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Abstract 

Background 

Surgical resection is the standard of care for patients with large or symptomatic brain metastases 
(BMs). Despite improved local control after adjuvant stereotactic radiotherapy, the risk of local 
failure (LF) persists. Therefore, we aimed to develop and externally validate a pre-therapeutic 
radiomics-based prediction tool to identify patients at high LF risk. 

Methods 

Data were collected from A Multicenter Analysis of Stereotactic Radiotherapy to the Resection 
Cavity of Brain Metastases (AURORA) retrospective study (training cohort: 253 patients from two 
centers; external test cohort: 99 patients from five centers). Radiomic features were extracted 
from the contrast-enhancing BM (T1-CE MRI sequence) and the surrounding edema (FLAIR 
sequence). Different combinations of radiomic and clinical features were compared. The final 
models were trained on the entire training cohort with the best parameter set previously 
determined by internal 5-fold cross-validation and tested on the external test set. 

Results 

The best performance in the external test was achieved by an elastic net regression model trained 
with a combination of radiomic and clinical features with a concordance index (CI) of 0.77, 
outperforming any clinical model (best CI: 0.70). The model effectively stratified patients by LF 
risk in a Kaplan-Meier analysis (p < 0.001) and demonstrated an incremental net clinical benefit. 
At 24 months, we found LF in 9% and 74% of the low and high-risk groups, respectively. 

Conclusions 

A combination of clinical and radiomic features predicted freedom from LF better than any clinical 
feature set alone. Patients at high risk for LF may benefit from stricter follow-up routines or 
intensified therapy. 

Keywords  
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 Machine learning 
 Local failure prediction 
 Brain metastases 
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Key points  
 Radiomics can predict the freedom from local failure in brain metastasis patients 
 Clinical and MRI-based radiomic features combined performed better than either alone 
 The proposed model significantly stratifies patients according to their risk 

 

Importance of the Study 
Local failure after treatment of brain metastases has a severe impact on patients, often resulting 
in additional therapy and loss of quality of life. This multicenter study investigated the possibility 
of predicting local failure of brain metastases after surgical resection and stereotactic radiotherapy 
using radiomic features extracted from the contrast-enhancing metastases and the surrounding 
FLAIR-hyperintense edema.  
By interpreting this as a survival task rather than a classification task, we were able to predict the 
freedom from failure probability at different time points and appropriately account for the censoring 
present in clinical time-to-event data. 
We found that synergistically combining clinical and imaging data performed better than either 
alone in the multicenter external test cohort, highlighting the potential of multimodal data analysis 
in this challenging task. Our results could improve the management of patients with brain 
metastases by tailoring follow-up and therapy to their individual risk of local failure. 
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Introduction 
Brain metastases (BMs) are the most common malignant brain tumors, outnumbering primary 
brain tumors such as gliomas by a significant margin1. Recent guidelines recommend surgery as 

the treatment of choice for patients with symptomatic or large BMs2. To improve local control, 
stereotactic radiotherapy (SRT) should be applied to the resection cavity in patients with one to 
two resected BMs2. This way, local control rates of 70% to 90% can be achieved at twelve 
months3.  
Recent publications have demonstrated the power of automated segmentation of BMs and their 
surrounding edema4–6. This may not only streamline the time-consuming task of manual BM 
delineation but can also simplify other additional evaluations: Radiomics allows the extraction of 
large amounts of quantitative imaging features from a previously delineated image7. This allows 
experts to analyze additional information not visible to the human eye and to create predictive 
mathematical models8. 
These Radiomics-driven models can be used for a multitude of purposes, including tumor 
characterization, treatment response prediction, and prognostic risk assessment9–13.  
Some radiomic features are sensitive to acquisition modes and reconstruction parameters14. In 
addition, MRI intensities are not standardized and depend on the manufacturer and model of the 
devices15. Moreover, patients and treatment characteristics may differ between medical 
institutions. Therefore, multicenter training and testing are needed to develop and validate 
generalizable models.  
Determining an individual patient's risk of local recurrence can benefit patients by tailoring follow-
up treatment and care. For example, patients at high risk of local failure may benefit from SRT 
dose escalation, systemic therapy agents with penetration of the blood-brain barrier, and more 
frequent follow-up imaging after SRT to detect a potential failure early. 
Prior studies have demonstrated the broad potential of radiomics in predicting local failure (LF) 
as a binary variable in patients receiving stereotactic radiotherapy without surgery in monocentric 
studies without external validation16–18. 
The aim of this project was to develop a pre-therapeutic radiomics-based machine learning model 
to predict freedom from local failure (FFLF) after surgical resection and SRT of BMs. All models 
were validated in an external multicenter international test cohort. The ability to stratify patients 
into specific risk groups and their net clinical benefit were assessed. 

 

Methods 

AURORA study 

The CLEAR checklist was used for this study and can be found in the supplemental material19. 
MR imaging and clinical data was collected as part of the “A Multicenter Analysis of Stereotactic 
Radiotherapy to the Resection Cavity of Brain Metastases” (AURORA) retrospective trial. The 
trial was supported by the Radiosurgery and Stereotactic Radiotherapy Working Group of the 
German Society for Radiation Oncology (DEGRO). The inclusion criteria were: known primary 
tumor with resected BM and SRT with a radiation dose of > 5 Gray (Gy) per fraction. Exclusion 
criteria were: interval between surgery and RT > 100 days, premature discontinuation of RT, and 
any previous cranial radiation therapy (RT).  
Six patients received a dose of 3 Gy per fraction as a minor deviation in the test set. Synchronous 
non-resected BMs had to be treated simultaneously with SRT. Ethical approval was obtained at 
each institution (main approval at the Technical University of Munich: 119/19 S-SR). 
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The patients were regularly checked for a LF in intervals of three months after finishing RT. LF 
was determined by individual radiologic review by board-certified radiologists in the specific 
centers or by histologic results after recurrence surgery. FFLF was calculated as the time 
difference between the end of SRT and LF. If no LF occurred, patients were right-censored after 
the last available imaging follow-up. The date of the diagnosis in the MRI  was used as time point 
for LF. 

Dataset 

In total, we collected data from 474 patients from seven centers. A minimum sample size for the 
test set was calculated at 55 patients based on a previously published area under the curve for 
LF prediction of 0.79 in a monocentric study and a skewed event rate of 15%16. We decided to 
increase the test set by combining all smaller centers to achieve a higher heterogeneity. This data 
set has already been used in other studies for automatic BM segmentation4,5. We analyzed four 
preoperative diagnostic imaging sequences of each patient: a T1-weighted sequence with and 
without contrast enhancement (T1-CE and T1), a T2-weighted sequence (T2) as well as a T2 
fluid-attenuated inversion recovery sequence (T2-FLAIR). Except for T1-CE, a missing sequence 
was allowed.  
The required data were available for 352 patients. A flowchart of the eligibility criteria is provided 
in Supplementary Figure 1. We split the patients into a training cohort with 253 patients from two 
centers and an external, multicenter, international test cohort with 99 patients from five centers. 
Five and 29 patients were treated with stereotactic radiosurgery in the training and test cohort 
with a median dose of 20 and 16 Gy, respectively. The remaining 248 and 70 patients, 
respectively, were treated with fractionated SRT with a median of seven fractions at 5 Gy per 
fraction in the training cohort and six fractions at 5 Gy per fraction in the test cohort. A summary 
of all prescribed combinations of doses and fractions is given in Supplementary Table 1. 
To make SRS and fractionated SRT comparable, we calculated the equivalent dose in 2 Gy 
fractions (EQD2) using an alpha/beta ratio of ten.  

Preprocessing 

The DICOM (Digital Imaging and Communications in Medicine file format) images were converted 
to NIfTI (Neuroimaging Informatics Technology Initiative file format) using dcm2niix20. The MRI 
sequences were then further preprocessed using BraTS-Toolkit21. First, the sequences were co-
registered using niftyreg22 and these were then transformed into the T1-CE space. A brain mask 
was created using HD-BET23 and applied to all sequences to extract only the brain without the 
surrounding skull. The skull-stripped sequences were transformed into the BraTS space using the 
SRI-24 atlas24 and resampled using cubic b-spline. Overall, the preprocessing provided co-
registered, skull-stripped sequences in a 1 millimeter isotropic resolution in BraTS space. 
The missing sequences were then synthesized using a generative adversarial network (GAN). 
The GAN takes the three available sequences as input and generates the matching missing fourth 
sequence. We used a GAN which was originally developed for missing sequences in glioma 
imaging25, but has been proven to work for metastasis imaging4,5.  

Segmentation 

All contrast-enhancing metastases and their surrounding edema were individually segmented 
using the open-source software 3D-Slicer (version 4.13.0, stable release, 
https://www.slicer.org/)26 by a medical doctoral student (JAB) after undergoing extensive training 
by a board-certified radiation oncologist (JCP) (7 years of experience). To ensure accuracy, all 
segmentations for the test cohort were reviewed and manually adjusted by JCP.  
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To test the feasibility of a fully automated workflow, segmentations generated by a previously 
trained neural network on this cohort4,5 were used as alternative segmentations and compared to 
the manual segmentations. 
As around 25% of patients had multiple BMs, but usually only the largest is resected27, we also 
determined the largest metastasis with a connected component analysis28 in all patients with 
multiple BMs and used only that metastasis and its surrounding edema as segmentations for an 
additional analysis. 

Radiomic feature extraction 

Radiomic features were extracted with pyradiomics (version 3.0.1, https://github.com/AIM-
Harvard/pyradiomics)29 from the 3D MRI sequences using the Python implementation. The 
metastasis segmentation was used to extract the T1-CE features, while the edema segmentation 
was used for the T2-FLAIR features. In total, we extracted 104 original features per segmentation 
(see Supplemental Table 2 and the attached parameter file for a list of features and extraction 
parameters). 
Further analysis and modeling were performed in the programming language R 4.2.330. To adhere 
to the Image Biomarker Standardisation Initiative (IBSI) standard31, the kurtosis was adjusted by 
-3. We created nine feature sets in total. Three of these included only radiomic features. The T1-
CE and FLAIR feature sets were created by extracting the features from the T1-CE sequence and 
T2-FLAIR sequence, respectively. Both feature sets were merged into a combined feature set. 
We also created three clinical feature sets with the following clinical features:  

 pre-OP feature set: patient age at RT start, Karnofsky performance status (KPS), histology 
of the primary tumor, location of BM 

 post-OP feature set: pre-OP + resection status 
 RT feature set: post-OP + concurrent chemotherapy, concurrent immunotherapy and 

equivalent dose in two Gy fractions (EQD2) 
As a seventh feature set, we combined all radiomic features (combined) with the pre-OP feature 
set to comb+pre-OP. 
Multiple publications suggest the predictive value of the brain metastasis volume (BMV) for 
predicting LF32–34. Therefore, we created two additional feature sets by adding the cumulative 
BMV of each patient as an additional feature to the pre-OP set (pre-OP+BMV) and the comb+pre-
OP set (comb+pre-OP+BMV). 

Intraclass correlation 

To identify radiomic features that were susceptible to small changes in segmentation, we 
generated additional segmentations of all patients in the training cohort using the previously 
mentioned neural network4. Intraclass correlation (ICC (3,1)) was calculated using the R package 
“irr”35. According to Koo et al., an ICC above 0.75 is considered “good”36. Consequently, this value 
was employed as a cut-off threshold. Of the 208 features, 173 (83%) had an ICC of > 0.75 and 
were selected for all further steps. Of the 35 excluded features, the majority (27) were extracted 
from the edema mask, while only eight excluded features were extracted from the metastasis 
mask. 
All selected radiomic features in the training and test set were independently normalized by z-
score standardization and by applying the Yeo-Johnson transformation37 to transform the 
distribution of a variable into a Gaussian distribution. 
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Feature reduction 

We applied a minimum redundancy - maximum relevance (MRMR) ensemble feature selection 
framework implemented in R38 initially proposed by Ding et al.39 as an efficient method for the 
selection of relevant and non-redundant features.  
We created multiple smaller feature sets of the T1-CE, FLAIR, and combined feature sets with 
three, five, seven, nine, eleven, thirteen, and fifteen features each.  
We used bootstrapping40 to obtain more reliable results: Feature reduction was repeatedly applied 
to 1000 bootstrap samples for each set and each number of features. For our final set of features, 
we ranked the features based on the number of times they were selected. The best number of 
features was later determined by nested cross-validation in the training set.  

Batch harmonization 

To account for differences created by 29 different MRI scanners in our multicenter dataset, we 
used batch harmonization implemented by neuroCombat41. In total, ten batches were created 
according to the MRI model names by combining related models. According to Leithner et al.42, 
ComBat harmonization without Empirical Bayes estimation provided slightly higher performance 
in similar machine learning tasks. Therefore, Empirical Bayes was deactivated. Besides the non-
harmonized dataset, we created two harmonized datasets: one by only adjusting the means and 
the other by adjusting means and variances.  

Model creation, testing, and patient stratification 

For model creation and evaluation, the R package MLR343 was used as a basis. Our prediction 
target was right-censored time-to-event data, where we used LF as the event and the FFLF or 
time-to-last imaging follow-up as the time variable for patients with or without event, respectively. 
We compared three different learners: random forest (RF), extreme gradient boosting (xgboost), 
and generalized linear models with elastic net regularization learner (ENR).  
We implemented nested cross-validation to select the best mode of batch harmonization and the 
best number of features: For batch harmonization selection, all three datasets were compared 
while always using the combined feature set with nine features. Five iterations of five-fold nested 
cross-validation for dataset selection showed no significant difference between the sets with and 
without batch harmonization (p = 0.3, Kruskal-Wallis rank sum test). Therefore, all further 
analyses were performed on the base dataset without batch harmonization to avoid unnecessary 
and potentially distorting preprocessing steps. To select the ideal number of features in each 
feature set, a second nested cross-validation was conducted. The best average performance was 
achieved with seven, three, and seven features in the T1-CE, FLAIR, and combined sets, 
respectively. The comb+pre-OP set, which included the seven combined and four pre-OP 
features, therefore, had eleven features. The features are listed in Supplementary Table 3. 
The parameter tuning was performed using random search during repeated cross-validation. All 
tuning and selection steps were performed on the training set. To account for the class imbalance 
(around 1:5 event:no-event), synthetic minority over-sampling was implemented using SMOTE44. 
We used an implementation in R which is capable of handling numeric and categorical data. The 
number of samples in the minority class was increased by creating synthetic samples to reach a 
ratio of 1:2. We only used SMOTE on the training folds in each step of our (nested) cross-
validation. This way we ensured that our models were only validated on real patients. 
The final models were trained with the best parameters determined by the cross-validation on the 
whole training set while also using SMOTE to balance the classes. The models were then tested 
on our multicentric external test cohort. 
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The 33rd and 66th percentiles of the continuous risk ranks in the training cohort were used as 
cutoffs for patient stratification. These cutoffs were used to divide the test cohort into three groups 
according to their predicted continuous risk rank and compare their survival with Kaplan Meier 
analysis. 

Metrics 

To account for both timing and outcome, the learners' performance was quantified using the 
concordance index (CI)45. The 95% confidence intervals are based on 10,000 bootstrap samples. 
A decision curve analysis was performed to consider clinical consequences with a time endpoint 
of 24 months46. The threshold range was chosen as suggested by Vickers et al.47 based on these 
considerations: Since LF is a severe event and its detection is critical, a lower threshold of 5% 
seems appropriate. Especially in elderly and multimorbid patients, where additional imaging may 
be burdensome, an upper threshold of 30% is reasonable. 
The Dice similarity coefficient (DSC) was used to compare the overlap between manual and 
automatic segmentations.  

 

Results 
An overview of patient characteristics of both patient cohorts is shown in Table 1. In addition to 
postoperative RT, 18 and 23 patients were treated with concurrent chemotherapy and 
immunotherapy, respectively. The agents used are listed in Supplementary Tables 7 and 8. A 
total of 147 patients had missing sequences, the majority of which were missing T2 and T1 
sequences (82% and 10%, respectively), which were not relevant for our further analyses. The 
general workflow, with example images of a test cohort patient, is shown in Figure 1. 

Baseline clinical models 

To create a baseline for comparison with our radiomic models, we first tested the predictive value 
of two established clinical indices with univariate Cox analysis: the Recursive Partitioning Analysis 
(RPA)48 and the Graded Prognostic Assessment (GPA)49 index. They reached a CI of 0.47 and 
0.52 in the internal validation, respectively. In external testing, RPA again performed worse with 
a CI of 0.39 compared to GPA with a CI of 0.44. We also tested the most recent disease-specific 
GPA (dsGPA)50 available at the time of data collection. Due to missing information or histologies 
not covered by this version of the dsGPA, we had a reduced training and test cohort of 200 and 
71 patients, respectively. Univariate Cox analysis yielded a CI of 0.44 and 0.46 for internal 
validation and external testing, respectively. 

Model performance 

The performances in the internal validation, as well as in the multicentric external test cohort, are 
shown in Table 2. To determine the best overall learner, we ranked the performance across all 
feature sets and found that ENR ranked best, followed by RF and xgboost with mean ranks of 
1.4, 1.6, and 2.9, respectively. Therefore, all further experiments were conducted with ENR. For 
completeness, the results obtained by RF and xgboost are shown in Supplementary Tables 9 and 
10. The highest mean CI across all five folds and ten iterations of the cross-validation was 
achieved with the comb+pre-OP feature set (CI = 0.67).  
The comb+pre-OP feature set also led to the highest performance in the external test cohort and 
achieved a CI of 0.77. While the T1-CE feature set achieved a CI of 0.76, FLAIR was only able to 
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reach 0.50. The three clinical feature sets performed slightly worse than our radiomic feature sets 
or the combined feature sets: the pre-OP, post-OP, and RT feature sets reached a CI of 0.64, 
0.63, and 0.63 in the internal validation, respectively. In external testing, they achieved a CI of 
0.70, 0.65, and 0.70, respectively. While adding the BMV to the pre-OP feature set did not change 
the predictive performance, adding it to comb+pre-OP led to worse results with a CI of 0.72.  
For reproducibility, we listed the beta values used by our best model (comb+pre-OP ENR) in 
Supplementary Table 11. The corresponding calibration curve to this model is shown in Figure 3 
(right panel). Furthermore, we calculated the time-dependent area under the receiver operating 
characteristic curve (AUC) by transforming the crank to an event probability distribution. The 
proposed model reached a mean of 0.80. Supplementary Figure 2 shows the plotted time-
dependent AUC. 

Patient stratification 

Using the cutoffs determined by the training cohort as described above, our comb+pre-OP ENR 
model was able to significantly stratify the patients into three risk groups with a low, medium, and 
high risk of local failure (p = 0.0001, Chi-squared Test). A Kaplan-Meier analysis with all three 
groups is shown in Supplementary Figure 3. 
By combining the low- and medium-risk groups into one, we created dichotomous predictions. 
Kaplan-Meier analysis (Figure 2) illustrates the survival in each risk group.  Decision curve 
analysis using these predictions showed a net benefit of our predictive model compared to treating 
all patients in the relevant threshold range (Figure 3). 

The relevance of brain metastasis volume 

The predictions of our comb+pre-OP ENR model did weakly correlate with the cumulative BMV 
or BMV of the largest BM (Spearman's rank correlation: r = 0.246 (p = 0.014) and 0.254 (p = 
0.011), respectively). 
While cumulative BMV alone was highly predictive in the test cohort, with a CI of 0.76 in a 
univariate Cox analysis, it only achieved a CI of 0.53 in internal validation. Using the BMV of only 
the largest BM increased the internal validation and external testing performance to 0.55 and 
0.77, respectively. There was no significant difference in the BMV between the training and test 
cohort (p = 0.64, Wilcoxon rank sum test).  
Stratifying our test set into small and large BMs by dividing the set at the median cumulative 
volume (12.6 millimeter³) resulted in groups with four and twelve events, respectively. Our best 
model scored a CI of 0.58 and 0.78 in the respective groups. The model significantly risk-stratified 
the patients in the large BMV group, but not in the small BMV group (corresponding Kaplan-Meier 
analysis are depicted in Supplementary Figures 4 and 5). 
When repeating the feature reduction, parameter tuning, training, and testing with the radiomic 
features extracted only from the largest BM, the ENR learner was able to reach a CI of 0.75 
(comb+pre-OP+BMV, Table 3). The previously best feature set (comb+pre-OP) only achieved a 
performance of 0.70. The selected radiomic features are listed in Supplementary Table 4.  

End-to-end model using neural network-based automatic segmentations 

The neural network-based segmentations had a median Dice similarity coefficient (DSC) of 0.94 
(IQR: 0.92-0.96) and 0.92 (0.87-0.95) in comparison to the manual segmentation for the 
metastasis and edema labels, respectively. The mean DSC is slightly lower at 0.92 (95% 
confidence interval: 0.92-0.93) and 0.89 (95% confidence interval: 0.88-0.90), respectively.  
To test the predictive value of neural network-based segmentations and therefore test the 
feasibility of a fully automated workflow, we repeated all steps, starting with the feature reduction, 
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followed by an additional parameter tuning and training run with radiomic features extracted from 
the automatically created segmentations. The selected features are listed in Supplementary Table 
5. The results for our ENR learner are shown in Table 3. The best test results with this data were 
again obtained with the comb+pre-OP feature set (CI = 0.72). Overall, we observed an average 
decrease in performance by 0.08. 

Impact of N4 Bias Field Correction 

To test the possible influence of MR intensity inhomogeneities51, we extracted the radiomic 
features again after applying N4 bias field correction52.  Repeating our workflow with these 
features resulted in minor changes. The selected features are listed in Supplementary Table 6. 
Comb+pre-OP+BMV performed best with these features, reaching a CI of 0.77. The previously 
best feature set (comb+pre-OP) performed slightly worse, reaching a CI of 0.76.  

Predictive performance of the delivered radiation dose 

Recent studies3 suggest that higher delivered radiation dose may improve local control in BMs. 
Since dose information is completely independent of radiomic features, we wanted to test the 
prognostic value of radiation dose in the form of EQD2 alone and in combination with our comb 
feature set with univariate Cox analysis and our established pipeline, respectively. In univariate 
Cox analysis, EQD2 alone resulted in a CI of 0.54 and 0.60 in internal validation and external 
testing. The combination of EQD2 and comb yielded a CI of 0.60 and 0.70 in internal validation 
and external testing with the ENR learner.  

 

Discussion 
In this work, we were able to develop Radiomics-based machine learning models that were able 
to predict FFLF better than clinical features alone. Our best model was trained with a combination 
of radiomic and clinical features and achieved a CI of 0.77 in a multicenter external test cohort 
outperforming any clinical predictive model. Our final model’s predictions significantly stratified 
the test patients into two risk groups and achieved an incremental net clinical benefit.  
 
When using automatically generated segmentations from a previously trained neural network, the 
models performed slightly worse, with an average performance loss of 0.08. While the neural 
network-based segmentations were of good quality with a median DSC of 0.94 for the metastasis 
label, the slightly lower mean DSC shows some outliers. This is also shown by the 5th and 10th 
percentile of the metastasis label of 0.79 and 0.88. Removing the segmentations with a DSC 
lower than the 10th percentile in the respective sets (training set: DSC < 0.88, test set: DSC < 
0.86) led to improved prediction results only worse by an average CI of 0.02 compared to the 
manual segmentation. The comb+pre-OP ENR model was able to reach a respectable CI of 0.72 
in external testing with the automatically generated segmentations, which improved to 0.77 after 
removing the outliers. This demonstrates that with sufficient segmentation quality, an end-to-end 
solution is possible without clinician intervention. 
 
While the inclusion of the N4 bias field correction resulted in different feature selections (see 
Supplementary Table 6), it did not improve performance. Because it would add another step to 
our preprocessing pipeline, we decided not to include the bias field correction. In this way, we can 
achieve a simpler applicability of our models. 
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The results in the external test cohort were, on average, better by a CI of 0.04. This may be 
explained by the larger amount of data available for training: The models tested on the external 
cohort were trained on all training data, while for internal validation, only 80% of the data was 
used for training, while testing was performed on the remaining 20%. 
 
Patients at high predicted risk for LF may benefit from risk-adapted therapy and follow-up. This 
may include dose escalation of SRT or the use of wider CTV margins, which have been shown to 
improve local control53. In addition, therapy may be supplemented with systemic agents that cross 
the blood-brain barrier. Finally, more frequent follow-up may help in the early detection of potential 
local failure. 
 
Several studies have approached predicting the LF of BMs. Most of them interpreted the 
prediction as a classification task and therefore only predicted whether an event occurred at a 
predetermined time16–18,54–63. In contrast, we approached the task as a survival task and therefore 
predicted a combination of event and time in terms of FFLF. 
Another study predicting event and time of local failure by Huang et al.64 used Cox proportional 
hazards models and found that non-small cell lung cancer BMs with a higher zone percentage 
were more likely to respond favorably to Gamma Knife radiosurgery. In contrast to the treatment 
with surgery and adjuvant SRT in our study, the aforementioned studies focused on BMs treated 
with SRT, WBRT, and immune checkpoint inhibitors. Only one monocentric study with 67 patients 
by Mulford et al.57 investigated the prediction of local recurrence after surgical resection and 
adjuvant stereotactic radiosurgery, and found that radiomic features provided more robust 
predictive models of local control rates than clinical features (AUC = 0.73 vs. 0.40). Unlike our 
study, they predicted local failure as a binary classification task. 
Another unique feature of our study is the multicenter external test cohort with patients treated at 
five different centers in multiple countries. In contrast to our study, the aforementioned studies all 
tested their models on an internal validation set and were therefore not tested on such a wide 
variety of scanners and imaging protocols as our models were. 
 
Contrary to findings in previous studies65, the cumulative BMV and the BMV of the largest BM 
were not predictive in the internal validation, where they only reached a CI of 0.53 and 0.55, 
respectively. Since outcome and BMV appear to be independent in the training cohort, radiomic 
features representing BM size were not selected by our feature reduction algorithm. The only 
selected shape class feature in the best-performing feature set was metastasis flatness. 
Moreover, there was only a minor correlation (r = 0.25) between the predictions of the radiomic 
model and BMV. This shows that Radiomics can predict LF based on features that do not directly 
represent BM size or volume. 
 
Compared to approaches focusing on the use of neural networks, the use of classical machine 
learning has some advantages: Because only a small number of features are fed into the model, 
it becomes more comprehensible. Since it is known how the radiomics features are computed, it 
is possible to infer the clinical correlates. As a test, we compared the five patients with the highest 
and lowest rank to find visual differences in imaging. The results alongside some example images 
are shown in Supplementary Figure 6. Neural networks, on the other hand, are more of 
intransparent black boxes, and it is difficult to understand exactly which characteristics of the 
tumor are predictive. In addition, neural networks often require the use of a graphics processing 
unit (GPU) to complete predictions in a reasonable amount of time, while our models run on the 
central processing unit (CPU) and can, therefore, run on low-end hardware. 
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Nevertheless, this work has several limitations: Training the models with only a limited number of 
features extracted from the segmentations prevents them from taking other factors into account, 
such as the surrounding tissue. Furthermore, segmentations of consistent quality are necessary 
for reliable results. In this study, all segmentations were created by the same person. To reduce 
the influence of the personal segmentation style, only features with a high correlation between 
manual and automatic segmentations were used for further modeling. The sole use of 
automatically generated segmentations may help with this limitation.  
In daily clinical practice, it is a difficult task to differentiate LF from radiation necrosis or 
pseudoprogression66. Although board-certified radiologists made the diagnosis, some cases may 
have been misclassified, which is unavoidable in such studies. 
Around one-quarter of our patients had multiple BMs. By using the cumulative BMV as a feature, 
we not only took the volume of the resected BM into account but also the volume of all additional 
BMs. In our additional analysis, we used the largest metastasis as a surrogate for the resected 
metastasis. The largest metastasis accounted for a median of 90% (IQR: 75%-98%) of the total 
tumor burden in patients with multiple metastases. Because the smaller metastases represented 
only a small proportion of the total tumor burden, we considered the largest metastasis as the 
resected metastasis with reasonable certainty.  When using the radiomic features extracted from 
the largest metastasis, the mean across all models decreased by 0.03 compared to using the 
combined segmentation of all BMs. From this, we can conclude that segmenting all BMs did not 
harm the prediction of LF of the resected BM. 
In addition, radiomic features were extracted from a total of twelve synthesized T2-FLAIR 
sequences (six in the training cohort and six in the test cohort). Excluding these patients from the 
training and test sets resulted in a slight increase in performance. The largest increase in 
performance was found in the combined feature set (CI = 0.72 from 0.69). Furthermore, the T1-
CE model showed the second largest increase in performance, surpassing our previous best 
feature set (comb+pre-OP), which showed no change in performance. Since the new best model 
did not even include features extracted from the T2-FLAIR sequence, we can conclude that 
radiomic features extracted from the synthesized T2-FLAIR sequences did not noticeably affect 
the performance of our model and the increase in performance may be attributed to the exclusion 
of difficult cases. 
 
Despite these limitations, we were able to develop a model to predict FFLF of BMs after resection 
and adjuvant SRT. The model performed well in a multicenter external test cohort with a variety 
of MRI scanners and imaging and therapy protocols. This model may help to tailor treatment to a 
patient's individual risk of metastasis recurrence, thereby improving the overall management of 
BMs. We have published the model as an easy-to-use web app 
(https://jbuchner.shinyapps.io/shiny/), where the user can either upload the required MRI 
sequences and segmentations or input previously extracted radiomic features. 
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 Training-Cohort Test-Cohort 

Characteristic 
Overall, N 

= 2531 

TUM, N = 

1671 

USZ, N = 

861 

Overall, 

N = 991 

FD, N = 

51 

FFM, N 

= 111 

FR, N = 

181 

HD, N = 

441 

KSA, N 

= 211 

Age at RT start 62 (53, 71) 62 (53, 71) 62 (54, 69) 61 (54, 

67) 

63 (55, 

64) 

57 (52, 

66) 

58 (50, 

66) 

61 (54, 

65) 

63 (59, 

70) 

KPS 80 (70, 90) 80 (70, 90) 90 (80, 90) 90 (80, 

90) 

80 (80, 

80) 

90 (90, 

90) 

90 (82, 

100) 

80 (78, 

90) 

90 (90, 

100) 

Location          

Frontal 86 (34%) 67 (40%) 19 (22%) 33 

(33%) 

1 (20%) 4 (36%) 5 (28%) 14 

(32%) 

9 (43%) 

Temporal 32 (13%) 18 (11%) 14 (16%) 7 (7.1%) 2 (40%) 0 (0%) 1 (5.6%) 2 (4.5%) 2 (9.5%) 

Parietal 47 (19%) 28 (17%) 19 (22%) 20 

(20%) 

2 (40%) 1 (9.1%) 1 (5.6%) 13 

(30%) 

3 (14%) 

Occipital 27 (11%) 12 (7.2%) 15 (17%) 12 

(12%) 

0 (0%) 2 (18%) 3 (17%) 5 (11%) 2 (9.5%) 

Cerebellar 56 (22%) 39 (23%) 17 (20%) 24 

(24%) 

0 (0%) 4 (36%) 5 (28%) 10 

(23%) 

5 (24%) 

Other 5 (2.0%) 3 (1.8%) 2 (2.3%) 3 (3.0%) 0 (0%) 0 (0%) 3 (17%) 0 (0%) 0 (0%) 

Primary 

Diagnosis 

         

NSCLC 89 (35%) 37 (22%) 52 (60%) 39 

(39%) 

3 (60%) 6 (55%) 2 (11%) 19 

(43%) 

9 (43%) 

Melanoma 47 (19%) 24 (14%) 23 (27%) 9 (9.1%) 1 (20%) 1 (9.1%) 1 (5.6%) 2 (4.5%) 4 (19%) 

RCC 11 (4.3%) 9 (5.4%) 2 (2.3%) 8 (8.1%) 0 (0%) 1 (9.1%) 2 (11%) 3 (6.8%) 2 (9.5%) 

Breast 34 (13%) 33 (20%) 1 (1.2%) 19 

(19%) 

0 (0%) 3 (27%) 5 (28%) 9 (20%) 2 (9.5%) 

GI 26 (10%) 26 (16%) 0 (0%) 11 

(11%) 

0 (0%) 0 (0%) 4 (22%) 5 (11%) 2 (9.5%) 

Other 46 (18%) 38 (23%) 8 (9.3%) 13 

(13%) 

1 (20%) 0 (0%) 4 (22%) 6 (14%) 2 (9.5%) 

Residual areas 66 (26%) 66 (40%) 0 (0%) 21 

(21%) 

1 (20%) 2 (18%) 1 (5.6%) 11 

(25%) 

6 (29%) 

Time Surgery 

to RT (d) 

20 (5, 29) 26 (20, 34) 4 (3, 5) 32 (22, 

44) 

31 (28, 

32) 

30 (24, 

40) 

7 (6, 8) 40 (31, 

50) 

35 (25, 

44) 

Concurrent 

CTX 

15 (5.9%) 8 (4.8%) 7 (8.1%) 3 (3.0%) 0 (0%) 2 (18%) 0 (0%) 1 (2.3%) 0 (0%) 

Concurrent ITX 10 (4.0%) 6 (3.6%) 4 (4.7%) 13 

(13%) 

0 (0%) 3 (27%) 0 (0%) 9 (20%) 1 (4.8%) 

EQD2 43.75 

(37.50, 

43.75) 

43.75 

(43.75, 

43.75) 

37.50 

(37.50, 

37.50) 

37.5 

(34.7, 

42.0) 

37.5 

(37.5, 

40.0) 

34.7 

(28.9, 

36.0) 

37.5 

(37.5, 

42.3) 

38.3 

(34.7, 

43.8) 

40.0 

(31.2, 

40.0) 
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Table 1: Cohort demographics 

 
We split our patients into two cohorts: a training cohort (TUM: Klinikum rechts der Isar of the 

Technical University of Munich, USZ: University Hospital Zurich) and a multicenter external test 

cohort (FD: General Hospital Fulda, FFM: Saphir Radiochirurgie/University Hospital Frankfurt, 

FR: University Hospital Freiburg, HD: Heidelberg University Hospital, KSA: Kantonsspital Aarau). 

We differentiated between six different histologies: non-small cell lung carcinoma (NSCLC, further 

differentiated into adenocarcinoma, non-adenocarcinoma, and not further specified), melanoma, 

renal cell carcinoma (RCC), breast cancer, gastrointestinal cancer (GI), and others. 

There was no significant difference in age, location of the BM, primary diagnosis, residual area 

after resection, concurrent CTX, total brain tumor burden, and number of events between both 

cohorts. Significant differences were found in the Karnofsky performance status (KPS, p < 0.001), 

the time between surgery and RT (P < 0.001), concurrent ITX (p = 0.002), and the equivalent 

dose in 2 Gray fractions (EQD2, p < 0.001). 

  

Total brain 

tumor burden 

(ml) 

11 (5, 21) 11 (5, 20) 12 (7, 23) 13 (5, 

24) 

41 (23, 

48) 

17 (10, 

21) 

14 (5, 

28) 

9 (4, 15) 14 (6, 

33) 

Events 36 (14%) 26 (16%) 10 (12%) 16 

(16%) 

2 (40%) 2 (18%) 5 (28%) 4 (9.1%) 3 (14%) 

1Median (IQR); n (%) 
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Table 2: Performance in internal validation and external testing 

 

 

Parameter tuning and internal validation were performed with ten iterations of a five-fold cross-

validation. The 95% confidence intervals (in parenthesis) are based on 10000 bootstrap samples. 

The combination of ENR learner and comb+pre-OP feature set performed best with a mean CI of 

0.67. Adding BMV did not improve performance. By ranking the performance of the models across 

all feature sets, we identified ENR as the best learner and, therefore, tested this learner on the 

external test cohort. Again, the best performance was seen with the comb+pre-OP feature set (CI 

= 0.77). 

  

Group Learner pre-OP 
pre-OP 

+ BMV 
Post-

OP 
RT T1-CE FLAIR comb 

comb + 

pre-OP 

comb + 

pre-OP + 

BMV 

5-fold 

CV 
ENR 0.64 0.63 0.63 0.63 0.65 0.47 0.62 0.67 0.67 

RF 0.63 0.63 0.63 0.63 0.61 0.58 0.64 0.66 0.66 

xgboost 0.54 0.56 0.53 0.56 0.58 0.55 0.62 0.65 0.64 

external 

test 

cohort 

ENR 0.70 

(0.53-

0.83) 

0.70 

(0.54-

0.83) 

0.65 

(0.51-

0.82) 

0.70 

(0.56-

0.83) 

0.76 

(0.63-

0.84) 

0.50 

(NA-

NA) 

0.69 

(0.55-

0.80) 

0.77 

(0.61-

0.87) 

0.72 

(0.57-0.82) 
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Table 3: Performance in the test set with automated U-Net segmentations 

and segmentations of only the largest metastasis 

 

In addition to using our manual segmentations, we also trained and tested our proposed model 

on segmentations of only the largest BM and automatically generated U-Net segmentations. 

Since the clinical feature sets are independent of the segmentation method, they were not added 

to this analysis. Compared to the manual segmentations, the results were, on average 0.08 and 

0.03 points worse, respectively. 

  

Group Learner T1-CE FLAIR comb 
comb + pre-

OP 
comb + pre-

OP + BMV 

Manual 

Segmentation 
ENR 0.76 

(0.63-

0.84) 

0.50 

(NA-NA) 

0.69 

(0.55-0.80) 

0.77 

(0.61-0.87) 

0.72 

(0.57-0.82) 

Largest BM ENR 0.72 

(0.59-

0.82) 

0.50 

(NA-NA) 

0.63 

(0.54-0.79) 

0.70 

(0.58-0.86) 

0.75 

(0.57-0.84) 

U-Net Segmentation ENR 0.58 

(0.41-

0.75) 

0.46 

(0.31-

0.64) 

0.58 

(0.41-0.75) 

0.72 

(0.55-0.83) 

0.69 

(0.53-0.80) 
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Figure captions: 

Figure 1: Summarized overview of our workflow 

After manual and automatic definition of the volume of interest (VOI), we extracted 104 original 

features from each metastasis and edema segmentation. We reduced the number of features in 

each set with MRMR. Furthermore, we added up to eight clinical features and combined all 

features into multiple different feature sets. The optimal number of features in each set was 

determined with a nested cross-validation. The optimal parameters for our selected learners were 

chosen based on a 5-fold cross-validation. The best parameters for each learner-feature-

combination were tested in the external test cohort. 

Figure 2: Kaplan Meier analysis 

We created dichotomous predictions of the comb+pre-OP ENR model by using the 66th 
percentiles of the continuous risk ranks in the training cohort as cutoffs for patient stratification. 
There were six and ten events in the low-risk group of 76 patients and the high-risk group of 23 
patients, respectively. 
We found a significant difference in freedom from local failure (FFLF) between the predicted low- 
and high-risk groups (p < 0.001) in the multicenter external test cohort. After 24 months, we found 
a FFLF of 91% and 26% in the groups, respectively. 

Figure 3: Decision curve analysis (left) and calibration curve (right) 

Using the same groups as in Figure 2, we found a net benefit of our predictive model compared 

to treating all patients in the relevant threshold range from five to 30% through decision curve 

analysis (left). A decision model shows a clinical benefit if the respective curve shows larger net 

benefit values than reference strategies. The combination of radiomic features derived from T1-

CE, FLAIR, and pre-OP features (comb+pre-OP) resulted in a higher net benefit compared to 

using only the clinical pre-OP features and treating all patients or none. The calibration curve on 

the right was created by transforming the continuous risk rank predicted by the best comb+pre-

OP ENR model (in orange) and by the clinical pre-OP ENR model (in blue) to event probabilities 

at 24 months. Although both models seem to overestimate the actual risk of our patients, the 

comb+pre-OP model predicts the risk closer to the actual risk. 
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Figure 1 
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Figure 2 
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Figure 3 
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