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Evaluation and mitigation of the limitations 
of large language models in clinical 
decision-making

Paul Hager    1,2,8  , Friederike Jungmann    1,2,8, Robbie Holland    3, 
Kunal Bhagat4, Inga Hubrecht5, Manuel Knauer    5, Jakob Vielhauer    6, 
Marcus Makowski    2, Rickmer Braren    2,9, Georgios Kaissis    1,2,3,7,9 & 
Daniel Rueckert1,3,9

Clinical decision-making is one of the most impactful parts of a physician’s 
responsibilities and stands to benefit greatly from artificial intelligence 
solutions and large language models (LLMs) in particular. However, while 
LLMs have achieved excellent performance on medical licensing exams, 
these tests fail to assess many skills necessary for deployment in a realistic 
clinical decision-making environment, including gathering information, 
adhering to guidelines, and integrating into clinical workflows. Here we 
have created a curated dataset based on the Medical Information Mart for 
Intensive Care database spanning 2,400 real patient cases and four common 
abdominal pathologies as well as a framework to simulate a realistic clinical 
setting. We show that current state-of-the-art LLMs do not accurately 
diagnose patients across all pathologies (performing significantly worse 
than physicians), follow neither diagnostic nor treatment guidelines, 
and cannot interpret laboratory results, thus posing a serious risk to the 
health of patients. Furthermore, we move beyond diagnostic accuracy and 
demonstrate that they cannot be easily integrated into existing workflows 
because they often fail to follow instructions and are sensitive to both the 
quantity and order of information. Overall, our analysis reveals that LLMs 
are currently not ready for autonomous clinical decision-making while 
providing a dataset and framework to guide future studies.

Large language models (LLMs) have the potential to revolutionize our 
medical system1 having shown their capabilities on diverse tasks2–11. 
Importantly, as humans primarily interact with the world through lan-
guage, LLMs are poised to be the point of access to the multimodal 
medical artificial intelligence (AI) solutions of the future12. Until now, 
however, the diagnostic capabilities of models have been tested in 
structurally simple medical contexts, such as canonical vignettes of 
hypothetical patients or clinical case challenges. In both scenarios, all 
the required diagnostic information is provided upfront, and there is 

a single answer to be selected from a list of options. This type of ques-
tion dominates both medical licensing exams13–16, where LLMs score 
well above passing8–10,17–20, and clinical case challenges, where models 
rival clinician performance21–24.

However, while these medical licensing exams and clinical case 
challenges are suitable for testing the general medical knowledge of 
the test-taker, they are far removed from the daily and complex task of 
clinical decision-making. It is a multistep process that requires gath-
ering and synthesizing data from diverse sources and continuously 
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shown in Fig. 1b and explained in ‘Evaluation framework’ in Methods. 
For comparisons with practicing clinicians and further tests concern-
ing robustness, we evaluate the diagnostic accuracy of LLMs as second 
readers, providing all necessary information for a diagnosis upfront, 
which we call MIMIC-IV-Ext Clinical Decision Making with Full Informa-
tion (MIMIC-CDM-FI).

In our study, we tested the leading open-access LLM developed 
by Meta, Llama 2 (ref. 32), and its derivatives. We test both generalist 
versions such as Llama 2 Chat (70B)32, Open Assistant (OASST) (70B)33 
and WizardLM (70B)34, as well as medical-domain aligned models such 
as Clinical Camel (70B)19 and Meditron (70B)35. Further information 
on the models and our selection criteria can be found in ‘Models’ in 
Methods and Table 1. Data taken from the MIMIC database is currently 
prohibited from being used with external application programming 
interfaces (APIs), such as that of OpenAI or Google, due to data privacy 
concerns and data usage agreements, so neither Chat-GPT, GPT-4, 
nor Med-PaLM could be tested. We note that Llama 2, Clinical Camel 
and Meditron have been shown to match and even exceed Chat-GPT 
performance on medical licensing exams and biomedical question 
answering tests19,35.

LLMs diagnose significantly worse than clinicians
To ensure the patient’s safety in an autonomous clinical decision-making 
scenario, LLMs must diagnose at least as well as clinicians. Thus, we 
compared the diagnostic accuracy of the models on a subset of 80 
patients of MIMIC-CDM-FI to four hospitalists with varying degrees 
of experience and from two countries. The makeup of the subset and 
details of the reader study can be found in ‘Reader study’ in Methods.

We find that current LLMs perform significantly worse than clini-
cians on aggregate across all diseases (doctors versus Llama 2 Chat, 
P < 0.001; doctors versus OASST, P < 0.001; doctors versus WizardLM, 
P < 0.001; doctors versus Clinical Camel, P < 0.001; doctors versus 
Meditron, P < 0.001; Fig. 2). The difference in mean diagnostic perfor-
mance between doctors and models was also large, ranging from 16 to 
25 points. The diagnostic accuracy between the clinicians varied, with 
the German hospitalists in residency (mean = 87.50% ± 3.68%) perform-
ing slightly worse than the more senior US hospitalist (mean = 92.50%), 
which could be attributed to differences in experience and language 
and differing guidelines between the countries.

Most models were able to match clinician performance on the 
simplest diagnosis, appendicitis, where 3 of 4 clinicians also correctly 
diagnosed 20 of 20 patients. While the Meditron model matched or 
exceeded the other models at diagnosing patients with appendicitis, 
diverticulitis and pancreatitis, it failed for cholecystitis, diagnosing 
most patients simply with ‘gallstones’ without mention of inflammatory 
effects. This mirrors the general performance of the models, which may 
perform well on certain pathologies but currently lack the diagnostic 
range of human hospitalists. In a standard clinical scenario, where 
every diagnosis is a possibility, models must perform consistently 
across all pathologies of a single initial complaint, such as abdominal 
pain, to be useful.

Neither of the two specialist models performed significantly bet-
ter on aggregate across all diseases and models (Clinical Camel versus 
Llama 2 Chat, P = 0.01; Clinical Camel versus OASST, P = 0.65; Clinical 
Camel versus WizardLM, P = 0.10; Meditron versus Llama 2 Chat, P > 1; 
Meditron versus OASST, P = 0.76; Meditron versus WizardLM, P > 1; 
Fig. 2). As the medical LLMs are not instruction tuned (that is, trained 
to understand and undertake new tasks), they are unable to complete 
the full clinical decision-making task where they must first gather infor-
mation and then come to a diagnosis. As this is the primary-use case of 
a clinical decision-making model, we excluded them from all further 
analysis and only examined the Llama 2 Chat, OASST and WizardLM 
models for the rest of this work.

In our simulated clinical environment, which uses the MIMIC-CDM 
dataset, the LLM must specify all information it wishes to gather to 

evaluating the facts to reach an evidence-based decision on a patient’s 
diagnosis and treatment25,26. As this process is very labor intensive, 
great potential exists in harnessing AI, such as LLMs, to alleviate much 
of the workload. LLMs can summarize reports3–5, generate reports2,4, 
serve as diagnostic assistants21,27 and could ultimately autonomously 
diagnose patients. To understand how useful LLMs would be in such an 
autonomous, real-world setting, they must be evaluated on real-world 
data and under realistic conditions. However, the only analysis that 
tested an LLM throughout the diagnostic clinical workflow used curated 
lists of possible answers and examined only 36 hypothetical clinical 
vignettes28. Furthermore, any model that is used in such a high-stakes 
clinical context must not only be highly accurate, but also adhere to 
diagnostic and treatment guidelines, be robust, and follow instruc-
tions, all of which have not been tested in previous medical evaluations.

Here, we present a curated dataset based on the Medical Informa-
tion Mart for Intensive Care (MIMIC-IV) database spanning 2,400 real 
patient cases and 4 common abdominal pathologies (appendicitis, 
pancreatitis, cholecystitis and diverticulitis) as well as a comprehensive 
evaluation framework around our dataset to simulate a realistic clini-
cal setting. We provide LLMs with a patient’s history of present illness 
and ask them to iteratively gather and synthesize additional informa-
tion such as physical examinations, laboratory results and imaging 
reports until they are confident enough to provide a diagnosis and 
treatment plan. Our dataset, task and analysis comprise a large-scale 
evaluation of LLMs on everyday clinical decision-making tasks in a 
realistic, open-ended environment. Unlike previous works, we test 
the autonomous information-gathering and open-ended diagnostic 
capabilities of models, representing an essential step toward evaluat-
ing their suitability as clinical decision-makers.

To understand how useful LLMs would be as second readers, 
we compare the diagnostic accuracy of the models with that of clini-
cians. Furthermore, we propose and evaluate a range of character-
istics beyond diagnostic accuracy, such as adherence to diagnostic 
and treatment guidelines, correct interpretation of laboratory test 
results, instruction-following capabilities, and robustness to changes 
in instructions, information order and information quantity. Finally, 
we show that summarizing progress and filtering laboratory results 
for only abnormal results addresses some of the current limitations 
of models. We make our evaluation framework and dataset freely and 
openly available to guide future studies considering the use of LLMs 
in clinical practice.

Results
Creating the MIMIC-CDM dataset and evaluation framework
Our curated dataset, MIMIC-IV-Ext Clinical Decision Making 
(MIMIC-CDM), is created using the well-established MIMIC-IV database, 
which contains de-identified electronic health records29. Figure 1a and 
‘MIMIC-CDM dataset’ in Methods list the steps involved in creating the 
MIMIC-CDM dataset and its makeup. Our dataset contains data from 
2,400 unique patients presenting with acute abdominal pain to the 
emergency department and whose primary diagnosis was one of the 
following pathologies: appendicitis, cholecystitis, diverticulitis or 
pancreatitis. We chose these target pathologies as they represent clini-
cally important diagnoses of a common chief complaint, abdominal 
pain, which accounts for 10% of all emergency department visits30,31. 
Importantly, good differentiation between the four pathologies can 
be achieved using standard diagnostic tests, all of which are present 
in our dataset.

To reflect a realistic clinical setting that allows LLMs to autono-
mously engage in every step of the clinical decision-making process, 
we have created a comprehensive evaluation framework around our 
dataset. Using our framework and dataset, we present LLMs with a 
patient’s history of present illness and task them to gather and synthe-
size information to arrive at a diagnosis and treatment plan, which we 
evaluate for diagnostic accuracy as well as adherence to guidelines, as 
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accurately diagnose a patient. We observed a general decrease in per-
formance, compared to MIMIC-CDM-FI (Extended Data Fig. 1), across 
all pathologies (Fig. 3). The mean diagnostic averages fell to 45.5% 
(versus 58.8% on MIMIC-CDM-FI) for Llama 2 Chat, 54.9% (versus 67.8%) 
for OASST and 53.9% (versus 65.1%) for WizardLM. All models per-
formed best in diagnosing appendicitis (Llama 2 Chat, 74.6%; OASST, 
82.0%; WizardLM, 78.4%), which is most likely because patients with 

appendicitis have consistent key symptoms with 791 of 957 radiologist 
reports (82.7%) directly stating that the appendix is dilated, enlarged 
or filled with fluid, and typically lack other intra-abdominal pathology 
descriptions that distract from the acute diagnosis.

In summary, LLMs do not reach the diagnostic accuracy of clini-
cians across all pathologies when functioning as second readers, and 
degrade further in performance when they must gather all information 
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Fig. 1 | Overview of dataset creation and evaluation framework. a, To properly 
evaluate LLMs for clinical decision-making in realistic conditions, we created 
a curated dataset from real-world cases derived from the MIMIC-IV database, 
which contains comprehensive electronic health record data recorded during 
hospital admissions. b, Our evaluation framework reflects a realistic clinical 
setting and thoroughly evaluates LLMs across multiple criteria, including 

diagnostic accuracy, adherence to diagnostic and treatment guidelines, 
consistency in following instructions, ability to interpret laboratory results, and 
robustness to changes in instruction, information quantity and information 
order. ICD, International Classification of Diseases; CT, computed tomography; 
US, ultrasound; MRCP, magnetic resonance cholangiopancreatography.
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themselves. Thus, without extensive physician supervision, they would 
reduce the quality of care that patients receive and are currently unfit 
for the task of autonomous clinical decision-making.

Current LLMs are hasty and unsafe clinical decision-makers
In addition to poor diagnostic accuracy, LLMs often fail to order the 
exams required by diagnostic guidelines, do not follow treatment 
guidelines and are incapable of interpreting lab results, making them 
a risk to patient safety. The current clinical guidelines used for this 
study are available in the literature for appendicitis36, cholecystitis37, 
diverticulitis38 and pancreatitis39.

All guidelines recommended physical examinations as an essential 
part of the diagnostic process, preferably as the first action. We find 
that only Llama 2 Chat consistently asks for physical examination 
results, either as the first action (97.1%) or at all (98.1%; Extended Data 
Fig. 2). The other two models requested less examinations (OASST, 
79.8% and 87.7%; WizardLM, 53.1% and 63.9%), thereby omitting an 
essential piece of information.

Based on the diagnostic guidelines, we defined categories of neces-
sary laboratory tests for each pathology, including signs of inflamma-
tion, functional fitness of the liver and gallbladder, pancreas enzymes, 

and the severity of a patient’s pancreatitis. For our evaluation, we expect 
at least one test from each category to be requested, and the exact tests 
included in each category can be found in Supplementary Section A. 
We found that no model consistently orders all necessary categories, 
despite each test category being independently requested by all doc-
tors in the MIMIC-CDM dataset (Extended Data Fig. 3). While OASST 
performs better than the other two models, reaching up to 93.3% and 
87.2% in the inflammation category for appendicitis and diverticulitis, it 
often does not order the necessary tests for a diagnosis of pancreatitis 
(pancreas enzymes, 56.5%; severity, 76.2%), partially explaining why its 
diagnostic performance on pancreatitis was only 44.1% (Fig. 3).

While it is important to order the correct laboratory tests, it is 
even more essential to correctly interpret them. To test the interpre-
tation capabilities of the models, we provided each test result with 
the accompanying reference range and asked them to classify each 
result as either below, within or above the provided range. Any human 
with numerical literacy should be able to achieve perfect accuracy on 
such a task; however, all LLMs performed very poorly, especially in 
the critical categories of low test results (Chat, 26.5%; OASST, 70.2%; 
WizardLM, 45.8%) and high test results (Chat, 50.1%; OASST, 77.2%; 
WizardLM, 24.1%; Extended Data Fig. 4). Such a basic incomprehension 

Table 1 | An overview of the considered LLMs and their properties

Model Base Parameters Training dataset Downloadable

Llama 2 Chat32 Llama 2 (ref. 32) 70B Public dataa ✓

OASST33 Llama 2 (ref. 32) 70B Public dataa, https://huggingface.co/OpenAssistant/llama2-
70b-oasst-sft-v10/, open-source data

✓

WizardLM34 Llama 2 (ref. 32) 70B Public dataa, Evol-Instruct generated34 ✓

Clinical Camel19 Llama 2 (ref. 32) 70B Public dataa, https://sharegpt.com/; ShareGPT; PubMed articles (before 
2021)19, MedQA13

✓

Meditron35 Llama 2 (ref. 32) 70B Public dataa, https://huggingface.co/datasets/epfl-llm/guidelines/; clinical 
guidelines, public PubMed abstracts35, public PubMed papers35, RedPajama58

✓

Chat-GPT59 GPT3.5 (ref. 60) ??? User conversationsb, Common Crawl61, WebText2 (ref. 62), Books1 (ref. 63), 
Books2 (ref. 63), Wikipedia

✗

GPT-4 (ref. 64) ??? ??? ??? ✗

Med-PaLM9 Flan-PaLM65 540B Webpagesb, Wikipediab, social mediab, GitHubb, news articlesb, booksb, 
473 instruction fine-tuning datasets65, HealthSearchQA9, MedicationQA66, 
LiveQA67

✗

Med-PaLM 2 (ref. 8) PaLM 2 (ref. 68) 340B Web Documentsb, booksb, codeb, mathematicsb, conversational datab, 
MedQA13, HealthSearchQA9, MedicationQA66, LiveQA67

✗

Due to the data usage agreement of MIMIC-IV, only open-access models that can be downloaded can be used with the data; thus, only LLMs based on Llama 2 were used in this study. ??? 
indicates no information has been made public. aMeta defines ‘public data’ as a ‘mix of data from publicly available sources’. bNo further information provided.

0
Appendicitis Cholecystitis Diverticulitis Pancreatitis Mean

20

40

60

D
ia

gn
os

tic
 a

cc
ur

ac
y 

(%
) 80

100

Llama 2 Chat OASST WizardLM Clinical Camel Meditron Doctors

89

100 100 100 99 96

62
63

46

68

84

55
46 50

59
58

79
74

76

84
89

66 69 66

73
64

8986

35

13

Fig. 2 | LLMs diagnose significantly worse than doctors when provided with 
all information. On a subset (n = 80) of MIMIC-CDM-FI, we compared the mean 
diagnostic accuracy of LLMs over multiple seeds (n = 20) with clinicians (n = 4) 
and found that LLMs perform significantly worse on average (P < 0.001) and 
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diagnostic accuracy is shown above each bar. Vertical lines indicate the standard 
deviation. The individual data points are shown.
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of laboratory test results is a great risk to patient safety and must be 
resolved before LLMs become useful in a diagnostic capacity.

While diagnostic guidelines provide advice on the potential use 
of imaging, highlighting the strengths and weaknesses of each modal-
ity in the context of the disease and the patient’s condition, the use of 
imaging in clinical practice can vary. We found that models sometimes 
matched the modalities requested by the doctors in the dataset, but 
often came to a diagnosis without requesting an abdominal imaging 
scan (Extended Data Fig. 5). We do not explicitly penalize models for 
not requesting an imaging scan, but as we later show that imaging is 
the most useful diagnostic tool for the LLMs for all pathologies except 
pancreatitis, occasional failure to request imaging could be partly 
responsible for their low diagnostic accuracy.

In addition to not following diagnostic guidelines, LLMs gen-
erally fail to adhere to treatment guidelines. We found that the 
LLMs consistently did not recommend appropriate and sufficient 
treatment, especially for patients with more severe forms of the 
pathologies (Fig. 4). While they are consistent in recommending 
some treatments such as appendectomy for appendicitis and anti-
biotics for diverticulitis, they rarely recommend other treatments 
when appropriate such as colectomy for patients with diverticulitis 
with perforated colons or drainage of infected pancreatic necrosis. 
Furthermore, they drastically undertreat appendicitis with regard 
to the necessity of antibiotics and providing support, undertreat 
diverticulitis with the need for a colonoscopy in the future to check 
for colon cancer, and undertreat pancreatitis with sufficient sup-
port. In summary, following the treatment recommendations of the 
models would negatively impact the health of patients, particularly 
those with more advanced stages of disease where indications for 
emergency operations were ignored.

Taken together, the lack of consistency of the LLMs in ordering all 
of the required tests for a diagnosis based on current guidelines indi-
cates a tendency to diagnose before understanding or considering all 
the facts of the patient’s case. Such hasty decision-making combined 
with their poor diagnostic accuracy and treatment recommendations 
pose a serious risk to the health of patients without extensive clinician 
supervision and control.

Current LLMs require extensive clinician supervision
In addition to consistently and safely arriving at the correct diagnosis 
and treatment plan, models must integrate into established clinical 
workflows to be useful. Central to this is the ability to follow instruc-
tions and generate answers so they can be easily processed and used 
by other parts of the clinic without physician supervision.

All models struggle to follow the provided instructions (Extended 
Data Fig. 6), making errors every two to four patients when providing 

actions and hallucinating nonexistent tools every two to five patients. 
When providing diagnoses on the MIMIC-CDM dataset, errors are 
made every three to five patients; while on the MIMIC-CDM-FI dataset, 
WizardLM is very consistent in following instructions, and Llama 2 Chat 
makes an error on almost every patient. While many of these errors are 
easily caught (Supplementary Section B), the error rate is so high that 
extensive manual controls would be necessary to ensure model output 
is being correctly interpreted, reducing their usefulness as autonomous 
clinical decision-makers.

Another key component that must be fulfilled before we con-
sider integrating such models into real-world workflows is robustness. 
Models must not be sensitive to small changes in user instructions as 
their performance will then vary greatly based on who is interacting 
with them. On the MIMIC-CDM-FI dataset, we found that changes in 
instructions (Supplementary Section C) can lead to large changes (both 
positive and negative) in diagnostic accuracy (Extended Data Fig. 7). 
For example, large changes were seen when removing system and user 
instructions (up to +5.1% for Chat on cholecystitis, down to −16.0% for 
Chat on pancreatitis), or when removing all medical terminology from 
the system instruction (up to +6.2% for WizardLM on diverticulitis, 
down to −3.5% for OASST on pancreatitis). Additionally, we see that 
even minor changes in instructions can greatly change diagnostic 
accuracy such as asking for the ‘main diagnosis’ (up to +7.0% for Chat 
on diverticulitis, down to −10.6% for WizardLM on cholecystitis) or 
‘primary diagnosis’ (up +8.7% for Chat on pancreatitis, down to −5.2% 
for WizardLM on cholecystitis) instead of ‘final diagnosis’. Models 
should be able to provide the most appropriate diagnosis given the 
situation, in this case the reason for the patient’s abdominal pain, and 
not be sensitive to minute changes in phrasing so as not to require 
extensive clinician training before use.

Furthermore, LLMs used for autonomous clinical decision-making 
should not degrade in performance when provided with relevant diag-
nostic information. We show that models perform worse when all  
diagnostic exams are provided, typically attaining their best perfor-
mance when only a single exam is provided in addition to the history 
of present illness (Fig 5). Removing information greatly increases 
diagnostic accuracy, with cholecystitis diagnosis improving by 18.5% 
for the Chat and 16.5% for the WizardLM models when only providing 
radiologist reports, and pancreatitis diagnosis improving by 21.6% 
(Chat), 9.5% (OASST) and 8.6% (WizardLM) when only providing labora-
tory results. This reduces the usefulness of such models as they cannot 
simply be given all relevant information and be trusted to arrive at their 
best diagnosis. To optimize model performance, clinicians would have 
to decide which diagnosis is most likely to effectively filter the infor-
mation presented, removing any benefit of deploying an autonomous 
clinical decision-making model.
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We further tested the diagnostic consistency of the models on 
the MIMIC-CDM-FI dataset by switching the order of the information 
from the canonical physical examination, then laboratory tests, then 
imaging, to all possible permutations thereof (history of present illness 
was always included first). We showed that all models have large ranges 
of performance, up to 18.0% (Chat—pancreatitis), 7.9% (OASST—chol-
ecystitis) and 5.4% (WizardLM—cholecystitis; Fig. 6 and Supplementary 
Section D). Importantly, we found that the order of information that 
delivers the best performance for each model is different for each 
pathology (Supplementary Section E). This again reduces the benefits 
of deploying the models as clinicians must constantly consider and 
monitor in which order they provide the models with information, in 
a disease-specific manner, to not degrade performance.

In summary, extensive clinician supervision and prior evaluation 
of the most probable diagnosis would be required to ensure proper 
functioning of LLMs because they do not reliably follow instructions, 
perform better with a disease-dependent order of information and 
degrade in performance when given relevant information. Further-
more, their sensitivity to small changes in instructions that seem incon-
sequential to humans would require extensive clinician training to 
ensure good performance.

First steps toward mitigating limitations of current LLMs
To help address some of the limitations found in this analysis, we 
explore simple modifications that can be done without retraining the 
model. One major limitation is that LLMs are currently limited in the 
amount of text they can read, which we address with an automatic 

summarization protocol (‘Evaluation framework’ in Methods). Remov-
ing such a summarization protocol resulted in marginal but consistent 
losses on the mean of −1.3% (Chat), −0.8% (OASST) and −0.5% (Wiz-
ardLM), and particularly hurt the diagnosis of diverticulitis (−4.7%, 
Chat; −2.7%, OASST; −3.5%, Wizard; Supplementary Section F). Due to 
the inability of LLMs to reliably interpret laboratory results (Extended 
Data Fig. 4), even when provided with reference ranges, and their issues 
understanding larger quantities of information (Fig. 5), we found that 
filtering the laboratory results and removing all normal test results gen-
erally improved performance on the MIMIC-CDM-FI dataset (Extended 
Data Fig. 8). As many of our other analyses examine the general behavior 
of laboratory tests and their impact on model performance, we do 
not use this fix for any other sections of this work. While this filtering 
improves the performance of the LLMs as they function today, ideally 
a model would perform best with all available information.

Discussion
The strong performance of LLMs on medical licensing exams has led 
to increased interest in using them in clinical decision-making scenar-
ios involving real patients. However, medical licensing exams do not 
test the capabilities required for real-world clinical decision-making. 
We have evaluated leading open-access LLMs in an autonomous clini-
cal decision-making scenario with thousands of real-world cases to 
assess their potential benefits and possible harms. By not only com-
paring their diagnostic performance against clinicians, but also test-
ing their information-gathering abilities, adherence to guidelines and 
instruction-following capabilities as well as their robustness to changes in 
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example, of the 957 patients with appendicitis, 808 received an appendectomy 
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correctly diagnosed 603 (indicated below the Llama 2 Chat bar). Of those 603 
patients, Llama 2 Chat correctly recommended an appendectomy 97.5% of the 
time. ERCP, endoscopic retrograde cholangiopancreatography.
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prompts, information order and information quantity, we move beyond 
simple evaluations of diagnostic accuracy and establish a range of charac-
teristics that are necessary for safe and robust integration into the clinic. 
In this work, we have shown that current leading LLMs are unsuitable for 
autonomous clinical decision-making on all of these accounts.

The biggest barrier to using current LLMs either for autono-
mous clinical decision-making or as a second reader is that no model 
consistently reached the diagnostic accuracy of clinicians across all 
pathologies, with a further decrease in accuracy when having to gather 
diagnostic information themselves. To optimize performance on this 
specific clinical decision-making task, future studies could explore 
fine-tuning40 or prompt-tuning41 a base LLM as well as automated 
prompt engineering42. Another critical issue is that LLMs are unable to 
classify a lab result as normal or abnormal, even when provided with 
its reference range. This is underscored by the fact that presenting 
the model with only abnormal laboratory results generally improved 
diagnostic performance.

We further found that the models do not follow diagnostic guide-
lines, which is particularly problematic considering their low overall 
diagnostic accuracy, indicating a tendency to diagnose before fully 
understanding a patient’s case. Insufficient diagnostic information also 
negatively affected the treatment recommendations of LLMs, where we 
showed that models do not follow all established treatment guidelines, 
especially for severe cases. The hasty decision-making of the models 

combined with their low diagnostic performance and poor treatment 
recommendations pose a serious risk to the health of patients without 
extensive clinician supervision and control.

Beyond diagnostic accuracy, we extensively test models on their 
reliability and robustness, which are essential characteristics to ensure 
consistent and safe patient care. We found that models struggle to fol-
low instructions, often hallucinating nonexistent tools and requiring 
continuous manual supervision to ensure proper performance. Models 
are also sensitive to seemingly inconsequential changes in instruction 
phrasing, requiring clinicians to carefully monitor the language they 
use to interact with the models to not degrade performance. Contrary 
to expectation, LLMs diagnose best when only a single diagnostic exam 
is provided rather than when given all relevant diagnostic information, 
demonstrating an inability to extract the most important diagnostic 
signal from the evidence. Future work could explore explicitly sum-
marizing each new piece of evidence to further focus the model on only 
the most relevant information. Counterintuitively, we found models to 
be sensitive to the order in which information is presented, resulting in 
large changes in diagnostic accuracy despite identical diagnostic infor-
mation. Importantly, all of these weaknesses are disease specific within 
each model, meaning that a different instruction, diagnostic test and 
order of tests achieved the best results for each pathology. Physicians 
would thus have to perform preliminary diagnostic evaluations in an 
attempt to maximize model performance according to their suspected 
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This places an unnecessary burden upon clinicians who would need to make 
preliminary diagnoses to decide the order in which they feed the models with 
information for best performance.
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diagnosis. This both increases the cognitive burden placed upon physi-
cians and biases models toward the current preliminary diagnosis of 
the physician, removing the benefit of an unbiased second opinion.

Many of the current limitations of LLMs exposed in our study have 
been shown concurrently in domains outside medicine. It has been 
shown that LLMs are easily distracted43 and that their performance on 
tasks can vary by between 8% and 50% just by optimizing the instruc-
tions44. The sensitivity of LLMs to the order of presented information 
has been well documented on multiple-choice questions45,46 and infor-
mation retrieval47. The difficulty LLMs have in interpreting numbers48 
and solving simple arithmetic49 is an active research topic50,51. Even the 
largest models currently available, PaLM 2 and GPT-4, perform poorly 
on instruction-following tests52. Our analysis demonstrates how these 
current limitations of LLMs become harmful in medical contexts where 
robustness and consistency are essential.

We argue that these understudied aspects of model performance 
should become normal parts of medical model evaluations and that all 
of these issues must be addressed before LLMs can be considered for 
clinical decision-making.

While we have been able to demonstrate the limitations of current 
leading LLMs for clinical decision-making, we consider the following 
limitations of our study. First, as we are using a dataset of real-world 
clinical data, we must deny requests for data not in the dataset. How-
ever, as the MIMIC-IV database contains all data gathered during the 
hospital stay, we can assume that all information required for a diagno-
sis and treatment plan is contained within our dataset. Furthermore, 
being flexible enough to handle acute restrictions, such as unavailable 
imaging modalities or laboratory tests, and still come to a correct diag-
nosis is a desirable ability for any real-world clinical AI application. Due 
to this difficulty, we were lenient in our evaluation of the diagnoses, 
accepting alternative names for the pathologies, as long as they were 
medically correct (see Supplementary Section G). Additionally, both 
datasets and models have a clear bias toward the USA. The MIMIC data 
are in English and were gathered in an American hospital by doctors 
following American diagnostic and treatment guidelines. As the text 
used to train the LLMs is over 98% English and the most mentioned 
nationality by far is American (69.4%)32, the models are well suited 
for the constructed dataset, allowing us to use exclusively American 
guidelines for a fair evaluation. However, the generalizability of our 
results to other languages or countries with differing guidelines is 
unknown and needs to be explored in future work. To make sure the 
gains of advanced AI are equitably shared among all communities, 
there is a strong need for more clinical datasets in languages other 
than English and from countries other than the USA.

We believe that there exists great potential in using LLMs as clinical 
support systems with close collaboration between models and clini-
cians21,27; however, we have primarily evaluated the capabilities of models 
as autonomous decision-makers in this study. This allows for a fair and 
consistent evaluation of any current and future models, reducing the 
additional time required and costs generated by including multiple doc-
tors in every evaluation. We welcome the use of our dataset and evaluation 
framework to test precisely such a collaborative effort between models 
and clinicians, where the summaries, actions and possible diagnoses of 
models returned throughout our framework are served to clinicians as 
an unbiased second opinion or to generate a list of possible diagnoses. 
Importantly, studies as to the impact of automation bias53,54 and human–
AI interaction biases could also be explored in such a context55–57.

Lastly, by focusing on curating data for in-depth analysis of model 
behavior along every step of the diagnostic pathway, it was not feasible 
to include the full breadth of abdominal diseases. A fully autonomous 
clinical decision-making model must show strong performance across 
all possible pathologies of a particular initial complaint to guarantee 
adequate patient care; thus, it will be important to test future mod-
els on both additional diagnostic endpoints and a broader range of  
initial complaints.

In conclusion, our study presents an analysis of the capabili-
ties of current state-of-the-art LLMs on real-world data in a realistic 
clinical decision-making scenario. Our main finding is that current 
models do not achieve satisfactory diagnostic accuracy, performing 
significantly worse than trained physicians, and do not follow treat-
ment guidelines, thus posing a serious risk to the health of patients.  
This is exacerbated by the fact that they do not request the necessary 
exams for a safe differential diagnosis, as required by diagnostic 
guidelines, indicating a tendency to diagnose before fully under-
standing a patient’s case. Furthermore, we show LLMs are distracted 
by relevant diagnostic information, are sensitive to the order of diag-
nostic tests and struggle to follow instructions, prohibiting their 
autonomous deployment in the clinic and requiring extensive clini-
cian supervision.

By sourcing our dataset from real clinical cases and closely aligning 
our evaluation criteria with official diagnostic and treatment guide-
lines, we present an analysis to help physicians understand how well 
LLMs would perform in the clinic today. While our findings cast doubt 
on the suitability of LLMs for clinical decision-making as they currently 
exist, we believe there lies great potential in their use after the issues 
raised are resolved.

By making our dataset and framework freely available, we hope 
to guide the development of the next generation of clinical AI models 
and contribute toward a future where physicians can feel confident in 
using safe and robust models to improve patient outcomes.
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Methods
MIMIC-CDM dataset
We created our curated dataset of 2,400 patients, which we call 
MIMIC-CDM, using the MIMIC-IV Database29. The MIMIC-IV Database 
is a comprehensive, publicly available database managed by the Mas-
sachusetts Institute of Technology (MIT) of the de-identified elec-
tronic health records of almost 300,000 patients who presented to 
the Beth Israel Deaconess Medical Center in Boston, Massachusetts, 
USA from 2008 to 2019. It contains real patient cases from the hospital 
and includes all recorded measurements such as laboratory and micro-
biology test results, diagnoses, procedures, treatments and free-text 
clinical notes such as discharge summaries and radiologist reports.

In this work, we focus on four target pathologies for which we 
filter: appendicitis, cholecystitis, diverticulitis and pancreatitis. As 
we are only testing for these pathologies, we must ensure that they 
are the primary diagnosis and reason for the patient presenting to the 
emergency department and not merely a secondary diagnosis during 
a longer and more serious hospital admission. Thus, we first filtered 
patients for our targets using the diagnosis table, which contains all 
recorded diagnostic International Statistical Classification of Diseases 
and Related Health Problems (ICD) codes. Then, we manually checked 
the discharge diagnosis of each patient’s discharge summary and only 
included those patients whose very first primary diagnosis was one of 
our pathologies. If any other diagnosis was written in the discharge 
diagnosis before one of our targets, the patient’s case was removed 
from the dataset. If a patient was diagnosed with more than one of the 
four pathologies included in our analysis, the patient was removed 
from the dataset.

After filtering for the appropriate pathologies, we split the dis-
charge summary into its individual sections, extracting the history of 
present illness and physical examination. First, we removed all patients 
who had pathology mentioned in their history of present illness as these 
admissions were mostly transfers where the diagnosis had already 
been established and the hospital admission data were thus missing 
the initial emergency department test results relevant for diagnostic 
purposes. Furthermore, we removed all patients who had no physical 
examination included as this is a crucial source of information accord-
ing to the diagnostic guidelines of each pathology.

We gathered all laboratory and microbiology tests recorded dur-
ing a patient’s hospital admission and those up to 1 day before admis-
sion. We included tests up to 1 day before admission as the MIMIC-IV 
documentation states that there are millions of laboratory tests that 
are not associated with any hospital admission but can be joined to 
patient stays using the patient’s ID, recorded test time and hospital 
admission time. The tests before the official start of the admission 
often had highly relevant values for diagnostic purposes and were 
thus included, although only if they were not associated with any 
other hospital admission. If a laboratory test was recorded multiple 
times, we included only the first entry in our dataset to simulate a 
therapy-naive diagnostic clinical decision-making scenario. Thus, we 
currently do not capture the changes in laboratory test values if the 
patient’s condition deteriorates over their hospital stay. This could 
be remedied by examining all time points and determining the most 
abnormal test result to be returned or by allowing multiple requests 
for laboratory tests to return successive test results. However, both 
of these approaches would widen the temporal gap of provided test 
results, possibly providing conflicting diagnostic signals. Consider-
ing LLMs also have poor temporal reasoning capabilities69, simply 
including the timestamp would most likely not be an adequate solu-
tion. Furthermore, we saved all reference ranges of the laboratory 
tests provided by MIMIC and established a comprehensive dictionary 
mapping possible synonyms and abbreviations of tests to their original 
entry to be able to interpret all requests of the LLMs for test results. 
This dictionary of synonyms was constantly expanded during initial 
testing of the models until no unrecognized tests were recorded.  

The dictionary also contains common laboratory test panel names 
that map to a list of the individual tests of that panel, such as complete 
blood count, basic metabolic panel, liver function panel, renal function 
panel and urinalysis, among others.

Similarly to the laboratory data, many radiology reports were 
not associated with any hospital admission, but their timestamp 
was a few hours before the recorded start of the hospital admis-
sion. These often contained diagnosis-relevant information and 
so we used the same 24-h inclusion criteria as those used for the 
laboratory results and again allowed only those exams not associ-
ated with any other hospital admission. Next, we established a list 
of uniquely identifying keywords for each anatomical region and 
imaging modality. We used this list of keywords to determine the 
region and modality of each included report from its MIMIC-IV 
provided exam name. Mappings were made for special exams such 
as CT urography to CT and MRCP to magnetic resonance imaging, 
to provide them if, for example, a CT scan or magnetic resonance 
imaging was requested, due to their low frequency. We also used this 
list when interpreting the model requests for imaging information 
during evaluation. We manually checked and adjusted the keywords 
until all reports in MIMIC-IV were correctly classified. Radiology 
reports were split into report sections and only the ‘findings’ section 
was included. This was done as many other sections such as ‘conclu-
sions’ or ‘impressions’ contained the diagnosis of the radiologist, 
which would have made the task trivial.

Finally, all procedures and operations performed during a patient’s 
hospital stay were saved to understand which patient-specific treat-
ments were undertaken. The procedures in the MIMIC-IV procedures 
table saved as ICD-9 and ICD-10 codes were extracted and combined 
with the free-text procedures section from each patient’s discharge 
summary. The free-text extraction from the discharge summary was 
required as many essential procedures, including surgeries, were often 
not included in the procedures table.

A final round of data cleaning replaced any remaining mentions 
of the primary diagnosis with three underscores ‘___’, which is used by 
MIMIC-IV to censor data such as a patient’s name or age. To increase 
data quality, we excluded patients who had no associated laboratory 
tests or for whom no abdominal imaging was recorded. The final data-
set, MIMIC-CDM, contains 2,400 unique patients presenting to the 
emergency department with one of the four target pathologies (957 
appendicitis, 648 cholecystitis, 257 diverticulitis, 538 pancreatitis) 
and whose makeup is detailed in Fig. 1a. The dataset contains physi-
cal examinations for all patients (2,400), 138,788 laboratory results 
from 480 unique laboratory tests and 4,403 microbiology results 
from 74 unique tests. Furthermore, MIMIC-CDM contains 5,959 radiol-
ogy reports, including 1,836 abdominal CTs, 1,728 chest X-rays, 1,325 
abdominal ultrasounds, 342 abdominal X-rays and 227 MRCP scans. 
Finally, there were 395 unique procedures recorded over all patients, 
with a total of 2,917 ICD procedures plus the 2,400 free-text procedures 
specified in the discharge summaries. Supplementary Section H shows 
the age, sex and race statistics of the patients in the dataset split up by 
pathology. As the reports provided were de-identified, the models 
did not have access to any of these characteristics during evaluation.

A second version of the dataset, which we call MIMIC-CDM-FI, 
combines all the information required for diagnosing each case and 
presents it all at once. Here we include the history of present illness, 
physical examination, all abdominal imaging and all laboratory data 
helpful for both reaching the correct diagnosis and ruling out differen-
tial diagnoses. To determine which laboratory data to include, we used 
the diagnostic guidelines of each disease: appendicitis36, cholecystitis37, 
diverticulitis38 and pancreatitis39. The specific tests included in each 
category can be found in Supplementary Section A. The information 
is presented in the order: history of present illness, physical examina-
tion, laboratory results, imaging. The imaging is ordered by chart time 
from earliest to latest.
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Reader study
For our reader study, we included two clinicians from the Klinikum 
Rechts der Isar Hospital of the Technical University of Munich, Germany 
(with 2 and 3 years of experience), one from the Ludwig Maximilian 
University Hospital in Munich, Germany (4 years of experience) and 
one from the Christiana Care hospital in Delaware, USA (29 years of 
experience).

All four of the hospitalists are internal medicine physicians with 
emergency department experience.

A subset of 80 representative patients of the MIMIC-CDM-FI data-
set was randomly selected to be used for comparison with the physi-
cians. The subset was evenly split between the four target pathologies 
with 20 patients randomly selected from each pathology and matching 
the makeup of the full dataset (Supplementary Section H). To mitigate 
the risk of physicians recognizing the pattern of four distinct target 
pathologies, a further five patients presenting with gastritis, a urinary 
tract infection, esophageal reflux and a hernia were included. For the 
physicians, the data were prepared as a PDF and the information was 
provided exactly in the same order and quantity as for the models. 
Reference ranges were included when provided by MIMIC-IV. The 
abbreviations in the history of present illness and physical examina-
tion were replaced with unabbreviated text for the German doctors, 
as they were unfamiliar with US-specific abbreviations. The models 
performed worse with unabbreviated text (Supplementary Section 
I). The laboratory data were provided as a table in the PDF to increase 
readability. Thus, the final dataset used in the reader study spanned 
100 patients, of whom 80 are part of MIMIC-CDM-FI. Each hospitalist 
was instructed to provide the primary pathology affecting the patient 
and was given the same 100 patients in a random order to diagnose.

Each LLM model was evaluated 20 times, using different random 
seeds, over the subset of 80 patients to increase statistical power. All 
statistical tests were corrected for multiple comparisons (‘Metrics and 
statistical analysis’ in Methods).

Our comparison between models and clinicians included only 
three doctors in residency from Germany and one senior hospitalist 
from the United States. Increasing the diversity and number of clini-
cians as well as the number of patient cases evaluated would give a more 
nuanced view of model performance compared to practicing hospi-
talists. Future models could possibly soon reach or even outperform 
clinicians in residency and thus provide a low-cost, interactive second 
opinion to consult, as is already the case for AI models in other areas 
such as mammography screening70.

Evaluation framework
To realistically test the capabilities of LLMs on the task of clinical 
decision-making, we simulated a clinical environment in which a patient 
presents to the emergency department with acute abdominal pain 
and information must be iteratively gathered before a final diagnosis 
is made. The LLM is tasked with the Clinical Decision Making (CDM) 
task (Supplementary Section C.1), which instructs it to consider a 
patient’s symptoms and gather information to come to a diagnosis 
and treatment plan while also explaining the two formats it should 
answer with. Both formats ask the LLM to ‘think’ (that is, consider the 
evidence, which has been shown to improve the quality of reasoning 
and future actions71,72), and then either request more information 
or provide a diagnosis and treatment plan. This allows the model to 
summarize the most important information into the thoughts sec-
tion, which guides their choice of action or diagnosis. If it chooses to 
request more information, it must state ‘action’ followed by either 
‘physical examination’, ‘laboratory test’ or ‘imaging’. Additionally, it 
must provide an ‘action input’, which specifies what information is 
desired from the action (that is, ‘complete blood count’ or ‘abdominal 
ultrasound’). The ‘action input’ field is ignored if a physical examination 
is requested. The second format is to be used when the model decides 
enough information has been gathered for a diagnosis, and asks the 

model to consider the evidence one last time and then provide a final 
diagnosis and treatment plan.

The model is initially presented with these instructions and the 
history of present illness of the patient and then prompted to record its 
‘thoughts’; thus, beginning the clinical decision-making task. Outputs 
are generated until either a stop token is reached or the model generates 
the ‘observation(s)’ phrase, indicating that it has reached the end of its 
action request and would potentially start hallucinating the result of 
its request. We stop model text generation here and then examine the 
response of the model, extracting which action was desired and what the 
input to that action is. If the model does not follow the instructions and, 
for example, writes ‘perform a physical examination’ instead of ‘action: 
physical examination’, we still provide the appropriate information but 
record every instance of it not following instructions for our evaluations 
(Extended Data Fig. 6). We call these errors ‘next action errors’.

If the requested information is available for that patient case, 
we return it and prompt the model again to consider the evidence. If 
the information is not available, we inform the model and ask for an 
alternative action. We return only the laboratory tests and radiologist 
reports that were specifically requested. Laboratory tests are compared 
to the previously mentioned dictionary of available tests to return the 
best match. If no match is found, ‘NA’ is returned. Requests for imaging 
have the exam modality and anatomical region extracted using the 
aforementioned keyword lists and used to match against those saved 
for that patient in MIMIC-CDM. If multiple reports exist for a modality 
and region combination, we return the first report chronologically. 
The next request for an imaging examination of that modality and 
region will return the next report chronologically. Once there are 
no reports left to return, we inform the model that we can no longer 
provide reports of that modality and region combination. If a physical 
examination was requested, we return the entire physical examination 
regardless of any specifications made in the ‘action input’ field. We 
do this because we consider it best practice to perform a complete 
physical examination of a patient rather than only partially, and reli-
ably separating a physical examination report into its parts is difficult 
due to their free-form and heavily abbreviated style. If an invalid tool 
is requested (‘hallucinated’), we state that the tool does not exist and 
remind it which tools are available, or that it should make a diagnosis 
and provide a treatment plan. These occasions are also recorded as tool 
hallucinations for our evaluations (Extended Data Fig. 6). An example 
exchange between an LLM and our framework can be seen in Fig. 1b and 
Supplementary Section J. We repeat this process, prompting the LLM 
to think and in turn receiving requests for information. Once the model 
decides that it has gathered sufficient information, it outputs its final 
diagnosis and treatment plan, ending the clinical decision-making task 
for that patient. The final diagnosis is then evaluated to see if it contains 
the recorded pathology of the patient. In addition to a direct match of 
the pathology name (that is, appendicitis, cholecystitis, diverticulitis 
or pancreatitis), we allow for a range of alternative phrasings as long 
as they are medically correct (Supplementary Section G). If multiple 
diagnoses are given, we only examine the first diagnosis mentioned. 
This is how we calculate the diagnostic accuracy for all analyses. A new 
instance of the task is then started for the next patient.

As LLMs can only take a limited amount of words as input, with all 
models tested in this study having a limit of 4,096 tokens or approxi-
mately 2,400 words, we monitor the length of the conversation. If 
we approach the input limit of the model, we ask it to summarize the 
information it has received so far to reduce the length of the conversa-
tion (Supplementary Section C.2). We first summarize each gathered 
piece of information individually, leaving the initial history of present 
illness and instructions untouched. As LLMs have no memory and 
interpret each request independently, we replace the original pieces 
of information with the summaries. If we have summarized all steps of 
the interaction and still approach the limit of the model, we force the 
generation of a diagnosis and treatment plan.
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For the MIMIC-CDM-FI dataset, we instruct the model to con-
sider the facts of the case and then provide a diagnosis and only a 
diagnosis (Supplementary Section C.3). As previously explained, the 
MIMIC-CDM-FI dataset includes the history of present illness, physi-
cal examination, all relevant laboratory results and every radiologist 
report where the abdominal region was inspected. Radiologist reports 
of other regions were not included due to the input length limits of the 
models. If including all of this information exceeds the input length 
of the model, we ask the LLM to summarize each radiologist report 
individually. If the input length is still exceeded, we ask the LLM to 
summarize all imaging information at once. In the rare cases where the 
input length continues to be exceeded, we remove words from the final 
imaging summary until there is enough space for a diagnosis (that is, 
25 tokens or 20 words).

Analysis
Treatment requested. To evaluate the ability of the LLMs to recom-
mend appropriate treatments, we used the aforementioned guidelines 
to extract the possible treatments for each pathology and then to 
classify each treatment as either essential (for example, antibiotics 
and support) or case specific (for example, appendectomy, cholecys-
tectomy and drainage). For each patient, we then determined if the 
case-specific treatment was appropriate by matching against the actual 
operations performed on that patient, read from the MIMIC-CDM 
dataset. We evaluated a model’s treatment recommendation only when 
it correctly diagnosed a patient since an inaccurate diagnosis likely 
leads to inappropriate treatment. For support, we expect mentions of 
fluids, pain management or monitoring for appendicitis, cholecystitis 
and diverticulitis. As it is the main form of treatment for pancreatitis, 
we expect mentions of all three for this disease.

Instruction-following capabilities.  During the clinical 
decision-making process, we provide clear instructions to the mod-
els as to how they should provide their requests and diagnosis, as well 
as which tools are available to them (Supplementary Section C.1). For 
example, diagnostic tools must be written in the ‘action’ field and 
desired tests must be specified in the ‘action input’ field, and not in 
the middle of a paragraph surrounded by other text. This is essential to 
ensure that the desired tests can be consistently extracted so no manual 
clinician supervision and interpretation is required. Through extensive 
comparisons of LLM outputs with dictionaries of known exams and 
their synonyms, we go to great lengths to understand what tests are 
requested, even if the models do not follow our schema, recording 
every time they fail to follow instructions. We investigated the capabili-
ties of models to follow our instructions at three time points during our 
analysis: (1) when providing the next action to take, (2) when requesting 
a tool and (3) when providing a diagnosis.

Models
Model selection. An overview of the models included and considered 
is given in Table 1.

When deciding which models to test, we started by only considering 
models with a context length of 4,096 tokens due to the large amounts of 
text contained within the MIMIC-CDM clinical cases. The context length 
defines how many combined tokens an LLM can read and write. For 
example, if a model has a context length of 2,048 and receives an input of 
2,000 tokens, it can only generate 48 new tokens. A minimum length of 
4,096 is required, as the average number of tokens of relevant informa-
tion per patient case in MIMIC-CDM-FI is 2,080 tokens with a maximum 
count of 15,023 tokens. If one considers the extra tokens that are required 
for the back-and-forth information gathering using MIMIC-CDM data, 
this quickly exceeds the limit of 2,048 tokens of smaller models (context 
length windows almost always differ in powers of 2).

Next, we considered which open-access models performed best 
on medical reasoning tasks. To gauge model strength, we used the 

MedQA13 dataset as it comprises 12,723 questions from the USMLE and 
is thus a good gauge of general medical knowledge contained within 
the model. At the time of writing, Llama 2 is the leading open-access 
model on the MedQA (USMLE) dataset, with the 70B model achieving 
a score of 58.4 (ref. 35), exceeding that of GPT3.5, which scored only 
53.6 (ref. 10).

To effectively complete the clinical decision-making task with-
out specific fine-tuning to the task and format, the model must be 
fine-tuned to instructions. Instruction fine-tuning involves training 
a model to adapt to a wide range of new tasks so that it can, with 
minimal instruction or example, complete an unseen task, like our 
clinical decision-making objective. The most popular and performant 
instruction fine-tuned versions of Llama 2 are Llama 2 Chat, fine-tuned 
by Meta themselves; WizardLM, fine-tuned by Microsoft using evolu-
tionary algorithm (Evo-Instruct)-generated training data; and OASST, 
fine-tuned using a crowd-sourced collection of 161,443 messages. 
Currently the only two existing medically fine-tuned versions of 
Llama 2 with a context length of 4,096 and 70B parameters are Clini-
cal Camel and Meditron, respectively. Neither has been extensively 
fine-tuned to instructions and thus they both generated nonsensical 
and repetitive responses to the clinical decision-making objective 
using MIMIC-CDM data.

Currently, the most popular and leading closed-source LLMs for 
medical question answering are Chat-GPT (MedQA: ~53.6)10, GPT-4 
(MedQA: 90.2)20, Med-PaLM (MedQA: 67.2)8 and Med-PaLM 2 (MedQA: 
86.5)8. As previously stated, due to the signed data usage agreements 
of the MIMIC-IV database, the data cannot be sent to external servers73, 
precluding its use with closed-source models that are only accessible 
through an API and whose models cannot be downloaded.

Furthermore, Chat-GPT is fine-tuned primarily through user con-
versations with the model, and since it is impossible to know if portions 
of the MIMIC-IV database have already been used for queries by users 
less aware of the data usage agreement73, the data could already have 
been seen by the model during training, invalidating any results it 
produces. Little to no information is known about the training data of 
GPT-4, giving rise to analogous concerns about its performance. While 
the exact pretraining data of Llama 2 are also not known, Meta has 
stated that it only used ‘publicly available online data’, which strongly 
mitigates the risk of MIMIC-IV data having been used. Med-PaLM and 
Med-PaLM 2 achieve strong scores on MedQA but the exact data used 
for training are unknown, the models are only accessible through an 
API, and access to the models is currently unavailable for all research-
ers. Repeated requests for access were denied.

We strongly agree with the current sentiment that open-source 
models must drive progress in the field of medical AI due to patient 
privacy and safety concerns, corporate lack of transparency and the 
danger of unreliable external providers74. It is a serious risk to patient 
safety if key medical infrastructure is based on external company APIs 
and models whose performance could change erratically with updates 
and which could generally be deactivated for any reason.

For each model tested, we downloaded and used the GPTQ quan-
tized version from Hugging Face, the central repository for all LLM 
models. GPTQ quantization reduces the numerical precision of the 
weights while monitoring the generated output to reduce the GPU 
memory requirements of a model while preserving performance75. 
The GPTQ parameters of the downloaded models were: 4 bits, 32 group 
size, act order true, 0.1 damp% and 4,096 sequence length. This gives 
the highest possible inference quality while reducing model size to 
around 40 GB, which can fit onto a single A40 GPU. This reflects an 
economically realistic scenario of a single high-end GPU being used to 
host the model to run the clinical decision-making task. A fixed seed 
of 2023 and greedy decoding were used for all experiments making 
all results deterministic and reproducible, except for the evaluation 
on the subset of 80 patients for comparison with clinicians where 20 
different seeds were used for increased statistical power.
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An overview of model strengths and weaknesses. Among the models 
tested in this study, we found that OASST performed best overall as it 
had decent diagnostic accuracy, generally requested appropriate labo-
ratory exams and was most robust to changes in information quantity. 
Llama 2 Chat had the worst overall diagnostic accuracy, often refused 
to follow instructions and was heavily influenced by the order and 
quantity of information, but it was the only model to consistently ask 
for a physical examination. WizardLM was the most robust to changes 
in the order of diagnostic exams and followed instructions well when 
returning diagnoses, but was the worst at following diagnostic guide-
lines, failing to consistently order physical examinations and necessary 
laboratory tests. Despite the performance of OASST being gener-
ally better than Chat and WizardLM across the diverse set of analyses 
included in this study, it is still not currently suitable for clinical use 
due to its inferior performance compared to clinicians, broad failure to 
order correct treatments and general lack of robustness. While one of 
the medical-domain models, Clinical Camel, achieved the highest diag-
nostic accuracy (mean = 73% versus OASST mean = 68%; Extended Data 
Fig. 1), its inability to participate in the iterative clinical decision-making 
task precluded it from evaluations of its robustness and consistency, 
which we believe to be essential to ensure safe deployment in the clinic. 
Other LLMs such as Chat-GPT, GPT-4, Med-PaLM and Med-PaLM 2 
could not be tested due to the data privacy and usage agreements of 
MIMIC-IV, highlighting the risk of using corporate models in a sensi-
tive area such as medicine, where patient privacy, transparency and 
reliability are essential74,76.

Metrics and statistical analysis
By focusing on curating data for in-depth analysis of model behavior 
along every step of the diagnostic pathway, it was not feasible to include 
the full breadth of abdominal diseases. However, for an accurate count-
ing of false positives and true negatives, the patients in our dataset and 
patients presenting to a hospital with abdominal pain should have a 
similar diversity of disease. As this is not the case, metrics based on 
the false positives and true negatives could potentially be misleading.

Given these constraints, we calculate and use the per-class accu-
racy throughout our work, which is the only metric that can be calcu-
lated without bias as it only requires the samples of a single class. For 
each model and disease combination, we divided the number of correct 
diagnoses by the total number of patients with that disease. Additional 
metrics are included in Supplementary Section K, although they are to 
be interpreted with caution.

All statistical tests were conducted using the Python programming 
language (version 3.10) and the SciPy library. Comparisons of means 
were tested for statistical significance using two-sided Student’s t-tests 
with unequal variances (tested through Bartlett’s tests). To account 
for multiple comparisons, P values were Bonferroni corrected with a 
multiplier of 5 for the comparison of the doctors against the models 
and 3 for the comparison of the specialist and generalist models.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The dataset is available to all researchers who create an account on 
https://physionet.org/ and follow the steps to gain access to the 
MIMIC-IV database (https://physionet.org/content/mimiciv/2.2/). 
Access is given after completing the ‘CITI data or specimens only 
research’ training course. The data use agreement of PhysioNet for 
‘credentialed health data’ must also be signed. The dataset can then 
be recreated using the code found at https://github.com/paulhager/
MIMIC-Clinical-Decision-Making-Dataset/. The generated dataset can 
also be directly downloaded from PhysioNet oncec (see above) via 
https://www.physionet.org/content/mimic-iv-ext-cdm/1.0/.

Code availability
The evaluation framework used for this study can be found at https://
github.com/paulhager/MIMIC-Clinical-Decision-Making-Framework/.  
The analysis framework to evaluate all results, generate all plots and 
perform all statistical analysis can be found at https://github.com/
paulhager/MIMIC-Clinical-Decision-Making-Analysis/. All code uses 
Python v3.10, pytorch v2.1.1, transformers v4.35.2, spacy v3.4.4, lang-
chain v0.0.339, optimum v1.14, thefuzz v0.20, exllamav2 v0.0.8, nltk 
v3.8.1, negspacy v1.0.4 and scispacy v0.5.2. The code to create the 
dataset uses Python v3.10 and pandas v2.1.3.
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Extended Data Fig. 1 | Model performance on the MIMIC-CDM-FI dataset. LLMs perform best on the MIMIC-CDM-FI dataset where all information required for 
a diagnosis is provided, especially on pathologies with strong indications such as appendicitis (dilated appendix described in radiologist report) and pancreatitis 
(elevated pancreatic enzymes listed in laboratory test results).
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Extended Data Fig. 2 | LLMs fail to consistently ask for a physical examination. The diagnostic guidelines of each disease require a physical examination to be 
performed as the first action. Llama 2 Chat was the only LLM that consistently requested physical examinations. (Late) Physical Examinations counted the physical 
examination if it wasn’t the first information requested.
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Extended Data Fig. 3 | LLMs often do not order the necessary laboratory tests 
required to establish a diagnosis. The tests, defined by current diagnostic 
guidelines, help differentiate abdominal pathologies, as results can indicate 

which organ is currently pathologically afflicted or functioning normally. When 
testing the presence of the necessary tests in the MIMIC-CDM dataset, we find 
that the MIMIC Doctors requested all necessary tests in every patient case.
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Extended Data Fig. 4 | LLMs are incapable of interpreting lab results. To test 
the ability of LLMs to interpret laboratory data, we provided each laboratory 
test result and its reference range and asked the model to classify the result as 
below the reference range (low), within the range (normal) or above the range 

(high). We found that LLMs are incapable of consistently interpreting the result 
as normal, low or high, despite being provided with all required information. The 
models performed especially poorly on abnormal results which are of particular 
importance to establishing a diagnosis.
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Extended Data Fig. 5 | The first imaging modality requested by the LLMs 
and the doctors in the MIMIC dataset. LLMs sometimes follow diagnostic 
guidelines concerning imaging but often diagnose without requesting any 
imaging at all. As we show that imaging is the most useful diagnostic tool for all 

LLMs for each pathology except pancreatitis, this could be partly responsible 
for their low diagnostic accuracy. The legend specifies the colors of the imaging 
modalities and the patterns of the models.
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Extended Data Fig. 6 | LLMs struggle to follow instructions. During the 
autonomous clinical decision making task, LLMs often introduce errors when 
providing the next action to take and hallucinate non-existent tools, up to 

once every two patients. Formatting errors while providing the diagnosis also 
regularly occur. In the clinic, extensive manual supervision would be required to 
ensure proper performance.
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Extended Data Fig. 7 | Small changes in instruction phrasing changes diagnostic accuracy. Often small changes in instructions, such as changing final diagnosis 
to main diagnosis or primary diagnosis, greatly affects the performance of the LLMs on the MIMIC-CDM-FI dataset. This would vary the quality of responses received 
depending on who is using the model.
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Extended Data Fig. 8 | Filtering for only abnormal results generally improves 
LLM performance. Filtering to include only abnormal laboratory results using 
the laboratory reference ranges provided in MIMIC-IV database generally 
improves model performance, especially for the cholecystitis pathology.  

This allows the model to focus more on abnormal, pathological signals. While this 
approach is appropriate for models as they function today, healthy laboratory 
test results are an important source of information for clinicians and should not 
degrade model performance.

http://www.nature.com/naturemedicine


1

nature portfolio  |  reporting sum
m

ary
M

arch 2021

Corresponding author(s): Paul Hager

Last updated by author(s): Apr 3, 2024

Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection The code used to create the dataset can be found at: https://github.com/paulhager/MIMIC-Clinical-Decision-Making-Dataset 
The code to create the dataset uses python v3.10 and pandas v2.1.3.

Data analysis The evaluation framework used for this study can be found at: https://github.com/paulhager/MIMIC-Clinical-Decision-Making-Framework. 
The analysis framework to evaluate all results, generate all plots and do all statistical analysis can be found at: https://github.com/paulhager/
MIMIC-Clinical-Decision-Making-Analysis. 
All code uses python v3.10, pytorch v2.1.1, transformers v4.35.2, spacy v3.4.4, langchain v0.0.339, optimum v1.14, thefuzz v0.20, exllamav2 
v0.0.8, nltk v3.8.1, negspacy v1.0.4, scispacy v0.5.2, spacy v3.4.4

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.



2

nature portfolio  |  reporting sum
m

ary
M

arch 2021
Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The dataset is available to all researchers who create an account on https://physionet.org/ and follow the steps to gain access to the MIMIC-IV database (https://
physionet.org/content/mimiciv/2.2/). Access is given after completing the "CITI Data or Specimens Only Research" training course. The data use agreement of 
physionet for "credentialed health data" must also be signed.  
 
The generated dataset can also be directly downloaded from physionet once the appropriate credentials have been gained (see above) under the link: https://
physionet.org/content/mimic-iv-ext-cdm/1.0/

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender As data was de-identified, no sex or gender based analysis was done for this study.

Population characteristics As data was de-identified, no population characteristics were considered during this study.

Recruitment No participants were recruited by the authors for this study.

Ethics oversight The data used was taken from the MIMIC database which is managed by MIT. As per the MIMIC Website:  
 
"The collection of patient information and creation of the research resource was reviewed by the Institutional Review Board 
at the Beth Israel Deaconess Medical Center, who granted a waiver of informed consent and approved the data sharing 
initiative."

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size The final sample size (2400) was not predetermined and includes all possible samples from the MIMIC database that follow the filter criteria 
(see below).

Data exclusions Data was excluded if in the final discharge summary diagnosis of the patient, the first diagnosis written did not include one of the pre-selected 
pathologies. This was pre-set before study begin to filter for cases that can be primarily attributed to one of the studied pathologies. The 
pathologies were selected as they are important endpoints of a common initial complaint (abdominal pain) with different diagnostic signals 
and treatments required. 
 
Further data was excluded if one of the diagnostic modalities was missing, including history of present illness, physical examination, laboratory 
events, and radiology reports. This was done as we wanted to test the information gathering capabilities of the models and provide them with 
information upon request.

Replication We confirm that all experimental results can be reproduced with the code and data provided.

Randomization No experimental groups were created for this study as no model training was done. All data were used for evaluation.

Blinding As there was no group allocation, blinding was not relevant.



3

nature portfolio  |  reporting sum
m

ary
M

arch 2021

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging


	Evaluation and mitigation of the limitations of large language models in clinical decision-making

	Results

	Creating the MIMIC-CDM dataset and evaluation framework

	LLMs diagnose significantly worse than clinicians

	Current LLMs are hasty and unsafe clinical decision-makers

	Current LLMs require extensive clinician supervision

	First steps toward mitigating limitations of current LLMs


	Discussion

	Online content

	Fig. 1 Overview of dataset creation and evaluation framework.
	Fig. 2 LLMs diagnose significantly worse than doctors when provided with all information.
	Fig. 3 Diagnostic accuracy of LLMs decreased in an autonomous clinical decision-making scenario.
	Fig. 4 LLMs do not consistently recommend essential and patient-specific treatment.
	Fig. 5 LLMs are sensitive to the quantity of information provided.
	Fig. 6 LLMs are sensitive to the order of information.
	Extended Data Fig. 1 Model performance on the MIMIC-CDM-FI dataset.
	Extended Data Fig. 2 LLMs fail to consistently ask for a physical examination.
	Extended Data Fig. 3 LLMs often do not order the necessary laboratory tests required to establish a diagnosis.
	Extended Data Fig. 4 LLMs are incapable of interpreting lab results.
	Extended Data Fig. 5 The first imaging modality requested by the LLMs and the doctors in the MIMIC dataset.
	Extended Data Fig. 6 LLMs struggle to follow instructions.
	Extended Data Fig. 7 Small changes in instruction phrasing changes diagnostic accuracy.
	Extended Data Fig. 8 Filtering for only abnormal results generally improves LLM performance.
	Table 1 An overview of the considered LLMs and their properties.




