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Abstract. We prove the existence of solutions for some integro-differential systems contain-
ing equations with and without the drift terms in the H2 spaces by virtue of the fixed point
technique when the elliptic equations contain second order differential operators with and
without the Fredholm property, on the whole real line or on a finite interval with periodic
boundary conditions. Let us emphasize that the study of the system case is more complicated
than of the scalar situation and requires to overcome more cumbersome technicalities.
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1 Introduction

We recall that a linear operator L acting from a Banach space E into another Banach space
F satisfies the Fredholm property if its image is closed, the dimension of its kernel and the
codimension of its image are finite. Consequently, the problem Lu = f is solvable if and only
if φi(f) = 0 for a finite number of functionals φi from the dual space F ∗. These properties
of the Fredholm operators are broadly used in many methods of the linear and nonlinear
analysis.
Elliptic equations in bounded domains with a sufficiently smooth boundary satisfy the Fred-
holm property if the ellipticity condition, proper ellipticity and Lopatinskii conditions are
fulfilled (see e.g. [2], [9], [19], [21]). This is the main result of the theory of the linear
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elliptic problems. In the case of the unbounded domains, these conditions may not be suf-
ficient and the Fredholm property may not be satisfied. For example, the Laplace operator,
Lu = ∆u, in Rd fails to satisfy the Fredholm property when considered in Hölder spaces,
L : C2+α(Rd) → Cα(Rd), or in Sobolev spaces, L : H2(Rd) → L2(Rd).
Linear elliptic problems in unbounded domains satisfy the Fredholm property if and only if,
in addition to the assumptions stated above, the limiting operators are invertible (see [22]).
In some simple cases, the limiting operators can be constructed explicitly. For example, if

Lu = a(x)u′′ + b(x)u′ + c(x)u, x ∈ R,

where the coefficients of the operator have limits at the infinities,

a± = lim
x→±∞

a(x), b± = lim
x→±∞

b(x), c± = lim
x→±∞

c(x),

the limiting operators are given by:

L±u = a±u
′′ + b±u

′ + c±u.

Since the coefficients here are the constants, the essential spectrum of the operator, that is
the set of the complex numbers λ for which the operator L−λ does not satisfy the Fredholm
property, can be found explicitly by means of the Fourier transform:

λ±(ξ) = −a±ξ
2 + b±iξ + c±, ξ ∈ R.

The invertibility of the limiting operators is equivalent to the condition that the essential
spectrum does not contain the origin.
In the cases of the general elliptic equations, the same assertions hold true. The Fredholm
property is satisfied if the essential spectrum does not contain the origin or if the limiting
operators are invertible. However, these conditions may not be explicitly written.
In the situations with non-Fredholm operators, the usual solvability conditions may not be
applicable and the solvability relations are, in general, not known. There are some classes
of operators for which the solvability conditions are obtained. We illustrate that with the
following example. Consider the equation

Lu ≡ ∆u+ au = f (1.1)

in Rd, where a is a positive constant. Clearly, the operator L coincides with its limiting
operators. The homogeneous problem admits a nonzero bounded solution. Thus the Fred-
holm property is not satisfied. However, since the operator has constant coefficients, we
can apply the Fourier transform and find the solution explicitly. Solvability relations can be
formulated as follows. If f ∈ L2(Rd) and xf ∈ L1(Rd), then there exists a unique solution
of this problem in H2(Rd) if and only if

(
f(x),

eipx

(2π)
d

2

)

L2(Rd)

= 0, p ∈ Sd√
a a.e.
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(see [28]). Here Sd√
a
denotes the sphere in Rd of radius

√
a centered at the origin. Thus,

though the operator fails to satisfy the Fredholm property, the solvability conditions are
formulated similarly. However, this similarity is only formal since the range of the operator
is not closed.
In the case of the operator with a potential,

Lu ≡ ∆u+ a(x)u = f,

the Fourier transform is not directly applicable. Nevertheless, the solvability conditions in R3

can be obtained by a rather sophisticated application of the theory of self-adjoint operators
(see [25]). As before, the solvability relations are formulated in terms of the orthogonality to
the solutions of the homogeneous adjoint problem. There are several other examples of the
linear elliptic non-Fredholm operators for which the solvability conditions can be obtained
(see [13], [22], [23], [25], [27], [28]).
Solvability conditions play a crucial role in the analysis of the nonlinear elliptic equations.
In the case of the operators without Fredholm property, in spite of some progress in the
understanding of the linear problems, there exist only few examples where nonlinear non-
Fredholm operators are analyzed (see [7], [8], [12], [13], [28]).
In the present article we study another class of stationary nonlinear systems of equations,
for which the Fredholm property may or may not be satisfied:

d2uk

dx2
+ bk

duk

dx
+ akuk +

∫

Ω

Gk(x− y)Fk(u1(y), u2(y), ..., uN(y), y)dy = 0, 1 ≤ k ≤ K, (1.2)

d2uk

dx2
+ akuk +

∫

Ω

Gk(x− y)Fk(u1(y), u2(y), ..., uN(y), y)dy = 0, K + 1 ≤ k ≤ N, (1.3)

with the constants ak ≥ 0, bk ∈ R, bk 6= 0 and K ≥ 2. Here x ∈ Ω ⊆ R. In the first case we
consider the situation when Ω = R, such that N ≥ 4. In the second part of the article we
discuss the case of the finite interval Ω = I := [0, 2π] with periodic boundary conditions, so
that N ≥ 5. Throughout the work the vector function

u := (u1, u2, ..., uN)
T ∈ R

N . (1.4)

For the simplicity of the presentation we restrict ourselves to the one dimensional case
(the multidimensional case will be considered in our forthcoming paper). Article [12] is
devoted to the studies of a single integro-differential equation with a drift term and the
case without a transport term was covered in [26]. In the population dynamics the integro-
differential equations describe the models with the intra-specific competition and the nonlocal
consumption of resources (see e.g. [3], [4], [16]). The studies of the systems of integro-
differential equations are of interest to us in the context of the complicated biological systems,
where uk(x, t), k = 1, ..., N stand for the cell densities for various groups of cells in the
organism. Let us use the explicit form of the solvability relations and study the existence of
solutions of such nonlinear systems. We would like to emphasize especially that the solutions
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of the integro-differential equations with the drift terms are relevant to the understanding
of the emergence and propagation of patterns in the theory of speciation (see [24]). The
solvability of the linear problems involving the Laplace operator with the drift term was
treated in [27], see also [5]. Standing lattice solitons in the discrete NLS equation with
saturation were discussed in [1]. Fredholm structures, topological invariants and applications
were covered in [9]. The work [10] deals with the finite and infinite dimensional attractors
for the evolution equations of mathematical physics. The large time behavior of solutions
of fourth order parabolic equations and ε-entropy of their attractors were analyzed in [11].
The articles [14] and [20] are crucial for the understanding of the Fredholm and properness
properties of the quasilinear elliptic systems of the second order and of the operators of this
kind on RN . The work [15] is devoted to the exponential decay and Fredholm properties in
the second-order quasilinear elliptic systems of equations.

2 Formulation of the results

Our technical conditions are analogous to the ones of the [12], adapted to the work with
vector functions. It is also more difficult to work in the Sobolev space H2(Ω,RN), especially
when Ω is a finite interval with periodic boundary conditions with the constraints applied.
The nonlinear parts of system (1.2), (1.3) will satisfy the following regularity conditions.

Assumption 2.1. Let 1 ≤ k ≤ N . Functions Fk(u, x) : RN × Ω → R are satisfying the
Caratheodory condition (see [18]), such that

√√√√
N∑

k=1

F 2
k (u, x) ≤ K|u|RN + h(x) for u ∈ R

N , x ∈ Ω (2.1)

with a constant K > 0 and h(x) : Ω → R+, h(x) ∈ L2(Ω). Furthermore, they are Lipschitz
continuous functions, such that for any u(1),(2) ∈ RN , x ∈ Ω :

√√√√
N∑

k=1

(Fk(u(1), x)− Fk(u(2), x))2 ≤ L|u(1) − u(2)|RN , (2.2)

with a constant L > 0.
In the case of Ω = I we assume that Fk(u, 0) = Fk(u, 2π) for u ∈ RN and all 1 ≤ k ≤ N .

Here and further down the norm of a vector function given by (1.4) is

|u|RN :=

√√√√
N∑

k=1

u2
k.

Note that the solvability of a local elliptic equation in a bounded domain in RN was consid-
ered in [6], where the nonlinear function was allowed to have a sublinear growth.
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In order to study the existence of solutions of (1.2), (1.3), we introduce the auxiliary system
of equations as

−d2uk

dx2
− bk

duk

dx
− akuk =

∫

Ω

Gk(x− y)Fk(v1(y), v2(y), ..., vN(y), y)dy, 1 ≤ k ≤ K, (2.3)

−d2uk

dx2
− akuk =

∫

Ω

Gk(x− y)Fk(v1(y), v2(y), ..., vN(y), y)dy, K + 1 ≤ k ≤ N, (2.4)

where ak ≥ 0, bk ∈ R, bk 6= 0 are the constants and K ≥ 2.
Let us designate

(f1(x), f2(x))L2(Ω) :=

∫

Ω

f1(x)f̄2(x)dx, (2.5)

with a slight abuse of notations when these functions are not square integrable, like for
instance those involved in orthogonality relation (4.8) below. Indeed, if f1(x) ∈ L1(Ω) and
f2(x) is bounded, the integral in the right side of (2.5) makes sense.
Let us first consider the situation of the whole real line, such that Ω = R. The appropriate
Sobolev space is equipped with the norm

‖φ‖2H2(R) := ‖φ‖2L2(R) +

∥∥∥∥
d2φ

dx2

∥∥∥∥
2

L2(R)

. (2.6)

For a vector function with real valued components given by (1.4), we have

‖u‖2H2(R,RN ) :=

N∑

k=1

‖uk‖2H2(R) =

N∑

k=1

{
‖uk‖2L2(R) +

∥∥∥∥
d2uk

dx2

∥∥∥∥
2

L2(R)

}
. (2.7)

We also use the norm

‖u‖2L2(R,RN ) :=

N∑

k=1

‖uk‖2L2(R).

By means of Assumption 2.1 above, we are not allowed to consider the higher powers of
the nonlinearities, than the first one, which is restrictive from the point of view of the
applications. But this guarantees that our nonlinear vector function is a bounded and
continuous map from L2(Ω,RN) to L2(Ω,RN).
The main issue for the system above is that in the absence of the drift terms we are dealing
with the self-adjoint, non-Fredholm operators

− d2

dx2
− ak : H

2(R) → L2(R), ak ≥ 0,

which is the obstacle to solve our problem. The similar situations but in linear problems, both
self- adjoint and non-self-adjoint involving the differential operators without the Fredholm
property have been studied extensively in recent years (see [13], [22], [23], [25], [27], [28]).
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However, the situation differs when the constants in the drift terms bk 6= 0. For 1 ≤ k ≤ K,
the operators

La, b, k := − d2

dx2
− bk

d

dx
− ak : H2(R) → L2(R) (2.8)

with ak ≥ 0 and bk ∈ R, bk 6= 0 involved in the left side of (2.3) are non-self-adjoint.
By means of the standard Fourier transform, it can be easily verified that the essential
spectra of the operators La, b, k are given by

λa, b, k(p) = p2 − ak − ibkp, p ∈ R.

Obviously, when ak > 0 the operators La, b, k are Fredholm, because their essential spectra
stay away from the origin. But when ak = 0 our operators La, b, k fail to satisfy the Fredholm
property since the origin belongs to their essential spectra.
We manage to establish that under the reasonable technical assumptions system (2.3), (2.4)
defines a map Ta,b : H

2(R,RN) → H2(R,RN), which is a strict contraction.

Theorem 2.2. Let Ω = R, N ≥ 4, K ≥ 2, 1 ≤ l ≤ K−1, K +1 ≤ r ≤ N −1, the integral
kernels Gk(x) : R → R, Gk(x) ∈ L1(R) for all 1 ≤ k ≤ N and Assumption 2.1 holds.

a) Let ak > 0, bk ∈ R, bk 6= 0 for 1 ≤ k ≤ l.

b) Let ak = 0, bk ∈ R, bk 6= 0 for l + 1 ≤ k ≤ K, additionally xGk(x) ∈ L1(R) and
orthogonality conditions (4.8) hold.

c) Let ak > 0, xGk(x) ∈ L1(R) for K + 1 ≤ k ≤ r and orthogonality relations (4.9) hold.

d) Let ak = 0, x2Gk(x) ∈ L1(R) for r + 1 ≤ k ≤ N , orthogonality conditions (4.10) hold
and 2

√
πQL < 1 with Q defined in (4.7) below. Then the map v 7→ Ta,bv = u on H2(R,RN)

defined by problem (2.3), (2.4) has a unique fixed point v(a,b), which is the only solution of
the system of equations (1.2), (1.3) in H2(R,RN).

The fixed point v(a,b) is nontrivial provided that for some 1 ≤ k ≤ N the intersection of

supports of the Fourier transforms of functions suppF̂k(0, x) ∩ suppĜk is a set of nonzero
Lebesgue measure in R.

Let us note that in the case a) of the theorem above, when ak > 0, bk ∈ R, bk 6= 0, the
orthogonality relations are not needed.
In the second part of the article we study the analogous system on the finite interval I =
[0, 2π] with periodic boundary conditions with ak ≥ 0, bk ∈ R, bk 6= 0, K ≥ 2, N ≥ 5,
namely for 1 ≤ k ≤ K

d2uk

dx2
+ bk

duk

dx
+ akuk +

∫ 2π

0

Gk(x− y)Fk(u1(y), u2(y), ..., uN(y), y)dy = 0, (2.9)

and for K + 1 ≤ k ≤ N

d2uk

dx2
+ akuk +

∫ 2π

0

Gk(x− y)Fk(u1(y), u2(y), ..., uN(y), y)dy = 0. (2.10)

6



Let us use the function space

H2(I) := {v(x) : I → R | v(x), v′′(x) ∈ L2(I), v(0) = v(2π), v′(0) = v′(2π)} (2.11)

aiming at uk(x) ∈ H2(I) for 1 ≤ k ≤ l and K + 1 ≤ k ≤ r with 1 ≤ l ≤ K − 1 and
K + 1 ≤ r ≤ q − 1 (see Theorem 2.3 and Lemma A2 below).
For the technical purposes we introduce the auxiliary constrained subspaces

H2
k(I) :=

{
v ∈ H2(I)

∣∣∣
(
v(x),

e±inkx

√
2π

)
L2(I)

= 0
}
, nk ∈ N, r + 1 ≤ k ≤ q. (2.12)

Our goal is to have uk(x) ∈ H2
k(I), r + 1 ≤ k ≤ q, where r + 1 ≤ q ≤ N − 1. Also,

H2
0 (I) := {v ∈ H2(I) | (v(x), 1)L2(I) = 0}. (2.13)

We plan to have uk(x) ∈ H2
0 (I) for l+ 1 ≤ k ≤ K and q + 1 ≤ k ≤ N (see Theorem 2.3 and

Lemma A2). The constrained subspaces (2.12) and (2.13) are Hilbert spaces as well (see e.g.
Chapter 2.1 of [17]).
The resulting space used for demonstrating the existence of the solution u(x) : I → RN of
the system of equations (2.9), (2.10) will be the direct sum of the spaces introduced above,
namely

H2
c (I,R

N) := ⊕l
k=1H

2(I)⊕K
k=l+1 H

2
0 (I)⊕r

k=K+1 H
2(I)⊕q

k=r+1 H
2
k(I)⊕N

k=q+1 H
2
0 (I). (2.14)

The corresponding Sobolev norm will be

‖u‖2H2
c (I,R

N ) :=

N∑

k=1

{‖uk‖2L2(I) + ‖u′′
k‖2L2(I)}, (2.15)

where u(x) : I → RN .
Let us demonstrate that under the reasonable technical conditions system (2.3), (2.4) with
Ω = I defines a map τa,b : H

2
c (I,R

N) → H2
c (I,R

N), which is a strict contraction.

Theorem 2.3. Let Ω = I, N ≥ 5, K ≥ 2, 1 ≤ l ≤ K − 1, K + 1 ≤ r ≤ q− 1, r+1 ≤ q ≤
N−1, the integral kernels Gk(x) : I → R, Gk(x) ∈ C(I), Gk(0) = Gk(2π) for all 1 ≤ k ≤ N

and Assumption 2.1 is valid.

a) Let ak > 0, bk ∈ R, bk 6= 0 for 1 ≤ k ≤ l.

b) Let ak = 0, bk ∈ R, bk 6= 0 for l + 1 ≤ k ≤ K and orthogonality condition (4.28) holds.

c) Let ak > 0, ak 6= n2, n ∈ Z for K + 1 ≤ k ≤ r.

d) Let ak = n2
k, nk ∈ N for r + 1 ≤ k ≤ q and orthogonality relations (4.29) are valid.

e) Let ak = 0 for q + 1 ≤ k ≤ N , orthogonality condition (4.28) holds and 2
√
πQL < 1,

where Q is introduced in (4.27). Then the map v 7→ τa,bv = u on H2
c (I,R

N) defined by the
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system of equations (2.3), (2.4) has a unique fixed point v(a,b), which is the only solution of
system (2.9), (2.10) in H2

c (I,R
N).

The fixed point v(a,b) does not vanish identically in I provided that for some 1 ≤ k ≤ N and
a certain n ∈ Z the Fourier coefficients Gk,nFk(0, x)n 6= 0.

Remark 2.4. Note that in the present work we deal with real valued vector functions by
means of the assumptions on Fk(u, x) and Gk(x) involved in the nonlocal terms of the systems
of equations considered above.

3 The existence of solutions for the integro-differential

systems

Proof of Theorem 2.2. First we suppose that for a certain v ∈ H2(R,RN) there exist
two solutions u(1),(2) ∈ H2(R,RN) of problem (2.3), (2.4). Then their difference w(x) :=
u(1)(x)− u(2)(x) ∈ H2(R,RN) will be a solution of the homogeneous system of equations

−d2wk

dx2
− bk

dwk

dx
− akwk = 0, 1 ≤ k ≤ K,

−d2wk

dx2
− akwk = 0, K + 1 ≤ k ≤ N.

But the operators − d2

dx2
− ak, La, b, k : H

2(R) → L2(R), where La, b, k is defined in (2.8) do

not have any nontrivial zero modes. Therefore, w(x) vanishes on R.
Let us choose an arbitrary v(x) ∈ H2(R,RN). We apply the standard Fourier transform
(4.1) to both sides of system (2.3), (2.4). This gives us

ûk(p) =
√
2π

Ĝk(p)f̂k(p)

p2 − ak − ibkp
, p2ûk(p) =

√
2π

p2Ĝk(p)f̂k(p)

p2 − ak − ibkp
, 1 ≤ k ≤ K, (3.1)

ûk(p) =
√
2π

Ĝk(p)f̂k(p)

p2 − ak
, p2ûk(p) =

√
2π

p2Ĝk(p)f̂k(p)

p2 − ak
, K + 1 ≤ k ≤ N. (3.2)

Here f̂k(p) stands for the Fourier image of Fk(v(x), x).
Clearly, for 1 ≤ k ≤ K, we have the upper bounds with Na, b, k defined in (4.3), namely

|ûk(p)| ≤
√
2πNa, b, k|f̂k(p)| and |p2ûk(p)| ≤

√
2πNa, b, k|f̂k(p)|.

For K + 1 ≤ k ≤ N , we obtain

|ûk(p)| ≤
√
2πMa, k|f̂k(p)| and |p2ûk(p)| ≤

√
2πMa, k|f̂k(p)|,

8



with Ma, k introduced in (4.4). Note that Na, b, k < ∞ by virtue of Lemma A1 of the Ap-
pendix without any orthogonality conditions for ak > 0, 1 ≤ k ≤ l and under orthogonality
relation (4.8) when ak = 0, l + 1 ≤ k ≤ K. Also, Ma, k < ∞ under orthogonality con-
ditions (4.9) when ak > 0, K + 1 ≤ k ≤ r and under orthogonality relations (4.10) for
ak = 0, r + 1 ≤ k ≤ N .
This allows us to obtain the upper bound on the norm as

‖u‖2H2(R,RN ) =
N∑

k=1

{‖ûk(p)‖2L2(R) + ‖p2ûk(p)‖2L2(R)} ≤

≤ 4π
K∑

k=1

N2
a, b, k‖Fk(v(x), x)‖2L2(R) + 4π

N∑

k=K+1

M2
a, k‖Fk(v(x), x)‖2L2(R). (3.3)

The right side of (3.3) is finite via (2.1) of Assumption 2.1 since |v(x)|RN ∈ L2(R). Thus, for
an arbitrary v(x) ∈ H2(R,RN) there exists a unique solution u(x) ∈ H2(R,RN) of problem
(2.3), (2.4). Its Fourier image is given by (3.1), (3.2). Therefore, the map Ta,b : H

2(R,RN) →
H2(R,RN) is well defined.
This enables us to choose arbitrarily v(1),(2)(x) ∈ H2(R,RN), such that under the given
conditions their images u(1),(2) := Ta,bv

(1),(2) ∈ H2(R,RN). By means of (2.3), (2.4) along
with (4.1),

û
(1)
k (p) =

√
2π

Ĝk(p)f̂
(1)
k (p)

p2 − ak − ibkp
, û

(2)
k (p) =

√
2π

Ĝk(p)f̂
(2)
k (p)

p2 − ak − ibkp
, 1 ≤ k ≤ K,

û
(1)
k (p) =

√
2π

Ĝk(p)f̂
(1)
k (p)

p2 − ak
, û

(2)
k (p) =

√
2π

Ĝk(p)f̂
(2)
k (p)

p2 − ak
, K + 1 ≤ k ≤ N.

Here f̂
(1)
k (p) and f̂

(2)
k (p) denote the Fourier transforms of Fk(v

(1)(x), x) and Fk(v
(2)(x), x)

respectively.
Hence, for 1 ≤ k ≤ K, we easily derive

∣∣∣∣û
(1)
k (p)− û

(2)
k (p)

∣∣∣∣ ≤
√
2πNa, b, k

∣∣∣∣f̂
(1)
k (p)− f̂

(2)
k (p)

∣∣∣∣,

∣∣∣∣p2û
(1)
k (p)− p2û

(2)
k (p)

∣∣∣∣ ≤
√
2πNa, b, k

∣∣∣∣f̂
(1)
k (p)− f̂

(2)
k (p)

∣∣∣∣
and for K + 1 ≤ k ≤ N

∣∣∣∣û
(1)
k (p)− û

(2)
k (p)

∣∣∣∣ ≤
√
2πMa, k

∣∣∣∣f̂
(1)
k (p)− f̂

(2)
k (p)

∣∣∣∣,

∣∣∣∣p2û
(1)
k (p)− p2û

(2)
k (p)

∣∣∣∣ ≤
√
2πMa, k

∣∣∣∣f̂
(1)
k (p)− f̂

(2)
k (p)

∣∣∣∣.

9



Then for the appropriate norm of the difference of vector functions we obtain

‖u(1) − u(2)‖2H2(R,RN ) =

N∑

k=1

{∥∥∥û(1)
k (p)− û

(2)
k (p)

∥∥∥
2

L2(R)
+
∥∥∥p2û(1)

k (p)− p2û
(2)
k (p)

∥∥∥
2

L2(R)

}
≤

≤ 4πQ2
N∑

k=1

‖Fk(v
(1)(x), x)− Fk(v

(2)(x), x)‖2L2(R),

where Q is defined in (4.7). Clearly, all v
(1),(2)
k (x) ∈ H2(R) ⊂ L∞(R) due to the Sobolev

embedding.
Condition (2.2) gives us

N∑

k=1

‖Fk(v
(1)(x), x)− Fk(v

(2)(x), x)‖2L2(R) ≤ L2‖v(1) − v(2)‖2L2(R,RN ).

Thus,
‖Ta,bv

(1) − Ta,bv
(2)‖H2(R,RN ) ≤ 2

√
πQL‖v(1) − v(2)‖H2(R,RN ). (3.4)

The constant in the right side of (3.4) is less than one via the one of our assumptions.
Therefore, by virtue of the Fixed Point Theorem, there exists a unique vector function v(a,b) ∈
H2(R,RN), such that Ta,bv

(a,b) = v(a,b), which is the only solution of problem (1.2), (1.3) in
H2(R,RN). Suppose v(a,b)(x) vanishes identically on the real line. This will contradict to
our assumption that for a certain 1 ≤ k ≤ N , the Fourier transforms of Gk(x) and Fk(0, x)
are nontrivial on a set of nonzero Lebesgue measure in R.

Then we turn our attention to establishing the existence of solutions for our system of
integro-differential equations on the finite interval with periodic boundary conditions.

Proof of Theorem 2.3. Let us first suppose that for some v ∈ H2
c (I,R

N) there exist two
solutions u(1),(2) ∈ H2

c (I,R
N) of system (2.3), (2.4) with Ω = I. Then the difference w̃(x) :=

u(1)(x)− u(2)(x) ∈ H2
c (I,R

N) will satisfy the homogeneous system of equations

−d2w̃k

dx2
− bk

dw̃k

dx
− akw̃k = 0, 1 ≤ k ≤ K, (3.5)

−d2w̃k

dx2
− akw̃k = 0, K + 1 ≤ k ≤ N. (3.6)

Evidently, each operator contained in the left side of system (3.5)

La, b, k := − d2

dx2
− bk

d

dx
− ak : H2(I) → L2(I), (3.7)

where 1 ≤ k ≤ l, ak > 0, bk ∈ R, bk 6= 0 is Fredholm, non-self-adjoint.
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Its set of eigenvalues is

λa, b, k(n) = n2 − ak − ibkn, n ∈ Z. (3.8)

The corresponding eigenfunctions are the standard Fourier harmonics

einx√
2π

, n ∈ Z. (3.9)

When l + 1 ≤ k ≤ K, we have ak = 0, bk ∈ R, bk 6= 0. Let us deal with the operators

L0, b, k := − d2

dx2
− bk

d

dx
: H2

0 (I) → L2(I) (3.10)

involved in system (3.5).
Obviously, each operator (3.10) has the eigenvalues given by formula (3.8) with ak = 0, bk ∈
R, bk 6= 0, n ∈ Z, n 6= 0.
The corresponding eigenfunctions in this case are (3.9) with n ∈ Z, n 6= 0.
Clearly, every operator contained in the left side of the system of equations (3.6)

La, 0, k := − d2

dx2
− ak : H2(I) → L2(I) (3.11)

with K + 1 ≤ k ≤ r, ak > 0, ak 6= n2, n ∈ Z is Fredholm, self-adjoint.
Its set of eigenvalues is

λa, 0, k(n) = n2 − ak, n ∈ Z. (3.12)

The corresponding eigenfunctions are given by (3.9).
For r + 1 ≤ k ≤ q, we have ak = n2

k, nk ∈ N. Let us consider the operators

Ln2
k
, 0, k := − d2

dx2
− n2

k : H2
k(I) → L2(I) (3.13)

involved in the left side of system (3.6).
The eigenvalues of each operator (3.13) are written in (3.12) with ak = n2

k, n ∈ Z, n 6= ±nk.
The corresponding eigenfunctions are given by formula (3.9) with n ∈ Z, n 6= ±nk.
When q + 1 ≤ k ≤ N , all the constants ak are trivial. Then the operator contained in the
left side of the system of equations (3.6) in this situation is

L0, 0, k := − d2

dx2
: H2

0 (I) → L2(I). (3.14)

Its eigenvalues are
λ0, 0, k(n) = n2, n ∈ Z, n 6= 0. (3.15)

We have the corresponding eigenfunctions written in (3.9) with n ∈ Z, n 6= 0.

11



Note that all the operators mentioned above, which are involved in the left side of the
homogeneous system (3.5), (3.6) have the trivial kernels. Thus, the vector function w̃(x)
vanishes identically on the interval I.
Let us choose arbitrarily v(x) ∈ H2

c (I,R
N) and apply the Fourier transform (4.21) to both

sides of the system of equations (2.3), (2.4) with Ω = I. This yields

uk,n =
√
2π

Gk,nfk,n

n2 − ak − ibkn
, n2uk,n =

√
2π

n2Gk,nfk,n

n2 − ak − ibkn
, 1 ≤ k ≤ K, n ∈ Z, (3.16)

uk,n =
√
2π

Gk,nfk,n

n2 − ak
, n2uk,n =

√
2π

n2Gk,nfk,n

n2 − ak
, K + 1 ≤ k ≤ N, n ∈ Z, (3.17)

where fk,n := Fk(v(x), x)n.
From (3.16) and (3.17) we easily obtain that

|uk,n| ≤
√
2πNa, b, k|fk,n|, |n2uk,n| ≤

√
2πNa, b, k|fk,n|, 1 ≤ k ≤ K, n ∈ Z, (3.18)

|uk,n| ≤
√
2πMa, k|fk,n|, |n2uk,n| ≤

√
2πMa, k|fk,n|, K + 1 ≤ k ≤ N, n ∈ Z. (3.19)

In the estimates above we have Na, b, k introduced in (4.23) and Ma, k was defined in (4.24).
Clearly, Na, b, k < ∞ by means of Lemma A2 of the Appendix without any orthogonality
relations for ak > 0, 1 ≤ k ≤ l and under orthogonality condition (4.28) when ak =
0, l + 1 ≤ k ≤ K. Similarly, Ma, k < ∞ for ak > 0, ak 6= n2, n ∈ Z, K + 1 ≤ k ≤ r, under
orthogonality relations (4.29) when ak = n2

k, nk ∈ N, r+1 ≤ k ≤ q and under orthogonality
condition (4.28) for ak = 0, q + 1 ≤ k ≤ N by virtue of Lemma A2.
By means of (3.18) and (3.19), we derive

‖u‖2H2
c (I,R

N ) =
K∑

k=1

[ ∞∑

n=−∞
|uk,n|2 +

∞∑

n=−∞
|n2uk,n|2

]
+

N∑

k=K+1

[ ∞∑

n=−∞
|uk,n|2 +

∞∑

n=−∞
|n2uk,n|2

]
≤

≤ 4π
K∑

k=1

N 2
a, b, k‖Fk(v(x), x)‖2L2(I) + 4π

N∑

k=K+1

M2
a, k‖Fk(v(x), x)‖2L2(I). (3.20)

Let us recall inequality (2.1) of Assumption 2.1. We have here |v(x)|RN ∈ L2(I), such that
all Fk(v(x), x) ∈ L2(I) and the right side of (3.20) is finite. Hence, for any v(x) ∈ H2

c (I,R
N)

there exists a unique u(x) ∈ H2
c (I,R

N), which solves system (2.3), (2.4) with Ω = I. Its
Fourier transform is given by formulas (3.16) and (3.17). Thus, the map τa,b : H

2
c (I,R

N) →
H2

c (I,R
N) is well defined.

Let us choose arbitrarily v(1),(2)(x) ∈ H2
c (I,R

N). Under the stated assumptions, their images
under the map discussed above are u(1),(2) := τa,bv

(1),(2) ∈ H2
c (I,R

N). By virtue of (2.3) and
(2.4) with Ω = I along with (4.21), we arrive at

u
(1)
k,n =

√
2π

Gk,nf
(1)
k,n

n2 − ak − ibkn
, u

(2)
k,n =

√
2π

Gk,nf
(2)
k,n

n2 − ak − ibkn
, 1 ≤ k ≤ K, n ∈ Z,

12



u
(1)
k,n =

√
2π

Gk,nf
(1)
k,n

n2 − ak
, u

(2)
k,n =

√
2π

Gk,nf
(2)
k,n

n2 − ak
, K + 1 ≤ k ≤ N, n ∈ Z.

Here f
(1)
k,n and f

(2)
k,n stand for the Fourier images of Fk(v

(1)(x), x) and Fk(v
(2)(x), x) respectively

under transform (4.21).
Thus, for 1 ≤ k ≤ K, n ∈ Z, we have

|u(1)
k,n − u

(2)
k,n| ≤

√
2πNa, b, k|f (1)

k,n − f
(2)
k,n|, |n2u

(1)
k,n − n2u

(2)
k,n| ≤

√
2πNa, b, k|f (1)

k,n − f
(2)
k,n|.

Similarly, for K + 1 ≤ k ≤ N, n ∈ Z, we obtain

|u(1)
k,n − u

(2)
k,n| ≤

√
2πMa, k|f (1)

k,n − f
(2)
k,n|, |n2u

(1)
k,n − n2u

(2)
k,n| ≤

√
2πMa, k|f (1)

k,n − f
(2)
k,n|.

Let us estimate the appropriate norm of the difference of the vector functions as

‖u(1) − u(2)‖2H2
c (I,R

N ) =

K∑

k=1

[ ∞∑

n=−∞
|u(1)

k,n − u
(2)
k,n|2 +

∞∑

n=−∞
|n2u

(1)
k,n − n2u

(2)
k,n|2

]
+

+

N∑

k=K+1

[ ∞∑

n=−∞
|u(1)

k,n − u
(2)
k,n|2 +

∞∑

n=−∞
|n2u

(1)
k,n − n2u

(2)
k,n|2

]
≤

≤ 4πQ2
N∑

k=1

‖Fk(v
(1)(x), x)− Fk(v

(2)(x), x)‖2L2(I),

with Q introduced in (4.27). Evidently, all v
(1),(2)
k (x) ∈ H2(I) ⊂ L∞(I) via the Sobolev

embedding.
We recall condition (2.2) of Assumption 2.1, such that

N∑

k=1

‖Fk(v
(1)(x), x)− Fk(v

(2)(x), x)‖2L2(I) ≤ L2‖v(1) − v(2)‖2H2
c (I,R

N ).

Hence,
‖τa,bv(1) − τa,bv

(2)‖H2
c (I,R

N ) ≤ 2
√
πQL‖v(1) − v(2)‖H2

c (I,R
N ). (3.21)

The constant in the right side of bound (3.21) is less than one as assumed. By means
of the Fixed Point Theorem, there exists a unique vector function v(a,b) ∈ H2

c (I,R
N), so

that τa,bv
(a,b) = v(a,b). This is the only solution of the system of equations (2.9), (2.10) in

H2
c (I,R

N). Let us suppose that v(a,b)(x) vanishes identically in I. This will contradict to
the given condition that for a certain 1 ≤ k ≤ N and some n ∈ Z the Fourier coefficients
Gk,nFk(0, x)n 6= 0.
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4 Appendix

Let Gk(x) be a function, Gk(x) : R → R, for which we designate its standard Fourier
transform using the hat symbol as

Ĝk(p) :=
1√
2π

∫ ∞

−∞
Gk(x)e

−ipxdx, p ∈ R. (4.1)

Clearly

‖Ĝk(p)‖L∞(R) ≤
1√
2π

‖Gk‖L1(R) (4.2)

and Gk(x) =
1√
2π

∫ ∞

−∞
Ĝk(q)e

iqxdq, x ∈ R. For the technical purposes we introduce the aux-

iliary quantities

Na, b, k := max
{∥∥∥ Ĝk(p)

p2 − ak − ibkp

∥∥∥
L∞(R)

,
∥∥∥ p2Ĝk(p)

p2 − ak − ibkp

∥∥∥
L∞(R)

}
, 1 ≤ k ≤ K, (4.3)

Ma, k := max
{∥∥∥ Ĝk(p)

p2 − ak

∥∥∥
L∞(R)

,

∥∥∥p
2Ĝk(p)

p2 − ak

∥∥∥
L∞(R)

}
, K + 1 ≤ k ≤ N, (4.4)

where ak ≥ 0, bk ∈ R, bk 6= 0 are the constants and K ≥ 2, N ≥ 4. Let N0, b, k denote (4.3)
when ak vanishes and M0, k stands for (4.4) when ak = 0. Under the assumptions of Lemma
A1 below, quantities (4.3) and (4.4) will be finite. This will allow us to define

Na, b := max1≤k≤KNa, b, k < ∞, (4.5)

Ma := maxK+1≤k≤NMa, k < ∞ (4.6)

and
Q := max{Na, b, Ma}. (4.7)

The auxiliary lemma below is the adaptation of the ones established in [12] and [26] for the
studies of the single integro-differential equation with and without a drift. Let us present it
for the convenience of the readers.

Lemma A1. Let N ≥ 4, K ≥ 2, 1 ≤ l ≤ K − 1, K + 1 ≤ r ≤ N − 1, the integral kernels
Gk(x) : R → R, Gk(x) ∈ L1(R) for all 1 ≤ k ≤ N .

a) Let ak > 0, bk ∈ R, bk 6= 0 for 1 ≤ k ≤ l. Then Na, b, k < ∞.

b) Let ak = 0, bk ∈ R, bk 6= 0 for l + 1 ≤ k ≤ K and additionally xGk(x) ∈ L1(R). Then
N0, b, k < ∞ if and only if

(Gk(x), 1)L2(R) = 0 (4.8)

holds.
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c) Let ak > 0 and xGk(x) ∈ L1(R) for K + 1 ≤ k ≤ r. Then Ma, k < ∞ if and only if

(
Gk(x),

e±i
√
akx

√
2π

)

L2(R)

= 0 (4.9)

is valid.

d) Let ak = 0 and x2Gk(x) ∈ L1(R) for r + 1 ≤ k ≤ N . Then M0, k < ∞ if and only if

(Gk(x), 1)L2(R) = 0 and (Gk(x), x)L2(R) = 0 (4.10)

holds.

Proof. Note that in both cases a) and b) of our lemma the boundedness of
Ĝk(p)

p2 − ak − ibkp

implies the boundedness of
p2Ĝk(p)

p2 − ak − ibkp
. Indeed, we can express

p2Ĝk(p)

p2 − ak − ibkp
as the

following sum

Ĝk(p) + ak
Ĝk(p)

p2 − ak − ibkp
+ ibk

pĜk(p)

p2 − ak − ibkp
. (4.11)

Obviously, the first term in (4.11) is bounded by virtue of (4.2) because Gk(x) ∈ L1(R) due
to the one of our assumptions. The third term in (4.11) can be trivially estimated from
above in the absolute value by means of (4.2) as

|bk||p||Ĝk(p)|√
(p2 − ak)2 + b2kp

2
≤ 1√

2π
‖Gk(x)‖L1(R) < ∞.

Therefore,
Ĝk(p)

p2 − ak − ibkp
∈ L∞(R) yields

p2Ĝk(p)

p2 − ak − ibkp
∈ L∞(R).

To establish the result of the part a) of our lemma, we need to estimate

|Ĝk(p)|√
(p2 − ak)2 + b2kp

2
. (4.12)

Evidently, the numerator of (4.12) can be easily estimated from above by means of (4.2) and
the denominator in (4.12) can be trivially bounded below by a finite, positive constant, such
that ∣∣∣∣

Ĝk(p)

p2 − ak − ibkp

∣∣∣∣ ≤ C‖Gk(x)‖L1(R) < ∞.

Here and further down C will stand for a finite, positive constant. This implies that under
our assumptions, when ak > 0 we have Na, b, k < ∞.
In the case b) of the lemma when ak = 0, we use the identity

Ĝk(p) = Ĝk(0) +

∫ p

0

dĜk(s)

ds
ds.
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Hence

Ĝk(p)

p2 − ibkp
=

Ĝk(0)

p(p− ibk)
+

∫ p

0
dĜk(s)

ds
ds

p(p− ibk)
. (4.13)

By virtue of definition (4.1) of the standard Fourier transform, we easily obtain the upper
bound ∣∣∣∣

dĜk(p)

dp

∣∣∣∣ ≤
1√
2π

‖xGk(x)‖L1(R). (4.14)

We easily arrive at ∣∣∣∣
∫ p

0
dĜk(s)

ds
ds

p(p− ibk)

∣∣∣∣ ≤
‖xGk(x)‖L1(R)√

2π|bk|
< ∞

via our assumptions. Thus, the expression in the left side of (4.13) is bounded if and only if

Ĝk(0) vanishes, which is equivalent to orthogonality relation (4.8).
In the cases c) and d) of the lemma, we can write

p2Ĝk(p)

p2 − ak
= Ĝk(p) + ak

Ĝk(p)

p2 − ak
,

so that
Ĝk(p)

p2 − ak
∈ L∞(R) implies that

p2Ĝk(p)

p2 − ak
∈ L∞(R) as well.

To demonstrate the validity of the result of the part c) of our lemma, we express

Ĝk(p)

p2 − ak
=

Ĝk(p)

p2 − ak
χI+

δk

+
Ĝk(p)

p2 − ak
χI−

δk

+
Ĝk(p)

p2 − ak
χIc

δk

. (4.15)

Here and below χA will denote the characteristic function of a set A ⊆ R and Ac will stand
for its complement. The sets

I+δk := {p ∈ R | √ak − δk < p <
√
aK + δk}, I−δk := {p ∈ R | −√

ak − δk < p < −√
ak + δk}

with 0 < δk <
√
ak and Iδk := I+δk ∪ I−δk .

The third term in the right side of (4.15) can be trivially bounded from above in the absolute

value by means of (4.2) by
1√
2πδ2k

‖Gk‖L1(R) < ∞.

Clearly, we can write

Ĝk(p) = Ĝk(
√
ak) +

∫ p

√
ak

dĜk(s)

ds
ds, Ĝk(p) = Ĝk(−

√
ak) +

∫ p

−√
ak

dĜk(s)

ds
ds.

Thus, the sum of the first two terms in the right side of (4.15) is given by

Ĝk(
√
ak)

p2 − ak
χI+

δk

+
Ĝk(−

√
ak)

p2 − ak
χI−

δk

+

∫ p√
ak

dĜk(s)
ds

ds

p2 − ak
χI+

δk

+

∫ p

−√
ak

dĜk(s)
ds

ds

p2 − ak
χI−

δk

.
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By virtue of (4.14), we derive

∣∣∣∣

∫ p√
ak

dĜk(s)
ds

ds

p2 − ak
χI+

δk

∣∣∣∣ ≤
‖xGk(x)‖L1(R)√
2π(2

√
ak − δk)

< ∞,

∣∣∣∣

∫ p

−√
ak

dĜk(s)
ds

ds

p2 − ak
χI−

δk

∣∣∣∣ ≤
‖xGk(x)‖L1(R)√
2π(2

√
ak − δk)

< ∞.

Therefore, it remains to consider

Ĝk(
√
ak)

p2 − ak
χI+

δk

+
Ĝk(−

√
ak)

p2 − ak
χI−

δk

. (4.16)

Evidently, (4.16) is bounded if and only if Ĝk(±
√
ak) = 0. This is equivalent to the orthog-

onality conditions (4.9).
Finally, we turn our attention to the case d) of the lemma when ak = 0, so that

Ĝk(p)

p2
=

Ĝk(p)

p2
χ{|p|≤1} +

Ĝk(p)

p2
χ{|p|>1}. (4.17)

The second term in the right side of (4.17) can be easily estimated from above in the absolute
value as ∣∣∣∣

Ĝk(p)

p2
χ{|p|>1}

∣∣∣∣ ≤ ‖Ĝk(p)‖L∞(R) < ∞

via (4.2). Obviously,

Ĝk(p) = Ĝk(0) + p
dĜk

dp
(0) +

∫ p

0

(∫ s

0

d2Ĝk(q)

dq2
dq

)
ds,

such that the first term in right side of (4.17) equals to

[
Ĝk(0)

p2
+

dĜk

dp
(0)

p
+

∫ p

0

(∫ s

0
d2Ĝk(q)

dq2
dq

)
ds

p2

]
χ{|p|≤1}. (4.18)

Using definition (4.1) of the standard Fourier transform, we derive

∣∣∣∣
d2Ĝk(p)

dp2

∣∣∣∣ ≤
1√
2π

‖x2Gk(x)‖L1(R),

so that

∣∣∣∣

∫ p

0

(∫ s

0
d2Ĝk(q)

dq2
dq

)
ds

p2
χ{|p|≤1}

∣∣∣∣ ≤
‖x2Gk(x)‖L1(R)

2
√
2π

< ∞
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as assumed. Hence, it remains to analyze

[
Ĝk(0)

p2
+

dĜk

dp
(0)

p

]
χ{|p|≤1}. (4.19)

From definition (4.1) of the standard Fourier transform we deduce that

Ĝk(0) =
1√
2π

(Gk(x), 1)L2(R),
dĜk

dp
(0) = − i√

2π
(Gk(x), x)L2(R),

such that (4.19) is equal to

1√
2π

[
(Gk(x), 1)L2(R)

p2
− i

(Gk(x), x)L2(R)

p

]
χ{|p|≤1}. (4.20)

Obviously, (4.20) belongs to L∞(R) if and only if orthogonality relations (4.10) are valid.

Let the continuous function Gk(x) : I → R, Gk(0) = Gk(2π). Its Fourier transform on the
finite interval is given by

Gk,n :=

∫ 2π

0

Gk(x)
e−inx

√
2π

dx, n ∈ Z, (4.21)

so that Gk(x) =

∞∑

n=−∞
Gk,n

einx√
2π

. Obviously, the inequalities

‖Gk,n‖l∞ ≤ 1√
2π

‖Gk(x)‖L1(I), ‖Gk(x)‖L1(I) ≤ 2π‖Gk(x)‖C(I) (4.22)

hold.
Similarly to the whole real line case, we define

Na, b, k := max
{∥∥∥ Gk,n

n2 − ak − ibkn

∥∥∥
l∞
,

∥∥∥ n2Gk,n

n2 − ak − ibkn

∥∥∥
l∞

}
, 1 ≤ k ≤ K, (4.23)

Ma, k := max
{∥∥∥ Gk,n

n2 − ak

∥∥∥
l∞
,

∥∥∥ n2Gk,n

n2 − ak

∥∥∥
l∞

}
, K + 1 ≤ k ≤ N (4.24)

with the constants ak ≥ 0, bk ∈ R, bk 6= 0 and K ≥ 2, N ≥ 5. Let N0, b, k stand for (4.23)
when ak = 0 and M0, k denote (4.24) when ak is trivial. Under the conditions of Lemma A2
below, expressions (4.23), (4.24) will be finite. This will enable us to introduce

Na, b := max1≤k≤KNa, b, k < ∞, (4.25)

Ma := maxK+1≤k≤NMa, k < ∞ (4.26)
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and
Q := max{Na, b, Ma}. (4.27)

Our final technical proposition is as follows.

Lemma A2. Let N ≥ 5, K ≥ 2, 1 ≤ k ≤ N, 1 ≤ l ≤ K − 1, K + 1 ≤ r ≤ q − 1, r + 1 ≤
q ≤ N − 1, the integral kernels Gk(x) : I → R, Gk(x) ∈ C(I) and Gk(0) = Gk(2π) for all
1 ≤ k ≤ N .

a) Let ak > 0, bk ∈ R, bk 6= 0 for 1 ≤ k ≤ l. Then Na, b, k < ∞.

b) Let ak = 0, bk ∈ R, bk 6= 0 for l + 1 ≤ k ≤ K. Then N0, b, k < ∞ if and only if

(Gk(x), 1)L2(I) = 0. (4.28)

c) Let ak > 0 and ak 6= n2, n ∈ Z for K + 1 ≤ k ≤ r. Then Ma, k < ∞.

d) Let ak = n2
k, nk ∈ N for r + 1 ≤ k ≤ q. Then Ma, k < ∞ if and only if

(
Gk(x),

e±inkx

√
2π

)
L2(I)

= 0 (4.29)

holds.

e) Let ak = 0 for q + 1 ≤ k ≤ N . Then M0, k < ∞ if and only if orthogonality condition
(4.28) is valid.

Proof. In both cases a) and b) of the lemma
Gk,n

n2 − ak − ibkn
∈ l∞ yields

n2Gk,n

n2 − ak − ibkn
∈ l∞.

Indeed,
n2Gk,n

n2 − ak − ibkn
can be written as

Gk,n + ak
Gk,n

n2 − ak − ibkn
+ ibk

nGk,n

n2 − ak − ibkn
. (4.30)

The first term in (4.30) is bounded by means of (4.22) under the given conditions. The third
term in (4.30) can be easily estimated from above in the absolute value using (4.22) as well
as

|bk|
|n||Gk,n|√

(n2 − ak)2 + b2kn
2
≤ |Gk,n| ≤

√
2π‖Gk(x)‖C(I) < ∞.

Thus,
Gk,n

n2 − ak − ibkn
∈ l∞ implies the boundedness of

n2Gk,n

n2 − ak − ibkn
.

To treat the case a) of the lemma, we need to consider

|Gk,n|√
(n2 − ak)2 + b2kn

2
. (4.31)
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Obviously, the denominator in fraction (4.31) can be estimated from below by a positive
constant. Let us apply (4.22) to the numerator in (4.31). Hence Na, b, k < ∞ in the
situation a) of our lemma when ak > 0.
Let us establish the validity of the result of the part b) when ak vanishes. Evidently,

Gk,n

n2 − ibkn
∈ l∞ if and only if Gk,0 = 0. This is equivalent to orthogonality relation (4.28).

In this case we easily obtain the upper bound

∣∣∣∣
Gk,n

n2 − ibkn

∣∣∣∣ =
|Gk,n|

|n|
√

n2 + b2k
≤

√
2π

‖Gk(x)‖C(I)

|bk|
< ∞

using (4.22) along with our assumptions.
In the cases c), d) and e) of the lemma we can express

n2Gk,n

n2 − ak
= Gk,n + ak

Gk,n

n2 − ak
. (4.32)

By virtue of (4.22), the boundedness of
Gk,n

n2 − ak
yields

n2Gk,n

n2 − ak
∈ l∞.

In the situation c) we have
Gk,n

n2 − ak
∈ l∞ since such expression does not contain any singu-

larities and the result of our lemma is obvious.

In the part d) the quantity
Gk,n

n2 − n2
k

∈ l∞ if and only if Gk,±nk
= 0. This is equivalent to

orthogonality conditions (4.29).

In the case e) the expression
Gk,n

n2
∈ l∞ if and only if Gk,0 = 0, which is equivalent to

orthogonality relation (4.28).

Acknowledgement

V. V. is grateful to Israel Michael Sigal for the partial support by the NSERC grant NA
7901.

References

[1] G.L. Alfimov, A.S. Korobeinikov, C.J. Lustri, D.E. Pelinovsky. Standing lattice
solitons in the discrete NLS equation with saturation, Nonlinearity, 32 (2019),
no. 9, 3445–3484.

20



[2] M.S. Agranovich. Elliptic boundary problems, Encyclopaedia Math. Sci., 79,
Partial Differential Equations, IX, Springer, Berlin (1997), 1–144.

[3] N. Apreutesei, N. Bessonov, V. Volpert, V. Vougalter. Spatial structures and
generalized travelling waves for an integro- differential equation, Discrete Contin.
Dyn. Syst. Ser. B, 13 (2010), no. 3, 537–557.

[4] H. Berestycki, G. Nadin, B. Perthame, L. Ryzhik. The non-local Fisher-KPP
equation: travelling waves and steady states, Nonlinearity, 22 (2009), no. 12,
2813–2844.

[5] H. Berestycki, F. Hamel, N. Nadirashvili. The speed of propagation for KPP
type problems. I: Periodic framework, J. Eur. Math. Soc. (JEMS), 7 (2005), no.
2, 173–213.

[6] H. Brezis, L. Oswald. Remarks on sublinear elliptic equations, Nonlinear Anal.,
10 (1986), no. 1, 55–64.

[7] A. Ducrot, M. Marion, V. Volpert. Systémes de réaction-diffusion sans propriété
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