorylation in late
anaphase and Aurora B localization at the central spindle (figure 7e).

The transport of Aurora B from chromatin to the central spindle critically depends on the motor protein Mklp2 [38–40]
and accordingly we always detected the colocalization of Aurora B with this motor protein in different cell lines (figure 8a).
Aberrant expression of the Mklp2-encoding KIF20A gene and the RepoMan-encoding CDCA2 gene have been observed in
a variety of cancers and significantly correlates with survival outcomes [41–44]. Interestingly, it was the genetically unstable
HT-29 and U2OS cells that exhibited a significant defect in mitotic upregulation of Mklp2 and RepoMan proteins (figure 8b).
These results raise the possibility that relative expression levels of the Mklp2 motor protein might indirectly also affect H2B
S6ph. Downregulation of Mklp2 expression by siRNAs prevented chromatin removal of Aurora B and consequently led to
persistent H2B S6ph during late anaphase in an Aurora B kinase-dependent manner (figure 8c), revealing another indirect
downstream target of this motor protein.
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3. Discussion
The duration, amplitude, threshold and localization of mitotic phosphorylations require precise orchestration for the stepwise
sequence of mitotic phases to proceed [45]. This is not only dependent on an antagonistic interplay between kinases and
phosphatases, but in addition on cooperative cross-regulation between these enzyme groups [46,47]. An example for kinase-
directed control of phosphatase function is provided by RepoMan. While RepoMan’s ability to interact with chromatin is
reduced by Aurora B-mediated phosphorylation of S893 [23], interaction with PP1 is diminished by CDK1/cyclin B-mediated
phosphorylation at T412 and probably further sites at S400 and T419 [24,25]. On the other hand, phosphatases can also restrict
kinase activity by removal of phosphates from the activation loop [48,49], or they even trigger kinase activity as exemplified by
CDC25A, which removes an inhibitory phosphorylation from CDK1 [50].

This study shows that the PP1/RepoMan complex coregulates the restriction of localization, timing and intensity of mitotic
H2B S6ph to the inner centromere during the early stages of mitosis and its ultimate removal in later stages of cell division.
Although this complex mediates dephosphorylation of various histone modifications including H3 T3, H3 S10 [26,35] and H2B
S6 (this study), the removal of phosphates from H2B S6 occurs first. At the phosphatase level, these different kinetics could be
explained, by the involvement of different and yet unknown accessory proteins and mechanisms. An Aurora B-independent
mechanism restricting the activity of the PP1/RepoMan complex is the CDK1/cyclin B-mediated phosphorylation of RepoMan
at S400, T412 and T419 [25,26]. Also, these modifications preclude binding of PP1γ and probably further phosphatase subunits
[24]. Accordingly, H2B S6ph during late anaphase was also observed in cells with Aurora B localization at the central spindle
(figure 7e). Although PP1/RepoMan is essential for the dephosphorylation of the histone phosphorylations studied here, the
involvement of additional scaffold proteins and phosphatases cannot be formally excluded. It is not clear to which extent PP1α
activity will be affected by the elimination of RepoMan, as this PP1 subunit also interacts with other targeting subunits such
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as nuclear inhibitor of PP1 (NIPP1) and Rap1-interacting factor 1 (RIF1) [51,52]. Furthermore, differences in the kinetics of
histone phosphorylations could also be attributable to distinct activation periods of the relevant kinases. While the activity
of the H2B S6 phosphorylating CDK1/cyclin B complex terminates at the end of metaphase [53,54], the activity of the H3
S10-phosphorylating Aurora B kinase decreases later and remains even after its relocation to the central spindle [55].
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It is currently unclear whether the accumulation of H2B S6ph on chromosomal aberrations is a consequence of the mislocal-
ization of phosphorylating and dephosphorylating enzyme complexes, or alternatively contributes to a (patho)physiological
process. Functional roles for enriched histone phosphorylations on lagging chromosomes were found for H3.3 S31ph, which
triggers p53-mediated cell cycle arrest [56]. Also, an excess of H3 T118ph results in increased numbers of lagging chromosomes
[57]. Therefore, it would be important to systematically identify the PTMs on lagging chromosomes and to reveal their potential
functional significance. Multiple reasons can cause dysregulated histone phosphorylation on lagging chromosomes. These
include not only misregulation of the phosphatases and kinases involved, but also—as shown, to our knowledge for the
first time in this study—changes in levels of the Mklp2 protein and its dynamic regulation. It will therefore be interesting
to investigate the relative contribution and consequences of dysregulation of Mklp2 and probably further motor proteins on
histone modifications and CIN in the future.
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4. Material and methods
4.1. Antibodies, primers and plasmids
This information is given in the electronic supplementary material, table S1.

4.2. Cell culture
HCT116, HeLa, U2OS, LN-229, Caco-2, T98G, mouse embryonic fibroblasts, 293T and MCF7 cells were grown in Dulbec-
co’s modified eagle medium (DMEM), SW620 and HT-29 cells in RPMI and RPE-1 cells in DMEM/F12. All media were
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supplemented with 10% fetal calf serum (FCS) and 100 U ml-1 penicillin and 100 µg ml-1 streptomycin. The cells were cultured at
37°C and 5% CO2 in a humidified atmosphere.

4.3. Cell synchronization and mitotic block
HCT116 cells were synchronized with a single thymidine block. Thymidine was added to a concentration of 2 mM for 18 h.
Cells were then washed three times with warm phosphate-buffered saline (PBS) and released into fresh medium and analysed
10 h later. HCT116 were arrested in mitosis by addition of 100 ng ml-1 nocodazole for 16 h. HeLa cells were synchronized by
addition of RO-3306 to a concentration of 9 µM for 18 h. Cells were then washed twice with warm PBS and released into fresh
medium and analysed 2 h later.

4.4. Cell transfection
Cells were seeded 1 day prior to transfection to result in 50% confluence at the time point of transfection using polyethyleni-
mine (PEI). Shortly, DNA and PEI were diluted in separate tubes and then combined in a ratio of 3 µg PEI per 1 µg of
DNA as described [58]. Cells were washed and covered with antibiotic-free medium, and the transfection mixture was added
dropwise to the cells. After 4 h, the medium was aspirated and replaced with complete medium. Transfections with siRNAs
were performed with Lipofectamine 3000 according to the manufacturer’s protocol.

4.5. Chromosome spreads
Cells were arrested in prometaphase with 100 ng ml-1 nocodazole for 4 h or overnight. Mitotic cells were collected by shaking-
off and centrifuged at 300× g for 5 min. Cells were washed with PBS and swollen in 0.8% (w/v) sodium citrate for 10 min at
room temperature (RT). A total of 50 000 cells were spun on glass slides with a Cellspin III (Tharmac) cytocentrifuge. Cells were
then fixed in 3.7% (v/v) formaldehyde/PBS for 10 min at RT and washed in KCM buffer (120 mM KCl, 20 mM NaCl, 10 mM
TRIS/HCl pH 8.0, 0.5 mM EDTA and 0.1% (v/v) Triton X-100) for 30 min at RT. The slides were used for staining of DNA and
proteins as described below.

4.6. Immunofluorescence staining and microscopy
Cells were grown on 18 mm glass coverslips. Cells were fixed on coverslips with 3.7% formaldehyde/PBS for 10 min at RT and
treated with permeabilization buffer (3% (w/v) bovine serum albumin (BSA)/0.3% (v/v) Triton X-100 in PBS) for 30 min at RT.
Coverslips were incubated with primary antibodies in permeabilization buffer overnight in a humidified chamber at 4°C. After
washing coverslips several times with permeabilization buffer, they were incubated with dye-coupled appropriate secondary
antibodies in a humidified chamber for 1 h at RT in permeabilization buffer. DNA was counterstained with 1 µg ml-1 Hoechst 33 
342 and washed three times with PBS. Coverslips were mounted on standard glass slides with Mowiol mounting medium. Cells
were analysed on an Eclipse TE2000-E inverted fluorescence microscope (Nikon) equipped with a cooled pE-300 light source, an
ORCA Spark CMOS camera (Hamamatsu) and a T-RCP Controller (Nikon). Confocal microscopy was performed on an Aurox
Unity spinning disk confocal microscope. Images were recorded with NIS Elements 3.10 or the Aurox Unity app and processed
with Fiji (ImageJ 2.1.0/1.53c) and Microvolution. Mitotic figures were classified manually based on morphological cues. An
incipient but incomplete separation of chromatids was considered as early anaphase, whereas a clear gap between chromatids
was defined as late anaphase. Cells showing a signal distinctly above the staining background were counted as positive, all
cell biological analyses were conducted in a blinded manner. For visualization, images were processed with Fiji. Only uniform,
linear brightness and contrast adjustments were used.

4.7. GFP-Trap® experiments
Human 293T cells were transfected to express the EGFP-RepoMan fusion protein. The next day, cells were lysed in cold lysis
buffer (20 mM Tris/HCl, pH 7.5, 150 mM NaCl, 10% (v/v) glycerol and 1% (v/v) IGEPAL C-630) supplemented with protease
and phosphatase inhibitors (4 µg ml-1 aprotinin, 4 µg ml-1 leupeptin, 0.5 mM phenylmethylsulfonylfluoride (PMSF), 20 mM NaF
and 1 mM Na3VO4). One aliquot of the lysate was used for the input control, while the remaining material was diluted with
GFP-Trap® dilution buffer (10 mM Tris/HCl, pH 7.5, 150 mM NaCl and 0.5 mM EDTA), followed by incubation with 10 µl of
GFP-Trap® agarose beads for 2 h. Beads were pelleted and the supernatant was removed. Beads were washed four times with
cold dilution buffer and proteins were eluted by boiling in 1× sodium dodecyl sulfate (SDS) sample buffer, followed by further
analysis by Western blotting.

4.8. Western blotting
Cell extracts were prepared with cold RIPA buffer (10 mM TRIS/HCl pH 8.0, 1 mM EDTA, 0.5 mM EGTA, 1% (v/v) Triton X-100,
0.1% (w/v) Na-Deoxocholate, 0.1% (w/v) SDS and 140 mM NaCl) supplemented with protease and phosphatase inhibitors (4 µg
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ml-1 aprotinin, 4 µg ml-1 leupeptin, 0.5 mM PMSF, 20 mM NaF and 1 mM Na3VO4). Extracts were sonicated using a Branson
Sonifier Minitip, and protein concentrations were determined by bicinchoninic acid (BCA) protein quantification. Samples were
prepared for electrophoresis by boiling with SDS Laemmli sample buffer. Equal amounts of protein lysate were separated by
SDS–polyacrylamide gel electrophoresis (PAGE) and transferred to a polyvinylidene fluoride (PVDF) membrane. Membranes
were probed with primary antibodies overnight at 4°C on a rotator. After washing four times with Tris buffered saline with
Tween (TBS-T) (137 mM NaCl, 2.7 mM KCl, 19 mM TRIS, pH 7.4 and 0.1% (v/v) Tween 20), membranes were probed with
appropriate secondary antibodies coupled to horseradish peroxidase. After washing four more times, the signal was detected
with Western Lightning enhanced chemiluminescence (ECL) (Perkin Elmer) using a ChemiDoc XRS (Bio-Rad).

4.9. Coomassie staining and enzyme linked immunosorbent assay
Recombinant proteins were separated by SDS–PAGE and subsequently analysed by Coomassie staining to analyse protein size,
concentration and purity. Gels were washed with deionized MilliQ water and incubated with Coomassie staining solution (45%
(v/v) methanol, 10% (v/v) acetic acid and 0.25% (w/v) Coomassie Brilliant Blue-G250) at RT for at least 1 h. Stained gels were
washed again and transferred to the destaining solution (30% (v/v) methanol and 20% (v/v) acetic acid) for at least 2 h at RT.

Enzyme linked immunosorbent assay (ELISA) was performed with NeutrAvidin-coated 96-well plates (Pierce) and biotinyla-
ted peptides. Pre-blocked plates were washed three times with ELISA wash buffer (TBS-T with 0.1% (w/v) BSA). Peptides were
dissolved in PBS, and 2.5 µg peptide/well was added, binding occurred at RT for 2 h. Unbound peptides were removed by
washing several times with ELISA wash buffer, followed by incubation with different dilutions of test antibodies for 20 min.
After three washes, secondary horseradish peroxidase (HRP)-conjugated antibodies were added for 20 min. Wells were washed
again three times, and substrate solution (110 mM sodium acetate (pH 5.5), 0.1% (v/v) H2O2 and 0.1 µg ml-1 tetramethylbenzidin
(TMB)) was added for 5 min. After the addition of one volume stop solution (10% (v/v) H2SO4) antibody binding was quantified
by determination of emission at 450 nm.

4.10. Quantitative reverse transcription polymerase chain reaction 
Cells were collected by trypsinization after washing with PBS. Cells were pelleted and total RNA was extracted using
a NucleoSpin RNA kit (Macherey-Nagel) following the manufacturer’s protocol. The eluted RNA was quantified with an
Eppendorf 6131 photometer and 500 ng RNA were reverse transcribed (RT) with SuperScript II RT (Invitrogen) and oligo-dT
primers or PrimeScript RT Master Mix (Takara). Generated cDNA was diluted 1:5 using RNase-free water. Equal volumes of
cDNA were used as a template for amplification with SYBR Green ROX Mix (Thermo). Reactions were performed in triplicates
in 96-well polymerase chain reaction (PCR) plates on an OneStep Plus (Applied Biosystems) cycler with SYBR Green as the
reporter and ROX as the passive reference. Quantitative PCR data were analysed using the ∆∆Ct method as described [59].
Shortly, the Ct values of the target gene were normalized to the Ct values of a housekeeping gene for the treated and control
samples, respectively. The treated sample was then normalized to the untreated sample.

4.11. In vitro kinase and phosphatase assays
In vitro kinase assays were performed with recombinant proteins. 0.5 µg of CDK1 and cyclin B1 and 2 µg H2B were added to
a kinase reaction mix (6 mM HEPES, pH 7.5, 3 mM MgCl2, 3 mM MnCl2, 1.2 mM DTT, 5% (v/v) glycerol and 20 µM ATP) and
incubated at 37°C for 30 min. The phosphorylation was stopped by heat inactivation at 95°C for 10 min. 0.2 µg GST or PP1
enzyme were added and mixtures were incubated for another 30 min at 37°C. Reactions were stopped by the addition of SDS
sample buffer and samples were further analysed by Western blotting or Coomassie staining.

4.12. Monoclonal antibodies detecting H2B S6ph
Rat monoclonal antibodies against H2B S6 phosphorylation site were generated by immunization of Lou/c rats with ovalbumin-
coupled peptides (aa 1–11, PEPAKpSAPAPK) comprising phosphorylated S6 (Peps4LS, Heidelberg). Animals were injected
subcutaneously (s.c.) and intraperitoneally (i.p.) with 40 µg peptide, 5 nmol CpG 2006 (TIB MOLBIOL, Berlin, Germany) and an
equal volume of incomplete Freund’s adjuvant. After six weeks interval, a final boost with the phosphorylated peptide and CpG
2006 was given i.p. and s.c. 3 days before fusion. Fusions of the myeloma cell line P3X63–Ag8.653 with the rat immune spleen
cells were performed according to standard procedures. Hybridoma supernatants were screened for binding to biotinylated
phosphopeptides coupled to streptavidin beads (PolyAn Red4 Multiplex Beads, Berlin, Germany) in a multiplex flow cytometry
immunoassay (iQue, Intellicyt; Sartorius, Göttingen, Germany). Specificity was confirmed by negative screening on biotinylated
non-phosphorylated peptides. Positive supernatants were further validated by Western blot analysis. Hybridoma cells from
selected supernatant 1D4 were subcloned twice by limiting dilution to obtain a stable monoclonal cell clone. Experiments in this
work were performed with hybridoma supernatant H2B6P 1D4 (rat IgG2b).

4.13. Quantification and statistical analysis
Image Lab 6.0.1 (Bio-Rad) and ImageJ/Fiji 1.53c software were used for image processing and densitometric analysis of Western
blot data. GraphPad Prism 9 (GraphPad Software, La Jolla, CA, USA) was used to perform statistical analysis and visualization.
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Unless otherwise noted, diagrams show the mean and error bars indicate standard deviation of at least three biological
replicates. When the mathematical prerequisites are met (n ≥ 3) and statistically significant differences exist, p-values were
provided in the figures (*p  ≤  0.05, **p   ≤  0.01, ***p  ≤  0.001). All raw data for statistical analysis are shown in the electronic
supplementary material, table S2. Schematic figures were created using BioRender.com.
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