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Abstract

Background There is increasing evidence that myosteatosis, which is currently not assessed in clinical routine, plays an
important role in risk estimation in individuals with impaired glucose metabolism, as it is associated with the progres-
sion of insulin resistance. With advances in artificial intelligence, automated and accurate algorithms have become fea-
sible to fill this gap.
Methods In this retrospective study, we developed and tested a fully automated deep learning model using data from
two prospective cohort studies (German National Cohort [NAKO] and Cooperative Health Research in the Region of
Augsburg [KORA]) to quantify myosteatosis on whole-body T1-weighted Dixon magnetic resonance imaging as (1) in-
tramuscular adipose tissue (IMAT; the current standard) and (2) quantitative skeletal muscle (SM) fat fraction (SMFF).
Subsequently, we investigated the two measures for their discrimination of and association with impaired glucose me-
tabolism beyond baseline demographics (age, sex and body mass index [BMI]) and cardiometabolic risk factors (lipid
panel, systolic blood pressure, smoking status and alcohol consumption) in asymptomatic individuals from the KORA
study. Impaired glucose metabolism was defined as impaired fasting glucose or impaired glucose tolerance (140–
200 mg/dL) or prevalent diabetes mellitus.
Results Model performance was high, with Dice coefficients of ≥0.81 for IMAT and ≥0.91 for SM in the internal
(NAKO) and external (KORA) testing sets. In the target population (380 KORA participants: mean age of
53.6 ± 9.2 years, BMI of 28.2 ± 4.9 kg/m2, 57.4% male), individuals with impaired glucose metabolism (n = 146;
38.4%) were older and more likely men and showed a higher cardiometabolic risk profile, higher IMAT (4.5 ± 2.2%
vs. 3.9 ± 1.7%) and higher SMFF (22.0 ± 4.7% vs. 18.9 ± 3.9%) compared to normoglycaemic controls (all
P ≤ 0.005). SMFF showed better discrimination for impaired glucose metabolism than IMAT (area under the receiver
operating characteristic curve [AUC] 0.693 vs. 0.582, 95% confidence interval [CI] [0.06–0.16]; P < 0.001) but was
not significantly different from BMI (AUC 0.733 vs. 0.693, 95% CI [�0.09 to 0.01]; P = 0.15). In univariable logistic
regression, IMAT (odds ratio [OR] = 1.18, 95% CI [1.06–1.32]; P = 0.004) and SMFF (OR = 1.19, 95% CI [1.13–
1.26]; P < 0.001) were associated with a higher risk of impaired glucose metabolism. This signal remained robust after
multivariable adjustment for baseline demographics and cardiometabolic risk factors for SMFF (OR = 1.10, 95% CI
[1.01–1.19]; P = 0.028) but not for IMAT (OR = 1.14, 95% CI [0.97–1.33]; P = 0.11).
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Conclusions Quantitative SMFF, but not IMAT, is an independent predictor of impaired glucose metabolism, and dis-
crimination is not significantly different from BMI, making it a promising alternative for the currently established ap-
proach. Automated methods such as the proposed model may provide a feasible option for opportunistic screening
of myosteatosis and, thus, a low-cost personalized risk assessment solution.
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Introduction

Type 2 diabetes (T2D) is a global health concern affecting
536.6 million individuals and is expected to further increase,
posing a major socioeconomic challenge for public health
and healthcare systems.1 As early states of impaired glucose
metabolism can be reversed by lifestyle changes, physical
activity and dietary habits, identifying individuals at risk is
paramount to initiate such preventive measures to delay
the onset of disease-related complications and reduce mor-
bidity and mortality.2

Currently, several invasive blood tests (e.g., A1C, fasting
plasma glucose and oral glucose tolerance test [OGTT]) are
available for the diagnosis of impaired glucose metabolism.3

However, they are not routinely performed in population-
based screening, and individuals in early subclinical stages of
disease are often not aware of the increased risk, resulting in
delayed diagnosis with potentially irreversible complications.3

In this context, medical imaging might be a promising tool for
opportunistic risk assessment in daily routine based on alter-
nations of anatomy that may become apparent before clinical
symptoms occur.4 In particular, changes in body composition
may play a crucial role as skeletal muscle (SM) fatty infiltration
(i.e., myosteatosis) is associated with muscle deterioration
and represents a unique ectopic adipose tissue depot.5 Both
SM and adipose tissue compartments are important targets
of insulin.6–8 For example, changes in intermuscular and in-
tramuscular adipose tissue (IMAT) content, which are mac-
roscopically visible on imaging studies such as computed
tomography (CT) or magnetic resonance imaging (MRI), may
be associated with impaired glucose metabolism and progres-
sion of insulin resistance.7 In addition, intramyocellular lipids
have been shown to display metabolic activity by producing
proinflammatory mediators, which may aggravate SM insulin
resistance.6 However, unlike IMAT, which represents the mac-
roscopically visible areas of adipose tissue between myofi-
brils, the intramyocellular adipose tissue compartment is not
macroscopically quantifiable on traditional morphological
MRI sequences. In contrast, chemical shift encoding-based
water–fat MRI, such as the Dixon technique that is widely
used in routine clinical MRI studies, allows for quantitative
measurements of the biochemical water–fat composition of

SM, that is, SM fat fraction (SMFF), an estimate of
myosteatosis, which may be more accurate than the currently
established method of segmenting the amount of visible
IMAT as it additionally quantifies the metabolically active
intramyocellular adipose tissue.9–12

However, quantification of these measures is not routinely
performed because it would require an elaborate manual re-
gion of interest (ROI)-based segmentation of IMAT and SM,
which is time-consuming and expensive as it disrupts the cur-
rent established radiology workflow, even when performed
on a single 2D slice.13 With recent advances in artificial intel-
ligence, new methods for fully automated 3D estimation of
imaging biomarkers such as SM and IMAT from routinely
acquired imaging data have become available.14 Such auto-
mated imaging tasks may be translated into large-scale appli-
cations in the opportunistic screening of routine scans to
identify individuals at risk to guide clinical decision-making.15

Here, we developed and tested a fully automated 3D deep
learning model to estimate myosteatosis from whole-body
MRI using two different approaches: (1) macroscopically visi-
ble adipose tissue deposits and (2) quantitative SMFF. Subse-
quently, we investigated and compared the two measures
and their discrimination for and association with impaired
glucose metabolism as a potential tool for opportunistic
population-based risk assessment.

Materials and methods

Development of the deep learning model

An overview of the study design is provided in Figure 1. We
developed a fully automated deep learning model to volumet-
rically segment IMAT and SM on whole-body T1-weighted
dual-echo VIBE Dixon MRI. The model was developed using
data from the German National Cohort (NAKO) study, an
ongoing interdisciplinary, epidemiological cohort study that
included 200 000 asymptomatic participants aged 20–72 years
enrolled at 18 sites across Germany to investigate disease pre-
vention and prognostication with a focus on major disease
groups including cardiovascular disease, diabetes and
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cancer.16 In a sub-study, 30 000 participants underwent
additional whole-body MRI as part of the study protocol (3T
MAGNETOM Skyra, Siemens Healthineers, Erlangen,
Germany). For the current project, a random sample of 150
participants from the imaging sub-study was used for model
training.

Manual annotations of IMAT and SM were performed on
T1-weighted Dixon sequences by an experienced radiologist
blinded for clinical parameters (M.J., 5 years of experience
in MRI) using all four imaging contrasts (water, fat, in-phase
and opposed-phase) to facilitate the most accurate discrimi-
nation and segmentation of the different tissue boundaries.
This is especially important in areas of fat–water interfaces,
for example, between SM and fat tissue, where chemical shift
artefacts of the second kind (also known as India ink or black
line artefact) can occur in the opposed-phase contrast, which

can lead to overestimation or underestimation of tissue
borders.17 In addition, all segmentations were independently
validated and adapted, if necessary, by a board-certified radi-
ologist (J.W., 10 years of experience in MRI). IMAT segmenta-
tion was performed from the upper plate of the first thoracic
vertebrae to the sacrum within the autochthonous spine
musculature, which is a commonly used approach to quantify
IMAT.12,18 SM included all muscles of the trunk, pelvis and
proximal thigh within the deep peripheral fascia from the
upper plate of the first thoracic vertebrae to the femoral inser-
tion of the adductor brevis muscle (Figure S1). All annotations
were performed using the open-source Nora medical imaging
platform (www.nora-imaging.org, Freiburg, Germany).

The only input to the proposed model was the in-phase
and opposed-phase images of the whole-body T1-weighted
dual-echo VIBE Dixon MRI sequence; the output of the model

Figure 1 Overview of the study design. (A) A fully automated 3D deep learning model was developed and tested to estimate myosteatosis on
T1-weighted Dixon magnetic resonance imaging as (1) intramuscular adipose tissue (IMAT) and (2) quantitative skeletal muscle fat fraction (SMFF)
using data from two prospective cohort studies. (B) Correlation, discrimination and prognostic value of the two myosteatosis measures were compared
and investigated in individuals with impaired glucose metabolism and normoglycaemic controls. KORA, Cooperative Health Research in the Region of
Augsburg; NAKO, German National Cohort.
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was a segmentation mask estimating the volume (mL) of
IMAT and SM on the entire scans as defined above. The
model was implemented as a hierarchical, patch-based stack
of convolutional neural networks (CNNs). The patchwork
approach19 is using nested patches of a fixed matrix size that
decrease in physical size. A U-Net-type architecture is utilized
in each scale, with the U-Net matrix size set to 32 × 32 × 32
voxels for all scales, and a scale pyramid with a depth of four
is employed. These settings were chosen based on the hard-
ware capacity available, which limited the sample size and
pyramid size. The pyramid size was chosen to achieve a coars-
est layer field of view of 300 × 200 × 500 mm and a final iso-
tropic resolution of 2 mm. Intermediate levels of the pyramid
were exponentially interpolated. The input to the network
consists of concatenated in-phase and opposed-phase con-
trasts. The architecture of the U-Net used is similar to the de-
fault U-Net configuration presented in the literature,20 with
feature dimensions (32, 32, 64, 64, 128) and max pooling
and transposed convolutions in the encoding and decoding
layers, respectively. Each U-Net has n + 8 output channels,
with the first n = 4 corresponding to the labels and used for
intermediate loss computations. The total logits of n + 8 out-
puts are passed to the next scale. The network is trained with
the Adam optimizer21 with a rate of 0.001 and using 10 mil-
lion patches for training of the network with a batch size of
32. The training took approximately 4 days. No systematic
tuning was performed, and all labels were trained using bi-
nary cross-entropy per channel. More details about the
CNN architecture are reported elsewhere.19

Independent testing of the deep learning model

The model was tested on two independent datasets not seen
during any part of model development. All results reported in
this study are for the testing datasets only.

The first testing dataset consisted of a random sample of 20
NAKO participants. The second testing dataset included 20
random participants from the ‘Cooperative Health Research
in the Region of Augsburg’ (KORA) MRI sub-study, an imaging
study nested in the main prospective KORA FF4 cohort that
enrolled 400 individuals (age 39–73 years) for whole-body
MRI assessment between June 2013 and September 2014
(3T MAGNETOM Skyra, Siemens Healthineers, Erlangen,
Germany).22,23 Inclusion criteria were as follows: consent to
undergo whole-body MRI and classification into prediabetes,
diabetes or control. Exclusion criteria were as follows: age
>73 years; subjects with stroke, myocardial infarction or
revascularization; individuals with a cardiac pacemaker or
implantable defibrillator, cerebral aneurysm clip, neural stim-
ulator, any type of ear implant, an ocular foreign body or any
implanted device; pregnant or breast-feeding females; and
subjects with claustrophobia, known allergy to gadolinium
compounds or serum creatinine level ≥1.3 mg/dL.23

To evaluate model performance, the automatically gener-
ated 3D IMAT and SM segmentations of the model were
compared to the manual segmentations using the Dice coef-
ficient and Pearson’s correlation coefficient. In addition, the
quality of the automatic deep learning-generated segmenta-
tions was visually assessed by an experienced radiologist.

Assessment of myosteatosis

Myosteatosis, a surrogate for muscle quality, was estimated
using two different approaches: (1) the traditional method
by segmenting all macroscopically visible adipose tissue de-
posits within the autochthonous spinal musculature and (2)
calculating the quantitative SMFF of all musculature depicted
in the scan.

Currently, the first approach represents the established
method, which is usually performed manually by segmenting
macroscopically visible adipose tissue deposits in and be-
tween the autochthonous spinal musculature (IMAT) on a sin-
gle slice at the height of the L3 vertebra using semi-automatic
software given the strong correlation between a single slice
and whole-body volumes.24 To mimic this approach but in-
crease accuracy, we estimated IMAT within the autochtho-
nous spinal musculature on the entire whole-body scan. To
capture and normalize for differences in individual muscle
mass, a summary measure of IMAT was calculated for further
analyses using the following equation:

IMAT ¼ IMATvolume mLð Þ
SM volume mLð Þ · 100

In contrast to this relative and crude estimation of
myosteatosis, chemical shift encoding-based water–fat MRI al-
lows for a quantitative assessment of myosteatosis exploiting
the acquired water–fat information to estimate the SMFF.
Based on the whole-body 3D SM segmentation masks, water
and fat selective images of the dual-echo Dixon VIBE sequence
(slice thickness of 1.7 mm, voxel size of 1.7 × 1.7 mm, field of
view of 488 × 716 mm, matrix of 256 × 256, repetition time
[TR] of 4.06 ms, echo time [TE] of 1.26 and 2.49 ms, and flip an-
gle of 9°) were used to calculate SMFF as follows:

SMFF ¼ meanintensity fat image
meanintensity fat imageþmeanintensitywaterimage

Discrimination and diagnostic performance of
myosteatosis

In this retrospective study, we applied the 3D deep learning
model to estimate IMAT and SMFF in all participants enrolled
in the KORA MRI sub-study to investigate and compare the
two myosteatosis measures regarding their discrimination
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for and association with impaired glucose metabolism. Two
individuals had to be excluded due to poor image quality
and/or corrupted imaging data. Additional 17 participants
were excluded because of missing or incomplete imaging
data, and one withdrawn consent to the study, resulting in
a final study cohort of 380 individuals (Figure 2). Retrospec-
tive secondary use of the KORA MRI sub-study data was
approved by the local institutional review board (Ethics Com-
mittee, University of Freiburg, EK-Nr.: 22-1336-S1-retro).

Clinical covariates

All participants underwent a comprehensive health assess-
ment at the study centre with standardized interviews as well
as physical and laboratory examinations for demographic and
cardiometabolic risk assessment. Cardiometabolic risk factors
comprised the following: age, sex, body mass index (BMI)
(kg/m2), cholesterol levels (mg/dL), high-density lipoprotein
(HDL) levels (mg/dL), low-density lipoprotein (LDL) levels
(mg/dL), triglyceride levels (mg/dL), alcohol consumption (g/
day), systolic blood pressure (mmHg) and smoking status
(current, former and never).

Outcome

The primary outcome of this study was impaired glucose me-
tabolism, which was defined as prevalent T2D or determined
based on a 75-g OGTT after at least 8 h of overnight fasting

and defined as impaired fasting glucose (IFG: fasting glucose
110–125 mg/dL), impaired glucose tolerance (IGT: 2-h glu-
cose 140–200 mg/dL) or newly diagnosed diabetes mellitus
(≥125-mg/dL fasting and/or ≥200-mg/dL 2-h glucose load) ac-
cording to World Health Organization (WHO) criteria.25

Statistical analysis

Baseline characteristics of the study sample are presented as
mean ± standard deviation (SD) or median with inter-quartile
ranges (IQRs) for continuous variables and absolute counts
with percentages for categorical variables. Differences be-
tween individuals with impaired glucose metabolism and
normoglycaemic controls were assessed using the t test,
Mann–Whitney U test or χ2 test, as appropriate.

Correlations between IMAT and SMFF were evaluated
using Pearson’s correlation coefficient. The discriminatory
capacity of IMAT, SMFF and traditional risk factors was
assessed by calculating areas under the receiver operating
characteristic curve (AUCs) and compared using DeLong’s
test.26 The association between IMAT and SMFF with im-
paired glucose metabolism was assessed via univariable
and multivariable logistic regression analysis adjusted for
baseline demographics and cardiometabolic risk factors
(lipid panel, systolic blood pressure, smoking status and al-
cohol consumption) as specified above. Statistical signifi-
cance was indicated by P values <0.05. Statistical analysis
was performed using R Version 4.2.1 (R Core Team, www.
r-project.org, 2022).

Figure 2 Participant flowchart.
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Results

Independent internal testing of the deep learning
model

To evaluate the performance of the proposed deep learning
system for volumetric quantification of IMAT and SM, we
tested the model on two independent test datasets not seen
during model development by comparing the automatic and
manual volume measurements.

Internal testing was performed on 20 individuals of the
NAKO, where we found a Dice coefficient of 0.83 ± 0.7 for
IMAT and 0.91 ± 0.03 for SM and Pearson’s correlation coef-
ficients of 0.98 and 0.99 (all P values <0.001), respectively.

Figure 3 Correlation between manual and deep learning (DL)-quantified intramuscular adipose tissue (IMAT) and skeletal muscle (SM) volumes in the
independent testing datasets. We observed a high correlation between the 3D segmentation mask volumes of IMAT and SM in (A) the internal and (B)
external testing datasets. KORA, Cooperative Health Research in the Region of Augsburg; NAKO, German National Cohort.

External testing was performed on 20 participants of the
KORA imaging sub-study without any retraining. The Dice co-
efficient was 0.81 ± 0.03 for IMAT and 0.93 ± 0.03 for SM, and
Pearson’s correlation coefficient was 0.98 and 0.99 (all P
values <0.001), respectively (Figure 3).

In addition, no systematic errors with respect to age, sex or
BMI were noted across all study participants in the visual
assessment.

Diagnostic performance of myosteatosis

The final study sample comprised 380 participants (162
women and 218 men) with a mean age of 56.2 ± 9.2 years
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and a mean BMI of 28.2 ± 4.9 kg/m2 (Table 1). Individuals with
impaired glucose metabolism (n = 146 [38.4%]) were older
(59.2 ± 8.7 vs. 54.3 ± 8.9 years) and more likely men (68% vs.
50%) and had a higher BMI (30.6 ± 5.1 vs. 26.7 ± 4.2 kg/m2),
lower HDL levels (55.9 ± 15.4 vs. 65.6 ± 18.0 mg/dL), higher
triglycerides (173.3 ± 100.1 vs. 107.1 ± 64.0 mg/dL) and higher
systolic blood pressure (127.6 ± 17.6 vs. 116.5 ± 15.0 mmHg;
all P < 0.001; Table 1) compared to individuals with
normoglycaemia.

IMAT was significantly higher in individuals with impaired
glucose metabolism (4.5 ± 2.2%) compared to those without
impaired glucose metabolism (3.9 ± 1.7%; P = 0.005). A simi-
lar pattern was observed for SMFF (22.0 ± 4.7% vs.
18.9 ± 3.9%; P < 0.001; Table 1 and Figure S2). The correla-
tion between IMAT and SMFF was high (r = 0.72,
P < 0.001; Figure 4A) and did not differ after stratification
for the presence of impaired glucose metabolism (r = 0.7
and 0.73; P < 0.001, Figure 4B).

Discriminative performance of myosteatosis
Quantitative SMFF had higher discrimination for impaired
glucose metabolism than the IMAT (AUC 0.693 vs. 0.582,
95% confidence interval [CI] [0.06–0.16]; P < 0.001; Figure
5). Considering traditional demographic (age, sex and BMI)
and cardiometabolic risk factors (lipid panel, systolic blood
pressure, smoking status and alcohol consumption), we ob-
served slightly but not statistically significant higher AUCs
for BMI (AUC 0.733 vs. 0.693, 95% CI [�0.09 to 0.01];
P = 0.15) and triglycerides (0.756 vs. 0.693, 95% CI [�0.13
to 0.01]; P = 0.08; Figure S3).

Association between myosteatosis and impaired glucose
metabolism
In univariable logistic regression analysis, IMAT and SMFF
were associated with a higher risk of impaired glucose me-
tabolism (odds ratio [OR] = 1.18, 95% CI [1.06–1.32];
P = 0.004; and OR = 1.19, 95% CI [1.13–1.26]; P < 0.001, re-
spectively; Figure 6A). This signal remained robust for SMFF
in multivariable logistic regression analysis after adjusting
for age and sex (OR = 1.23, 95% CI [1.15–1.32]; P < 0.001;
Figure 6B), whereas the signal for IMAT was attenuated
(OR = 1.15, 95% CI [1.00–1.32]; P = 0.051; Figure 6B). After
further adjustment for baseline demographics (age, sex and
BMI) and cardiometabolic risk factors (lipid panel, systolic
blood pressure, smoking status and alcohol consumption),
the association between SMFF and impaired glucose metab-
olism remained significant (OR = 1.10, 95% CI [1.01–1.19];
P = 0.028; Figure 6C) but not for IMAT (OR = 1.14, 95% CI
[0.97–1.33]; P = 0.11; Figure 6C). The results of the logistic re-
gression models are shown in Tables S1 and S2.

Discussion

In this study, we proposed a fully automated 3D deep learn-
ing framework that allows for robust and accurate quantifica-
tion of myosteatosis from routine whole-body MRI using two
different approaches: macroscopically visible IMAT deposits
and quantitative SMFF. We found that both measures of
myosteatosis were associated with a higher risk of impaired
glucose metabolism in a community-dwelling population,

Table 1 Baseline demographics and cardiometabolic risk factors

Entire cohort Normoglycaemia Impaired glucose metabolism P valueb

Individuals N = 380a N = 234a N = 146a

Age (years) 56.2 ± 9.2 54.3 ± 8.9 59.2 ± 8.7 <0.001
Female 162 (43%) 116 (50%) 46 (32%) <0.001
Weight (kg) 83.2 ± 16.6 78.5 ± 15.3 90.7 ± 15.8 <0.001
BMI (kg/m2) 28.2 ± 4.9 26.7 ± 4.2 30.6 ± 5.1 <0.001
IMAT (%) 4.1 ± 1.9 3.9 ± 1.7 4.5 ± 2.2 0.005
SMFF (%) 20.1 ± 4.4 18.9 ± 3.9 22.0 ± 4.7 <0.001
Cholesterol (mg/dL) 218.4 ± 36.6 216.5 ± 35.9 221.3 ± 37.5 0.2
HDL (mg/dL) 61.9 ± 17.7 65.6 ± 18.0 55.9 ± 15.4 <0.001
LDL (mg/dL) 140.0 ± 33.1 138.7 ± 32.1 142.1 ± 34.7 0.3
Triglyceride (mg/dL) 132.5 ± 86.0 107.1 ± 64.0 173.3 ± 100.1 <0.001
Alcohol consumption (g/day) 18.5 ± 24.1 16.7 ± 21.7 21.5 ± 27.3 0.068
Systolic blood pressure (mmHg) 120.8 ± 16.9 116.5 ± 15.0 127.6 ± 17.6 <0.001
Smoking 0.12
Current smokers 76 (20%) 52 (22%) 24 (17%)
Former smokers 166 (44%) 91 (39%) 75 (51%)
Never smokers 138 (36%) 91 (39%) 47 (32%)

Note: Bold indicates a statistically significant difference between normoglycemic controls and individuals with impaired glucose
metabolism.
Abbreviations: BMI, body mass index; HDL, high-density lipoprotein; IMAT, intramuscular adipose tissue; LDL, low-density lipoprotein;
SMFF, skeletal muscle fat fraction.
aMean ± SD and n (%).
bWelch two-sample t test and Pearson’s χ2 test.
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but only the quantitative SMFF remained as an independent
predictor after multivariable adjustment for cardiometabolic
risk factors.

These results are of clinical importance as SM is the largest
target organ of insulin and accounts for the majority of glu-
cose uptake.27 In addition, it plays a key role in maintaining

Figure 4 Correlation between intramuscular adipose tissue (IMAT) and skeletal muscle fat fraction (SMFF) (A) in the entire cohort and (B) stratified by
impaired glucose metabolism.

Figure 5 Discrimination of the two myosteatosis measures (intramuscular adipose tissue [IMAT] and skeletal muscle fat fraction [SMFF]) for impaired
glucose metabolism. Quantitative SMFF had a significantly higher discriminatory capacity for impaired glucose metabolism than IMAT (area under the
receiver operating characteristic curve [AUC] 0.693 vs. 0.582, 95% CI [0.06–0.16]; P < 0.001).
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glucose homeostasis and insulin resistance.28 In particular,
fatty infiltration of SM—that is, myosteatosis—is considered
an indicator of muscle quality with direct implications on
the glucose metabolism mediating capabilities and the
development of T2D.29,30 Consequently, several medical
imaging-based approaches have been proposed to estimate
myosteatosis from SM segmentation masks, including Houns-
field unit (HU)-based assessment on CT and quantitative imag-
ing techniques on MRI.31 While the first relies on relatively
coarse density (HU) changes of the muscle due to accumulat-
ing adipose tissue, MRI allows for a more accurate voxel-wise
quantitative assessment using chemical shift encoding-based
water–fat MRI.9,32 Traditionally, myosteatosis is estimated
manually on a single slice to reduce labour-intensive segmen-
tation given the high correlation with whole-body volumes.24

Yet this approach is known to reduce accuracy compared with
whole-body volumetric measurements.33 With advances in ar-
tificial intelligence, automated and more accurate 3D segmen-
tation approaches have become feasible14 with the potential
to elucidate associations that were unknown thus far.

For the interpretation of the results presented in this study,
it is important to keep in mind that the degree of
myosteatosis depends on two components: (1) intermuscular
adipose tissue and IMAT, which can be depicted as macro-
scopically visible adipose tissue deposits between muscle
groups and fibre,7 and (2) intramyocellular fat, which is not

visible but can be detected by decreased attenuation on
CT34 or increased SMFF on chemical shift encoding-based
water–fat MRI.35 Intramyocellular fat is well known to be
related to metabolic dysfunction including impaired glucose
metabolism and insulin homeostasis.36 In contrast, IMAT is
considered to be rather metabolically inactive, yet several
studies reported positive correlations between IMAT and in-
sulin resistance.7,29,30 Although these are two substantially
different concepts to estimate myosteatosis, they are both
considered valid measures to describe fatty infiltration and
muscle quality. The proposed model in this study allows for
estimating both measures of myosteatosis: the traditional
approach based on macroscopically visible intermuscular
adipose tissue and IMAT deposits and the quantitative
intramyocellular SMFF. Based on our results, we consider
SMFF as the favourable measure, as segmentation of SM is
possible with higher accuracy compared to the traditional
IMAT approach. In addition, SMFF discriminated significantly
better than IMAT for impaired glucose metabolism, although
it was similar in discrimination to some of the traditional risk
factors such as BMI and triglycerides. Further, in multivariable
logistic regression analysis, only SMFF but not IMAT turned
out to be independently associated with impaired glucose me-
tabolism beyond traditional demographic and cardiometa-
bolic risk factors. This highlights the importance of capturing
metabolically active intramyocellular fat rather than relying

Figure 6 Association between intramuscular adipose tissue (IMAT) and skeletal muscle fat fraction (SMFF) and impaired glucose metabolism. (A)
Univariable models and multivariable-adjusted models for (B) age and sex and (C) baseline demographics (age, sex and body mass index) and cardio-
metabolic risk factors (lipid panel, systolic blood pressure, smoking status and alcohol consumption) with odds ratios and 95% confidence intervals.
After multivariable adjustment, only SMFF remained as an independent predictor of impaired glucose metabolism, whereas the signal for skeletal mus-
cle was attenuated.
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on the traditional approach of macroscopically visible
IMAT. These results are in line with previous studies and
further support the potential of imaging-based estimation of
myosteatosis for opportunistic risk assessment of impaired
glucose metabolism.37 As no human input is required, the pro-
posed end-to-end pipeline could be implemented into clinical
systems (e.g., picture archiving and communication system
[PACS] or electronic medical record [EMR]) without disruption
of daily workflows to automatically quantify readily available
and prognostically relevant information on existing and new
MRI examinations that may otherwise go unnoticed.

This study has limitations. First, the sample size of the
datasets for model development and testing as well as clinical
application was relatively small and limited to a central–west-
ern population. The generalizability of our results to more
heterogeneous populations requires confirmation in larger
prospective cohort studies. In addition, MRI-based results of
myosteatosis measurements were not compared to histopa-
thology, which is still considered the gold standard for quanti-
fication of fat content. However, previous studies showed that
a standardized quantification of SM fat by measurement of
SMFF is a valid and reproducible approach to assess
myosteatosis with a high correlation to histology.12,38 Last,
the dual-echo Dixon MRI sequence used here for SMFF mea-
surements did not account for T2* effects, therefore likely
overestimating fat fraction when compared to other methods
like 6-point Dixon MRI or MR spectroscopy.39 Despite this, our
analysis focused on relative differences between groups and
was not focused on providing reference values. In addition,
the use of a dual-echo Dixon sequence facilitates clinical appli-
cation, as this technique is more widely used due to shorter ac-
quisition times compared to multi-echo Dixon sequences in
routine clinical examinations.40

In conclusion, deep learning allows for fully automated and
reliable estimation of myosteatosis on whole-body MRI.
Quantitative chemical shift encoding-based SMFF is an inde-
pendent predictor of impaired glucose metabolism beyond
traditional cardiometabolic risk factors, and discriminatory

capacity is not significantly different from BMI. Thus, SMFF
is a promising alternative to estimate myosteatosis compared
to the current approach of macroscopically visible IMAT. The
proposed pipeline may be helpful for opportunistic screening
of impaired glucose metabolism to identify individuals at high
risk and guide preventive lifestyle changes to improve popu-
lation health.
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