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Abstract: Despite extensive research on 5-methylcytosine (5mC) in relation to smoking, there has 
been limited exploration into the interaction between smoking and 5-hydroxymethylcytosine 
(5hmC). In this study, total DNA methylation (5mC+5hmC), true DNA methylation (5mC) and hy-
droxymethylation (5hmC) levels were profiled utilizing conventional bisulphite (BS) and oxidative 
bisulphite (oxBS) treatment, measured with the Illumina Infinium MethylationEPIC BeadChip. An 
epigenome-wide association study (EWAS) of 5mC+5hmC methylation revealed a total of 38,575 
differentially methylated positions (DMPs) and 2023 differentially methylated regions (DMRs) as-
sociated with current smoking, along with 82 DMPs and 76 DMRs associated with former smoking 
(FDR-adjusted p < 0.05). Additionally, a focused examination of 5mC identified 33 DMPs linked to 
current smoking and 1 DMP associated with former smoking (FDR-adjusted p < 0.05). In the 5hmC 
category, eight DMPs related to current smoking and two DMPs tied to former smoking were iden-
tified, each meeting a suggestive threshold (p < 1 × 10−5). The substantial number of recognized 
DMPs, including 5mC+5hmC (7069/38,575, 2/82), 5mC (0/33, 1/1), and 5hmC (2/8, 0/2), have not been 
previously reported. Our findings corroborated previously established methylation positions and 
revealed novel candidates linked to tobacco smoking. Moreover, the identification of hydroxymeth-
ylated CpG sites with suggestive links provides avenues for future research. 

Keywords: smoking; DNA methylation; hydroxymethylation; differentially methylated positions 
(DMPs); differentially methylated regions (DMRs); Illumina Infinium methylation EPIC BeadChip 
 

1. Introduction 
Although tobacco smoking is widely recognized as a harmful behaviour with signif-

icant impacts on human health, smoking or exposure to smoke continues to be prevalent 
worldwide. Tobacco smoking is a risk factor for and is a frequent cause of many adverse 
health consequences, such as chronic obstructive pulmonary disease (COPD) [1], cardio-
vascular diseases [2], asthma [3] and various forms of cancer, in particular lung cancer 
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[4,5]. Moreover, smoking status appears to contribute to a poor prognosis in COVID-19 
patients [6]. While the precise pathogenic mechanisms remain under investigation, it is 
widely acknowledged that the induction of oxidative stress through the generation of ex-
cessive reactive oxygen species (ROS) by harmful chemicals is a key molecular event that 
predisposes individuals to inflammation, senescence and smoking-related illnesses [7,8]. 

Epigenetic mechanisms, specifically alterations in DNA methylation, have been sug-
gested to moderate the impact of tobacco smoking, leading to changes in transcriptional 
activity and contributing to smoking-related diseases [9]. With the update of DNA meth-
ylation arrays, the impact of smoking on DNA 5-methylcytosine (5mC) methylation has 
been thoroughly investigated in blood cells from adults, revealing significant disparities 
between smokers and non-smokers [10,11], which can be even more conspicuous in spe-
cific tissues like vascular endothelial cells [12], and vulnerable groups like cancer patients 
[4]. The impact of tobacco smoking on DNA methylation is also prominent in the blood of 
newborns whose mothers smoked during pregnancy [13]. Previous studies also demon-
strated that the link between cigarette smoking and methylation is dynamic, showing on-
going fluctuations in methylation levels even decades after smoking cessation. However, 
only a few studies have delved into the effect of smoking on DNA 5-hydroxymethylcyto-
sine (5hmC) methylation, an intermediate oxidized form of 5mC involved in the active 
demethylation process. During active demethylation process, the ten-eleven translocation 
(TET) enzymes play a crucial role by oxidizing 5mC into 5hmC, further converting 5hmC 
to 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). Subsequently, the thymine DNA 
glycosylase (TDG)-dependent base excision repair (BER) transforms 5fC and 5caC into an 
unmethylated cytosine [14,15]. Due to their low abundance in the genome, 5fC and 5caC 
demonstrate limited stability [16]. In contrast to 5fC and 5caC, 5hmC is relatively stable 
and presents tissue specificity [17]. Given its enrichment in promoters, enhancers and 
transcriptional regulatory elements, 5hmC is intimately associated with the regulation of 
gene expression [18]. 

Recent studies have highlighted that smoking-induced oxidative stress can initiate 
the DNA demethylation pathway [19]. Additionally, 5hmC has emerged as an informative 
biomarker in mammalian development and diseases [20,21]. However, the traditional bi-
sulphite (BS) conversion method, commonly used for detecting DNA methylation, cannot 
distinguish between 5mC and 5hmC [22]. As a result, most of the existing literature on 
DNA methylation reports 5mC and 5hmC signals jointly. Moreover, the Infinium Hu-
manMethylation450 BeadChip has been predominantly utilized to identify smoking-as-
sociated differentially methylated positions (DMPs). In this study, the oxidative bisulphite 
(oxBS) treatment was employed to measure true 5mC and 5hmC signals separately (Fig-
ure 1A). We hypothesized that smoking-induced differential DNA methylation could po-
tentially influence not only 5mC but also 5hmC patterns in leucocytes from blood samples. 
Initially, we examined total 5mC+5hmC methylation levels in 1717 participants classified 
as current, former and non-smokers from the Cooperative Health Research in the Region 
of Augsburg (KORA) Fit population-based cohort (Figure 1B). We employed the latest Hu-
manMethylation EPIC BeadChip, providing expanded CpG site coverage compared to 
prior arrays (over 850,000 CpG sites). Subsequently, we evaluated 5mC and 5hmC meth-
ylation levels separately in a subset of 563 individuals. 
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Figure 1. (A) Schematic overview depicting bisulphite conversion (BS) and oxidative BS. (B) Illus-
tration of the study design. 

2. Materials and Methods 
2.1. Study Population 

The analysis was based on data from the KORA Fit study, a follow-up study con-
ducted between early 2018 and mid-2019, building upon the 4 cross-sectional baseline sur-
veys (KORA S1, S2, S3 and S4 cohorts). All living participants of the KORA cohorts born 
between 1945 and 1964 who consented to be recontacted were invited for a new examina-
tion (n = 3059 or 64.4% of all eligible participants). Exhaustive information about this study 
has been described previously [23]. In total, 1760 participants with available data on DNA 
methylation were included in the analysis. Specifically, for the investigation into true 
methylation and hydroxymethylation, a subgroup comprising 600 participants from the 
KORA Fit study was considered. This subgroup included individuals who participated in 
both the S4 baseline survey and the KORA Fit examination. Individuals who self-declared 
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as either regular or occasional smokers (defined as 1 cigarette per day or less) at the time 
of the interview were classified as current smokers. Those who had never smoked were 
categorized as non-smokers, while individuals who had previously smoked but were not 
currently smoking at the time of the interview were classified as former smokers. 

2.2. DNA Extraction and DNA Methylation Quantification 
DNA extraction followed standard procedures. For the total 5mC+5hmC methylation 

processing, genomic DNA (750 ng) from 1160 individuals underwent BS conversion using 
the EZ-96 DNA Methylation Kit (Zymo Research, Orange, CA, USA). Meanwhile, ge-
nomic DNA (1500 ng) from 600 individuals was split (750 ng each), and separate aliquots 
of each DNA sample were processed in parallel. One aliquot underwent BS treatment to 
generate total methylation (5mC+5hmC) signals, while the other aliquot underwent oxi-
dation and then BS treatment to generate true methylation (5mC) signals, both using the 
TrueMethyl oxBS Module (Tecan Genomics, Redwood City, CA, USA). During BS treat-
ment, 5mC and 5hmC are preserved as cytosines, whereas unmethylated cytosines are 
deaminated to uracil. Consequently, DNA methylation measured by the BS treatment re-
flects an amalgamation of 5mC and 5hmC. Upon oxidation, 5mC remains as 5mC, while 
5hmC is converted into 5fC. The 5fC is susceptible to BS treatment, and it is deaminated 
into uracil (equivalent to an unmethylated cytosine), while 5mC is preserved as a cytosine 
upon BS treatment. Thus, oxBS conversion enables the specific measurement of nucleo-
tide-level 5mC [24,25]. Subsequent methylation analysis for all samples was conducted on 
an Illumina (San Diego, CA, USA) iScan platform using the Infinium MethylationEPIC 
BeadChip v1, following standard protocols provided by Illumina. Initial quality control 
procedures of assay performance and generation of methylation data export files were 
carried out using GenomeStudio software version 2011.1 with Methylation Module ver-
sion 1.9.0. 

2.3. Preprocessing and Normalization 
Raw intensities were imported, and further quality control and preprocessing were 

performed in R software (R v4.3.3), with the minfi package v1.48.0, primarily following 
the CPACOR pipeline [26]. Total methylation (5mC+5hmC) and true methylation (5mC) 
were processed separately. Samples with defective chips and over 20% missing values, 
along with sex-mismatching samples, were removed. Probes with detection p-values great 
than 0.01 in more than 5% of samples were set to missing. Furthermore, sex chromosomes 
and cross-reactive and SNP-related probes were removed. Subsequently, quantile normal-
ization (QN) was independently performed on the signal intensities, which were catego-
rized into the 6 probe types: type II red, type II green, type I green unmethylated, type I 
green methylated, type I red unmethylated, type I red methylated. β-values were then 
calculated by initiating with the BS signal, representing the total methylation 
(5mC+5hmC) signal at each CpG site. Total methylation β-values were computed as the 
ratio of the methylated signal over the sum of the methylated and unmethylated signals 
[27]. For the analysis of total 5mC+5hmC methylation, 1717 samples and 734,349 probes 
were retained for the final analysis. Similarly, 5mC β-values were calculated using the 
oxBS signal. Lastly, the level of 5hmC at a single-nucleotide resolution was estimated by 
subtracting the oxBS measure (5mC) from the BS measure (5mC+5hmC) at each probe. 
Specifically, for the hydroxymethylation, only probes and samples that were common be-
tween the 5mC+5hmC and 5mC datasets were kept, resulting in 563 samples and 756,737 
probes. Additionally, subtracting 5mC from 5mC+5hmC is known to introduce negative 
β-values, so any negative β-values were set to a value close to zero (1 × 10−7). 
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2.4. Differential Methylation Analysis 
An Epigenome-wide association study (EWAS) was carried out using a multivariate 

linear regression model, where smoking status (current, former, non-smokers) served as 
the exposure variable, and untransformed methylation β-values (ranging from 0 to 1) were 
used as the outcome. Recognizing that methylation levels in blood can be significantly 
influenced by leukocyte composition, the houseman algorithm was employed to estimate 
white blood cell type proportions [28]. Additionally, principal components (PCs) of all 
non-negative control probes were calculated to account for technical effects. All epige-
nome-wide analyses were adjusted for the age at blood collection, sex, BMI, six estimated 
cell type proportions (monocytes, granulocytes, natural killer cells, B cells, CD4T cells and 
CD8T cells) and the first 5 principal components (PCs). To assess the epigenome-wide 
distribution of p values compared to the expected null distribution of p values, we calcu-
lated the inflation factor λ and generated quantile–quantile (QQ) plots. The inflation factor 
was defined as the ratio of the median of the observed log10-transformed p values to the 
median of the expected log10-transformed p values. We also applied bacon correction to 
mitigate bias and inflation of the test statistic. A probe was considered significantly differ-
entially methylated with a false discovery rate (FDR)-adjusted (Benjamini–Hochberg) p 
value less than 0.05. Given the anticipated lower range of 5hmC methylation values, a less 
stringent suggestive threshold of p < 1 × 10−5 was employed when identifying 5hmC-asso-
ciated differential methylation. EWAS Catalog (a database of epigenome-wide association 
studies) [29] was used to compare and select the novel smoking-associated CpG candi-
dates. DMRs represent genomic regions with consistently different DNA methylations 
across multiple adjacent CpG sites. In addition to the single-site DMP analysis, we applied 
the comb-p function using the Enmix package (version 1.38.01), which provides quality 
control, analysis and visualization tools for Illumina DNA methylation BeadChip, to de-
tect DMRs among current, former and non-smokers. In this analysis, regions were defined 
as sets of all probes containing ≥3 DMPs within 1000 base pairs of another probe and hav-
ing false discovery rate (FDR)-adjusted p values less than 0.05. 

2.5. Gene Enrichment Analyses 
To gain insights into potential smoking-relevant biological processes, gene pathway 

analysis was performed in the context of differentially methylated CpG sites. This analysis 
utilized the GOmeth function from the missMethyl package (version 1.38.0), which ac-
counts for the number of CpG sites per gene on the 450K/EPIC array and multi-gene-an-
notated CpGs. Independent pathways with an FDR p < 0.05 were considered significantly 
associated with smoking. Gene annotation was performed using the HumanMethyla-
tionEPIC probe annotation file. 

3. Results 
3.1. Characteristics of the Study Population 

A total of 1717 participants were included in our study for further analyses after qual-
ity control, consisting of 217 current smokers, 719 former smokers and 781 non-smokers. 
The cohort characteristics are described in Table 1. Current smokers were younger and 
exhibited a lower prevalence of hypertension compared to non-smokers. Former smokers 
had a larger proportion of males and a higher BMI level. Both current and former smokers 
displayed an increased daily alcohol consumption, lower HDL cholesterol levels and 
higher triglycerides levels. All groups were comparable in terms of physical activity, dia-
betes status, HOMA-IR and HOMA-Beta levels. 
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Table 1. Characteristics of the study population. 

Characteristics All Participants Current Smokers Former Smokers Non-Smokers 
 1717 217 719 781 

Age (years) 63 (59, 68) 61 (57, 65) *** 64 (59, 68) 63 (59, 68) 
Male (%) 814 (46.3%) 105 (47.3%) 393 (53.5%) ### 316 (39.4%) 

BMI (kg/m2) 27.4 (24.5, 30.8) 26.2 (23.7, 30) 27.6 (24.8, 31.3) # 27.3 (24.5, 30.3) 
Physical activity  1268 (72.1%) 159 (71.6%) 535 (72.8%) 574 (71.6%) 

Alcohol intake (g/day) 6.6 (0, 22.9) 8.6 (0, 30) * 8.6 (0.2, 23.8) ## 5.7 (0, 20) 
Hypertension  855 (48.7%) 82 (36.9%) * 395 (53.8%) # 378 (47.2%) 

Diabetes mellitus  135 (7.7%) 14 (6.3%) 65 (8.9%) 56 (7%) 
HDL-cholesterol (mg/dL) 61.7 (51.1, 75) 58.5 (49, 69.9) *** 61.2 (50, 75) # 62.8 (53, 77.2) 
LDL-cholesterol (mg/dL) 122.8 (99.1, 146.5) 124.7 (99.9, 147.4) 119.6 (95.6, 144) ## 126.2 (103, 147.8) 
Total cholesterol (mg/dL) 212.4 (185.1, 238.3) 211.9 (184.4, 234.7) 208.9 (181.8, 236.1) ## 215.8 (189.6, 241.9) 

Triglycerides (mg/dL) 106 (77.7, 145.6) 109.3 (85.4, 153.5) * 107.7 (77.9, 149.2) # 103 (76.2, 139) 
Fasting glucose (mg/dL) 98 (92, 107) 96 (91, 104) 100 (93, 109) ### 97 (92, 105) 

HOMA-IR  2.3 (1.5, 3.5) 2.1 (1.4, 3) 2.3 (1.5, 3.6) 2.3 (1.5, 3.4) 
HOMA-Beta  97.8 (71.2, 132) 93.1 (68.7, 124.2) 97.1 (68.9, 132.3) 101 (73.9, 132.7) 
HbA1c (%) 5.5 (5.3, 5.8) 5.6 (5.3, 5.8) * 5.5 (5.3, 5.8) 5.5 (5.2, 5.8) 

Basic characterization of individuals in our cohort. Continuous variables are presented as median 
(25th, 75th), while categorical variables are expressed as n (%). Statistical analyses employed the 
Kruskal–Wallis Test for continuous variables and the Chi-square test for categorical variables. Sig-
nificance levels for comparisons between current and non-smokers are denoted as * p < 0.05, , ***p < 
0.001. For comparisons between former and non-smokers, significance levels are indicated as # p < 
0.05, ## p < 0.01, ### p < 0.001. 

3.2. Distribution of Methylation β-Values 
The methylation β-values, ranging from 0 to 1, were computed as the ratio of the 

methylated signal to the sum of the methylated and unmethylated signals. The distribu-
tion of methylation β-values are described in Figure 2. The distribution of β-values for 
total 5mC+5hmC and 5mC methylation were notably similar, with the median values of 
0.75 (interquartile range (IQR) = 0.03) and 0.56 (IQR = 0.03), respectively. Both distributions 
follow an obvious binomial pattern, drastically compressed within the low (0–0.2) and 
high (0.8–1.0) ranges. However, the values for 5hmC were notably low, with a median 
value of 0.03 (IQR = 0.02). 
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Figure 2. Density plots illustrating the distribution of methylation β-values. The x-axis represents 
the β-values ranging from 0 to 1, while the y-axis depicts the corresponding density. (A) Density 
plot for total 5mC+5hmC methylation β-values. (B) Density plot for true 5mC methylation β-values. 
(C) Density plot for 5hmC hydroxymethylation β-values. 

3.3. Site-Specific Changes in Total 5mC+5hmC Associated with Smoking 
The EWAS was conducted to determine epigenome-wide differences in total 

5mC+5hmC methylation among current, former and non-smokers. Additionally, we em-
ployed bacon correction to mitigate bias and inflation of the test statistic, resulting in a 
correction of the inflation factor to 1.38 (Supplementary Material S1: Figure S1A,B), which 
is consistent with many CpG sites being impacted by tobacco smoking. The analysis of 
5mC+5hmC methylation data revealed 38,575 DMPs associated with current smoking and 
82 DMPs associated with former smoking (FDR-adjusted p < 0.05). A summary of the top 
10 most significant 5mC+5hmC DMPs associated with both current and former smoking 
is shown in Table 2, and the complete list of significant 5mC+5hmC DMPs can be found 
in Supplementary Material S2: Tables S1 and S2. 

Table 2. Summary of top 10 most significant 5mC+5hmC DMPs from current and former smokers. 

Probe Delta Beta p Value FDR CHR Gene MAPINFO EPIC 
Current DMPs data data      

cg05575921 −22.72% 2.13 × 10−245 1.56 × 10−239 5 AHRR 373378  
cg21566642 −16.26% 1.89 × 10−162 6.94 × 10−157 2  233284661  
cg01940273 −9.67% 5.22 × 10−147 1.27 × 10−141 2  233284934  
cg03636183 −9.88% 5.45 × 10−140 1.00 × 10−134 19 F2RL3 17000585  
cg21161138 −6.88% 1.91 × 10−111 2.80 × 10−106 5 AHRR 399360  
cg17739917 −10.21% 4.62 × 10−110 5.65 × 10−105 17 RARA 38477572 * 
cg14391737 −10.12% 5.50 × 10−82 5.77 × 10−77 11 PRSS23 86513429 * 
cg26703534 −4.88% 1.90 × 10−78 1.75 × 10−73 5 AHRR 377358  
cg17087741 −6.13% 4.22 × 10−77 3.44 × 10−72 2  233283010  
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cg21911711 −5.65% 1.44 × 10−71 1.06 × 10−66 19 F2RL3 16998668 * 
Former DMPs        

cg14391737 −4.56% 2.23 × 10−40 1.63 × 10−34  11 PRSS23 86513429 * 
cg21566642 −4.62% 1.74 × 10−36 6.40 × 10−31 2  233284661  
cg05575921 −4.06% 1.20 × 10−25 2.95 × 10−20 5 AHRR 373378  
cg06644428 −2.20% 3.45 × 10−23 6.34 × 10−18 2  233284112  
cg01940273 −2.24% 1.74 × 10−22 2.56 × 10−17 2  233284934  
cg16841366 −2.62% 2.90 × 10−16 3.56 × 10−11 2  233286192 * 
cg11660018 −1.65% 4.39 × 10−16 4.61 × 10−11 11 PRSS23 86510915  
cg00475490 −1.53% 1.04 × 10−15 9.56 × 10−11 11 PRSS23 86517110 * 
cg03636183 −1.88% 5.66 × 10−15 1.35 × 10−9 19 F2RL3 17000585  
cg17739917 −2.20% 1.85 × 10−14 1.35 × 10−9 17 RARA 38477572 * 
cg14391737 −4.56% 2.23 × 10−40 1.63 × 10−34  11 PRSS23 86513429 * 

Probe: Unique identifier from the Illumina CG database; Delta Beta: Mean methylation difference 
between smokers and non-smokers; FDR: Benjamini–Hochberg corrected p value (FDR); CHR: 
Chromosome; Gene: Target gene name from the UCSC database; MAPINFO: Chromosomal coordi-
nates of the CpG (Build 37); EPIC: * indicates CpG sites that are exclusively present in the Infinium 
MethylationEPIC BeadChip.  

The results supported many previously reported gene loci, including CpG sites an-
notated to aryl hydrocarbon receptor repressor (AHRR), retinoic acid receptor alpha 
(RARA), F2R-like thrombin or trypsin receptor 3 (F2RL3) and serine protease 23 (PRSS23). 
Notably, cg05575921 (annotated to AHRR), which has consistently emerged as the most 
significant DMP in previous smoking studies, demonstrated remarkable significance (p = 
1.56 × 10−239) and exhibited the largest effect size in our analysis (−22.72% difference in 
methylation). Out of the 38,575 DMPs, 59.32% (22,884/38,575) were exclusive to EPIC 
BeadChip and did not present on the previous 450k BeadChip. Moreover, 18.33% 
(7069/38,575) of the DMPs were novel candidates, not previously reported in the EWAS 
Catalog (Supplementary Material S2: Table S3). A predominant fraction of DMPs, com-
prising 77.71% (29,977/38,575), exhibited hypomethylation due to current smoking, with 
a mean methylation difference of 1.07% (SD = 0.53%). Conversely, 22.29% (8598/38,575) of 
the DMPs displayed hypermethylation, showing a mean percentage difference of 1.03% 
(SD = 0.53%). The Manhattan plot (Figure 3A) and the Volcano plot (Supplementary Ma-
terial S1: Figure S2A) illustrated EWAS results for 5mC+5hmC methylation related to cur-
rent smoking. 

 
Figure 3. Manhattan plots illustrating smoking EWAS results for 5mC+5hmC methylation. The x-
axis indicates the chromosome location, and the y-axis represents the −log10 (p-value). The Bonfer-
roni threshold of 6.81 × 10−8 is marked by a red dashed line, while the Benjamini–Hochberg (FDR) 
threshold (p < 0.05) is indicated by a blue dashed line. The ggbreak package (version 0.1.2) was used 



Biomolecules 2024, 14, 662 9 of 18 
 

to effectively utilize plotting space and handle large y-axis values for currents smokers. (A) Manhat-
tan plot for current vs. non-smokers; (B) Manhattan plot for former vs. non-smokers. 

In former smokers, only 82 CpG sites remained differentially methylated, although 
with reduced effect sizes compared to the observed effects in current smokers. Genomic 
inflation was not strongly evident (λ = 1.13). All annotated genes associated with former 
smoking, including PRSS23, AHRR, F2RL3 and RARA, overlapped with genes associated 
with current smoking. In contrast to current smokers, the most significant CpG site in 
former smokers was cg14391737, annotated to PRSS23 (p = 1.63 × 10−34, effect size: −4.56%), 
surpassing cg05575921, annotated to AHRR (p = 2.95 × 10−20, effect size: −4.06%). Of the 82 
identified DMPs, 51.22% (42/82) were exclusive to the EPIC BeadChip and 2.44% (2/82) 
DMPs were novel candidates (Supplementary Material S2: Table S4). For 90.24% (74/82) 
of DMPs displaying decreased methylation in response to former smoking, the mean 
methylation percentage difference was 1.37% (SD = 0.78%). For 9.76% (8/82) of DMPs 
showing increased methylation in response to former smoking, the mean percentage dif-
ference was 1.55% (SD = 0.67%). The Manhattan plot (Figure 3B) and the Volcano plot 
(Supplementary Material S1: Figure S2B) illustrate EWAS results for 5mC+5hmC methyl-
ation related to former smoking. 

3.4. Site-Specific True Methylation Changes Associated with Smoking 
True DNA methylation (5mC) was measured by oxBS treatment. A total of 33 DMPs 

were associated with current smoking and 1 5mC DMP was identified between former vs. 
non-smokers. There was no evidence of inflation (λ = 0.996 for current smokers, λ = 1.009 
for former smokers). The count of 5mC DMPs for both current and former smoking was 
prominently lower than of 5mC+5hmC DMPs. Remarkably, all 33 of the 5mC DMPs, 
linked to current smoking, were encompassed within the 5mC+5hmC results (Figure 4), 
and the overall pattern of the 5mC+5hmC and 5mC methylation changes exhibited simi-
larity. For example, the cg05575921, annotated to AHRR, consistently retained its position 
as the most strongly associated with current smoking (p = 1.27 × 10−77) and showed a 
slightly stronger effect size difference (−24.01%) in the 5mC methylation dataset. In line 
with 5mC+5hmC, 72.73% (24/33) of the DMPs exhibited hypomethylation in the 5mC da-
taset, demonstrating a mean difference in methylation of −7.75% (SD = 4.46%). Addition-
ally, 27.27% (9/33) of the DMPs displayed hypermethylation with a mean difference in 
methylation of −7.09% (SD = 1.66%). For former smokers, only cg24476099, annotated to 
megakaryoblastic leukemia 1 (MKL1), reached statistical significance with an effect size of 
−4.34%, and it is specific to the EPIC BeadChip. The most significant 5mC DMPs are shown 
in Table 3, and the complete list can be found in Supplementary Material S2: Tables S5 and 
S6. The Manhattan plot (Figure 5A,B) and Volcano plot (Supplementary Material S1: Fig-
ure S4A,B) illustrate EWAS results for 5mC methylation related to current and former 
smoking. 

Table 3. Summary of significant true 5mC and 5hmC DMPs from current and former smokers. 

Probe Delta Beta p Value FDR CHR Gene MAPINFO EPIC 
5mC Current data data      
cg05575921 −24.01% 1.68 × 10−77 1.27 × 10−71 5 AHRR 373378  
cg21566642 −14.63% 2.26 × 10−34 8.58 × 10−29 2  233284661  
cg01940273 −9.32% 2.02 × 10−26 5.10 × 10−21 2  233284934  
cg03636183 −8.41% 7.61 × 10−25 1.43 × 10−19 19 F2RL3 17000585  
cg14391737 −11.13% 6.90 × 10−17 1.04 × 10−11 11 PRSS23 86513429  

5mC Former         
cg24476099 −4.34% 3.95 × 10−8 0.03 22 MKL1 40925033 * 

5hmC Current −4.62% 1.74 × 10−36 6.40 × 10−31 2  233284661  
cg16972043 4.14% 1.36 × 10−7 0.103 16 GPT2 46932066 * 
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cg01483713 1.97% 1.89 × 10−6 0.718 4  6252582 * 
cg15297506 1.22% 4.42 × 10−6 0.784 10 SH3PXD2A 105453418 * 
cg04131101 3.50% 4.90 × 10−6 0.784 11  94427846  
cg22377040 1.68% 5.40 × 10−6 0.784 6 TRIM31 30071412  

5hmC Former  −1.53% 1.04 × 10−15 9.56 × 10−11 11 PRSS23 86517110 * 
cg24012880 3.61% 4.45 × 10−7 0.337 11 TSPAN18 44880910  
cg10148425 2.58% 6.77 × 10−6 0.985 19   184224630 * 

Probe: Unique identifier from the Illumina CG database; Delta Beta: Mean methylation difference 
between smokers and non-smokers; FDR: Benjamini–Hochberg corrected p value (FDR); CHR: 
Chromosome; Gene: Target gene name from the UCSC database; MAPINFO: Chromosomal coordi-
nates of the CpG (Build 37); EPIC: * indicates CpG sites that are exclusively present in the Infinium 
MethylationEPIC BeadChip.  

 
Figure 4. Venn plot illustrating the overlap number of DMPs in different methylation dataset. The 
blue and cyan colours represent the number of significant DMPs, related with current and former 
smoking respectively, in the context of 5mC+5hmC methylation. The yellow colour represents the 
number of significant DMPs related with current smoking in the context of 5mC methylation. The 
pink colour represents the number of novel DMPs related with current in the context of 5mC+5hmC 
methylation. 
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Figure 5. Manhattan plots illustrating smoking EWAS results for both 5mC and 5hmC methylation. 
The x-axis represents the chromosome location, while the y-axis represents the −log10(p value). The 
Bonferroni threshold of 6.61 × 10−8 is marked by a red dashed line, while the Benjamini–Hochberg 
(FDR) threshold (p < 0.05) is indicated by a blue dashed line. The ggbreak packagewas used to effec-
tively utilize plotting space and handle large y-axis values for currents smokers. (A) Manhattan plot 
for current vs. non-smokers in 5mC dataset; (B) Manhattan plot for former vs. non-smokers in 5mC 
dataset; (C) Manhattan plot for current vs. non-smokers in 5hmC dataset; (D) Manhattan plot for 
former vs. non-smokers in 5hmC dataset. 

3.5. Site-Specific Hydroxymethylation Changes Associated with Smoking 
The total 5mC+5hmC methylation levels were determined using BS treatment, while 

true DNA methylation (5mC) was measured by oxBS treatment. The quantification of 
5hmC involved subtracting 5mC β-values from the combined 5mC+5hmC β-values. 5hmC 
methylation values were observed at a lower level, so a suggestive threshold of p < 1 × 10−5 
was set, revealing eight and two significant 5hmC DMPs between current vs. non-smokers 
and former vs. non-smokers, respectively. No strong evidence of inflation was detected (λ 
= 1.132 for current smokers, λ = 1.018 for former smokers). The cg16972043, annotated to 
the glutamate pyruvate transaminase 2 (GPT2) gene, emerged as the most strongly asso-
ciated (p = 1.26 × 10−7) with current smoking and displayed the largest effect size difference 
(4.14%) in the 5hmC methylation dataset. Conversely, the cg24012880, annotated to the 
tetraspanin 18 (TSPAN18) gene, demonstrated the strongest association (p = 4.45 × 10−7) 
with former smoking, displaying an effect size difference of 3.61%. In contrast with meth-
ylation changes observed in 5mC+5hmC and 5mC datasets, almost all the top 5hmC DMPs 
were hypermethylated, demonstrating a mean methylation difference of 2.32% (SD = 
1.11%) in current smokers and 0.99% (SD = 0.04%) in former smokers. The most significant 
5hmC DMPs are shown in Table 3, and the complete list can be found in Supplementary 
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Material S2: Tables S7 and S8. The Manhattan plot (Figure 5C,D) and the Volcano plot 
(Supplementary Material S1: Figure S4C,D) illustrated EWAS results for 5hmC methyla-
tion associated with current and former smoking. 

3.6. Region-Specific Changes Associated with Smoking 
In the total 5mC+5hmC dataset, there were 2023 distinct DMRs linked to current 

smoking, encompassing 9367 measured CpG sites annotated across 1553 genes. The most 
prominent DMR uncovered in individuals who currently smoke was situated in a region 
on chromosome 1, annotated to the growth factor independent 1 transcriptional repressor 
(GFI1) gene, spanning nine CpG sites. The DMR displaying the second strongest associa-
tion comprised seven CpG sites and was annotated to AHRR. A substantial overlap of 
genes (1542/1553, 99.29%) was observed between the genes identified in the DMP and 
DMR analyses, which included notable genes like GFI1, AHRR and HIVEP Zinc Finger 3 
(HIVEP3). Notably, DMR analyses produced 11 additional genes not identified in DMP 
analyses, such as Retinoic Acid Receptor Responder 2 (RARRES2), Ring Finger Protein 40 
(RNF40) and Solute Carrier Family 1 Member 5 (SLC1A5). During the DMR analysis com-
paring former smokers and non-smokers, a total of 76 distinct DMRs were identified, con-
taining 390 measured CpG sites and annotated to 61 different genes. Only a minimal over-
lap of 9.83% (6/61) was observed with previously identified DMPs, specifically Alanyl 
Aminopeptidase Membrane (ANPEP) and PRSS23. Additionally, 55 annotated genes such 
as Proline Rich Transmembrane Protein 1 (PRRT1) were exclusively detected in the DMR 
results. In the true 5mC dataset, there were 14 distinct DMRs linked to current smoking, 
encompassing 85 measured CpG sites annotated across 12 genes such as HIVEP3, GFI1 
and Valyl-TRNA Synthetase 1 (VARS). Additionally, there were five distinct DMRs linked 
to former smoking, encompassing 25 CpG sites annotated across four genes. In the 5hmC 
dataset, we did not find any DMRs related to current or former smoking. The top 10 most 
significant DMRs linked to both current and former smoking are presented in Table 4. The 
complete list of DMRs can be found in Supplementary Material S2: Tables S9–S12; Man-
hattan plots illustrating DMR results for the 5mC+5hmC and true 5mC methylation da-
tasets related to current and former smoking can be found in Supplementary Materials S1: 
Figures S3 and S6. 

Table 4. Summary of top 10 most significant total 5mC+5hmC DMRs from current and former smok-
ers. 

Gene CHR Start End p Value FDR Nprobe 
Current smokers       

 2 233283010 233286291 5.02 × 10−212 3.97 × 10−208 12 
GFI1  1 92945668 92947962 5.74 × 10−130 3.03 × 10−126 9 

AHRR 5 399360 400833 1.16 × 10−63 2.29 × 10−60 7 
C5orf62 5 150161299 150162069 7.24 × 10−53 8.20 × 10−50 3 
SLC1A5 19 47287778 47289612 3.52 × 10−51 3.72 × 10−48 12 

 19 1265877 1266000 1.66 × 10−48 1.65 × 10−45 3 
 14 106329158 106331863 2.67 × 10−46 2.49 × 10−43 19 

HIVEP3 1 42384002 42385942 5.62 × 10−46 4.69 × 10−43 15 
ITGAL 16 30485296 30485967 1.09 × 10−44 8.68 × 10−42 7 

 6 30719807 30720485 4.34 × 10−42 2.86 × 10−39 6 
Former smokers       

 2 233283010 233286291 1.53 × 10−61 2.38 × 10−59 12 
PRRT1 6 32118204 32118458 4.68 × 10−22 1.81 × 10−20 13 
NBL1 1 19971709 19972778 2.37 × 10−17 7.37 × 10−16 9 

 19 1265877 1266000 2.98 × 10−16 7.71 × 10−15 3 
ANPEP 15 90345999 90346095 8.64 × 10−16 1.91 × 10−14 3 
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 1 161708999 161710014 2.05 × 10−13 3.17 × 10−12 3 
PRSS23 11 86510915 86511218 8.38 × 10−13 1.18 × 10−11 5 

PPT2 6 32120955 32121556 1.70 × 10−12 2.19 × 10−11 20 
VARS 6 31762353 31762902 3.91 × 10−12 3.56 × 10−11 15 

GNA12 7 2847477 2847576 1.47 × 10−11 1.26 × 10−10 3 
 2 233283010 233286291 1.53 × 10−61 2.38 × 10−59 12 

Gene: UCSC gene name; CHR: Chromosome; Start: Start CHR position of this region; End: End CHR 
position of this region; FDR: Benjamini–Hochberg corrected p value; Nprobe: number of CpG probes 
in this region. 

3.7. Gene Enrichment Analysis 
The genes associated with DMPs that passed the significant threshold (FDR-adjusted 

p < 0.05) were identified. Exploratory downstream enrichment analyses were performed 
on those genes using the missMethyl package with the KEGG dataset. In the total 
5mC+5hmC methylation dataset, DMPs associated with current smoking exhibited en-
richment in 27 pathways, whereas DMPs associated with former smoking showed enrich-
ment in 1 pathway. However, we did not find any significant pathway from the true 5mC 
and 5hmC datasets. These findings suggest a potential link between cigarette smoking 
and alterations in various molecular pathways, including mechanisms of cardiovascular 
diseases and cancers. The top 10 ranked biological pathways based on DMPs related to 
current and former smoking from total 5mC+5hmC are illustrated in Figure 6. The com-
plete lists of pathways, from the total 5mC+5hmC, true 5mC and 5hmC methylation da-
tasets, can be found in Supplementary Material S2: Tables S13–S18. 

 
Figure 6. Enrichment analysis results of total 5mC+5hmC methylation. The x-axis represents the 
−log10(p-value), and the red dashed line represents the significant threshold (FDR-adjusted p < 0.05). 
(A) The top 10 most significant pathways derived from 5mC+5hmC methylation between current 
and non-smokers. (B) The top 10 most significant pathways derived from 5mC+5hmC methylation 
between former and non-smokers. 

4. Discussion 
We have investigated different DNA methylation modifications among individuals 

categorized as current, former and non-smokers. This is, to the best of our knowledge, the 
first epigenome-wide methylation study of smoking’s effects on blood leucocyte samples, 
analysing true 5mC and 5hmC as distinct DNA methylation modifications, especially in 
conjunction with the Illumina EPIC BeadChip. Initially, we explored the association be-
tween smoking status and total 5mC+5hmC methylation levels, identifying 38,575 and 82 
DMPs associated with current and former smoking, many of which are novel candidates. 
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Subsequently, employing tandem BS and oxBS treatment, we differentiated 5hmC from 
5mC at the single-nucleotide level. Within this refined analysis, we discovered 33 and 1 
DMPs associated with current and former smoking in the 5mC category, respectively. Ad-
ditionally, eight and two DMPs linked to current and former smoking were identified in 
the 5hmC category, respectively. We observed a high concordance in the direction of ef-
fects and a large overlap in the identified loci between 5mC+5hmC and 5mC groups. 

Robust associations have been established between smoking exposure and altera-
tions in blood DNA methylation, supported by the identification of numerous specific loci 
[11,30]. For example, the most extensive meta-analysis of smoking-associated epigenome-
wide DNA methylation was conducted using the 450K array to analyse 15,907 blood-de-
rived DNA samples from individuals across 16 cohorts. A total of 2623 CpG sites, anno-
tated to 1405 genes, demonstrated associations with current smoking [10]. In this study, 
we replicated many previously reported sites, including those annotated to AHRR, RARA, 
F2RL3, PRSS23 and GFI1 [31], and identified a substantial number of the novel smoking-
associated candidates by using the latest EPIC BeadChip. The AHRR gene consistently 
appeared as the most significantly affected genomic locus in studies investigating the im-
pact of smoking [32,33], a pattern also evident in our cohort. Specifically, 41 DMPs associ-
ated with current smoking were annotated to AHRR in the 5mC+5hmC dataset, and 11 in 
the 5mC dataset. All these findings substantiate the robustness and reliability of our study 
results. 

The global initiatives for smoking cessation, coupled with legislative measures, have 
led to a decline in the number of cigarette smokers and a concomitant rise in the popula-
tion of former smokers. Decades after cessation, cigarette smoking continues to pose a 
long-term risk for diseases, and DNA methylation also leaves a persistent signature after 
smoking exposure [34]. In our analysis, despite the majority of differently methylated CpG 
sites returning to the methylation levels like non-smokers following smoking cessation, a 
subset of CpG sites exhibited sustained different methylation even after quitting smoking, 
albeit with diminished effect sizes in former smokers. The impact of smoking on these 
specific CpG sites holds the potential to function as robust biomarkers, offering insights 
into an individual’s historical smoking behaviour and reflecting enduring health conse-
quences [35,36]. 

Clusters of neighbouring probes associated with a phenotype, known as DMRs, may 
enhance the ability to detect associations between DNA methylation and diseases or phe-
notypes of interest [37]. For instance, in newborns exposed to maternal gestational diabe-
tes mellitus (GDM) in utero compared to control subjects, only two DMRs were identified 
without significant DMPs [38]. Therefore, we evaluated methylation differences not only 
on the individual CpG level but also the regional level using a dimension reduction ap-
proach (comb-p). Our analysis revealed 2023 DMRs in current smokers and 76 DMRs in 
former smokers in the context of 5mC+5hmC. The DMRs associated with smoking exhib-
ited a substantial overlap with the DMP results in both current and former smokers. No-
tably, CpG sites within these regions were annotated to previously reported genes, in-
cluding GFI1. In addition, a few annotated genes were exclusively identified in the DMRs 
results; some examples include RARRES2, RNF40 and SLC1A5, associated with current 
smoking, and PRRT1, linked to former smoking. Our findings highlight the importance 
of regional analysis as an additional approach to validate known or identify novel smok-
ing-related genes. Cigarette smoking is linked to increased cancer incidence and poorer 
cancer-related clinical outcomes. The results of the enrichment analyses also suggest that 
the discerned smoking-related effects on DNA methylation are likely to carry implications 
for the risk of various pathologies, including cardiovascular diseases and cancers. 

In the present study, oxBS conversion allowed the specific measurement of nucleo-
tide-level 5mC, which holds promise as a biomarker for various diseases [39] and accurate 
measurement of the true 5mC signal is crucial to prevent false positive findings. In our 
study, all significant 5mC DMPs associated with current smoking were also found in the 
conventional 5mC+5hmC dataset, such as AHRR, RARA and F2RL3, proving that these 
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CpG sites are strongly related to smoking. Furthermore, we noted a substantial concord-
ance in the direction of effects between 5mC+5hmC and 5mC groups in current smokers, 
with a majority of loci displaying hypomethylation. For example, AHRR hypomethyla-
tion, serving as an epigenetic marker of smoking history, was reported to predict the risk 
of myocardial infarction, particularly in former smokers [33]. The CpG site cg24476099, 
annotated to MLK1, emerged as the sole novel significant 5mC linked to former smoking 
in this study. It is noteworthy that prior research has identified other CpG sites annotated 
to MLK1, demonstrating associations with smoking, incident COPD and prevalent type 2 
diabetes [40]. 

Different methylation modifications possess distinct properties, including varying af-
finities to transcription factors. Unlike 5mC, often linked to gene repression, 5hmC can 
inhibit the binding to transcriptional repressors and thereby display the repressive impact 
of 5mC [41,42]. Hence, the differentiation between 5mC and 5hmC is essential to compre-
hending the underlying molecular alterations associated with smoking. Most tissues con-
tain approximately 4% 5mC, whereas 5hmC content varies and is typically below 1% in 
various tissue types [43]. The abundance of 5hmC is remarkably higher in adult neurons 
and during embryogenesis [44]. Previous research has identified 67 5hmC DMPs between 
healthy smokers and non-smokers using lung bronchoalveolar lavage cells, providing ev-
idence of 5hmC being involved in the effects of smoking. These findings also suggested 
that smoking-related differences may involve DNA demethylation of 5mC with a 5hmC 
intermediate, as inferred from the observed contrasting hypomethylated 5mC and hyper-
methylated 5hmC data [45]. Our study aligns with this interpretation, further supporting 
the notion that smoking-induced oxidative stress can trigger DNA demethylation through 
the sequential oxidation procedure. As expected, given its low abundance in blood, the 
DNA hydroxymethylation signature linked to smoke exposure exhibited a lesser promi-
nence compared to true DNA methylation, even under a less stringent threshold. The CpG 
sites cg16972043 (annotated to GPT2) and cg24012880 (annotated to TSPAN18) emerged 
as the most significant and novel hydroxymethylated CpG sites associated with current 
and former smoking, respectively. GPT2 serves as a crucial link between glycolysis and 
glutaminases and exhibits significant upregulation in aggressive breast cancers [46]. Re-
cent research has unveiled GPT2’s role in regulating smoking-induced metabolism and 
damage in airway epithelial cells through its impact on lipid synthesis [47]. Furthermore, 
both GPT2 and TSPAN18 have been implicated in incident COPD in leukocytes [40], un-
derscoring their relevance in respiratory conditions. The identification of these novel 
smoking-associated hydroxymethylated CpG sites holds promise for guiding future re-
search endeavours. The present study has several strengths. Our multivariate linear re-
gression model was meticulously adjusted for many potential confounders, including es-
timated cell fractions. To enhance the precision of our findings, we differentiated between 
true 5mC and 5hmC signals using the tandem BS and oxBS treatment, effectively mini-
mizing the likelihood of identifying false positives, especially in combination with Infin-
ium MethylationEPIC BeadChip. Additionally, the study’s robustness was further forti-
fied by the assessment of DMRs in addition to individual CpG sites. However, our study 
does have limitations. Passive smoking was not considered, and additional continuous 
smoking variables like pack years were unavailable, limiting the comprehensive analysis 
of smoking effects. The absence of a replication cohort emphasizes the need for future 
studies to validate our findings in independent populations. Additionally, the use of DNA 
derived from blood may not fully capture tissue-specific variations in methylation pat-
terns; exploring specific tissues could offer more nuanced information on the impact of 
smoking on both true DNA methylation and hydroxymethylation. 

5. Conclusions 
Our results confirmed previously reported smoking-associated CpG sites with the 

Illumina Infinium Methylation EPIC BeadChip, but also revealed many novel smoking-
associated signatures. By distinguishing 5mC and 5hmC data from peripheral blood DNA 
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samples, our study identified distinct smoking-associated DNA methylation modifica-
tions. Hydroxymethylation was not strongly associated with smoking in peripheral blood 
DNA samples, but suggestive hydroxymethylated CpG sites might inform future re-
search. 

Supplementary Materials: The following supporting information can be downloaded at: 
https://www.mdpi.com/article/10.3390/biom14060662/s1, Figure S1: QQ plots for total 5mC+5hmC 
methylation; Figure S2: Volcano plots of smoking association effect sizes for total 5mC+5hmC meth-
ylation; Figure S3: Manhattan plots of DMR results for total 5mC+5hmC methylation, Figure S4: 
Volcano plots of smoking association effect sizes for 5mC and 5hmC methylation, Figure S5: QQ 
plots for 5mC and 5hmC methylation; Figure S6: Manhattan plots of DMR results for 5mC methyl-
ation; Figure S7: Gene enrichment analysis plots of true 5mC and 5hmC methylation. Tables S1–S2: 
the significant DMPs related to current and former smoking from total 5mC+5hmC methylation 
dataset; Tables S3–S4: the novel DMPs related to current and former smoking from total 5mC+5hmC 
methylation dataset; Tables S5–S6: the significant DMPs related to current and former smoking from 
5mC methylation dataset; Tables S7–S8: the significant DMPs related to current and former smoking 
from 5hmC methylation dataset. Tables S9–S12: the significant DMRs related to current and former 
smoking from total 5mC+5hmC and true 5mC methylation datasets; Tables S13–S18: the pathways 
related to current and former smoking from total 5mC+5hmC, true 5mC and 5hmC methylation 
datasets. 
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