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7-Dehydrocholesterol is an endogenous 
suppressor of ferroptosis
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Andreas Trumpp2,3,24, Marcus Conrad8 & José Pedro Friedmann Angeli1 ✉

Ferroptosis is a form of cell death that has received considerable attention not only as a 
means to eradicate defined tumour entities but also because it provides unforeseen 
insights into the metabolic adaptation that tumours exploit to counteract phospholipid 
oxidation1,2. Here, we identify proferroptotic activity of 7-dehydrocholesterol 
reductase (DHCR7) and an unexpected prosurvival function of its substrate, 
7-dehydrocholesterol (7-DHC). Although previous studies suggested that high 
concentrations of 7-DHC are cytotoxic to developing neurons by favouring lipid 
peroxidation3, we now show that 7-DHC accumulation confers a robust prosurvival 
function in cancer cells. Because of its far superior reactivity towards peroxyl radicals, 
7-DHC effectively shields (phospho)lipids from autoxidation and subsequent 
fragmentation. We provide validation in neuroblastoma and Burkitt lymphoma 
xenografts where we demonstrate that the accumulation of 7-DHC is capable of 
inducing a shift towards a ferroptosis-resistant state in these tumours ultimately 
resulting in a more aggressive phenotype. Conclusively, our findings provide 
compelling evidence of a yet-unrecognized antiferroptotic activity of 7-DHC as a 
cell-intrinsic mechanism that could be exploited by cancer cells to escape ferroptosis.

Lipid components of cellular membranes are constantly exposed 
to free radical species that are competent to trigger their degrada-
tion through an oxygen-dependent process4. This process broadly 
known as lipid peroxidation is primarily dictated by the propagation 
rate constants (kp) of its lipidic elements, an intrinsic chemical fea-
ture unique to each of these components. The last few years have wit-
nessed a surge of interest in understanding the cellular mechanisms 
that regulate lipid peroxidation as they have been associated as key 

determinants of a distinct non-apoptotic cell death modality, known  
as ferroptosis5.

Early works have established the central role played by the enzymatic 
activity of the selenoprotein glutathione peroxidase 4 (GPX4)2,6 in 
suppressing the process of ferroptosis7–9. GPX4 is the sole enzyme in 
mammals capable of directly reducing a broad range of peroxidized 
lipids present in membranes10,11. GPX4 can be irreversibly inhibited 
by a series of alkylating small molecules, such as RSL3 and ML210  
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(ref. 8), leading to cell death in ferroptosis-sensitive cancer cell lines. 
The enrichment of phospholipids with polyunsaturated fatty acids 
(PUFAs) results in a marked dependency on GPX4 activity12,13. This 
high-PUFA state was shown to be largely dependent on the activity of 
the enzyme acyl-CoA-synthetase long-chain family 4 (ACSL4), which 
is required for the critical step of PUFA activation12. Accordingly, the 
inhibition of GPX4 in ferroptosis-prone cell lines leads to the character-
istic oxidation fingerprint entailing the accumulation of peroxidized 
products of phosphatidylethanolamine (PE) containing arachidonic 
acid (AA) and adrenic acid (AdA)14. It has been further demonstrated 
that the sole accumulation of peroxidized fatty acids is not sufficient to 
induce ferroptosis and a central role of the free radical-mediated propa-
gation step has been unambiguously demonstrated15. The propagation 
step of lipid peroxidation was shown to contribute to the formation 
of pore-like structures of ill-defined identity16 that drive the osmotic 
lysis of the cells17.

The present study uncovered and characterized a role for 
7-dehydrocholesterol reductase (DHCR7) in the ferroptotic process. 
DHCR7 catalyses the final step in cholesterol biosynthesis and its inhi-
bition leads to the accumulation of 7-dehydrocholesterol (7-DHC). 
Others18 initially reported 7-DHC to accumulate in preputial gland 
tumours and whose function, at that time, was only assumed to be as 
a spare capacity for cholesterol synthesis. Subsequent studies char-
acterized 7-DHC as the most oxidizable lipid ever reported and whose 
accumulation predisposes cells to lipid peroxidation19. By contrast, 
we now show that the accumulation of 7-DHC causes a paradoxical 
increased tolerance towards phospholipid peroxidation, thus providing 
a robust resistance to ferroptosis. Furthermore, the characterization 
of the protective effect of 7-DHC provided valuable insights into the 
distinction between lipid and phospholipid peroxidation in cell death 
processes. By demonstrating the accumulation of oxidatively truncated 
phospholipid species in ferroptotic cell death, we emphasize the crucial 
role of these species in the execution of ferroptosis. Together with the 
accompanying paper20, our findings suggest that manipulating this 
pathway could be exploited to increase ferroptosis resistance to sup-
press ferroptosis in acute settings but also exploited by cancer cells 
to evade ferroptosis.

DHCR7 is a proferroptotic gene
Spurred by the still incomplete understanding of the ferroptotic pro-
cess and the development of next-generation single guide RNAs (sgR-
NAs)21, we performed a genome-wide reverse genetic CRISPR screen to 
identify genes that may confer robust protection against ferroptosis. To 
this end, the Pfa1 cell line6 was transduced with a CRISPR library cover-
ing 18,424 genes with a total representation of 90,230 sgRNAs followed 
by a stringent selection for 14 days using 200 nM of the GPX4 inhibitor 
(1S,3R)-RSL3 (in the following referred to as RSL3) (Fig. 1a). Consistent 
with the results of ours and others previous screens, Acsl4 emerged as 
the highest-scoring hit12,13,22–24. The second top-scoring gene was Dhcr7 
(Fig. 1b). The identification of Dhcr7 as a potential proferroptotic gene 
was surprising in light of several studies indicating that loss or inhibition 
of DHCR7 is associated with an increased susceptibility to lipid peroxi-
dation4,25, which, in principle, should lead to an increased susceptibility 
to ferroptosis26. Intrigued by this finding, we set out to explore the basis 
of this discovery. Using the bona fide ferroptosis fibrosarcoma cell line 
model HT1080, we generated polyclonal cultures of DHCR7-deficient 
cell lines using two independent sgRNAs. The successful loss of DHCR7 
was validated by western blot and mirrored by the accumulation of 
its direct substrate 7-DHC (Fig. 1c,d) and impaired incorporation of 
C13-glucose into cholesterol (Fig. 1e). Notably, cholesterol depletion 
was less pronounced, suggesting that a substantial fraction is directly 
taken up from the serum. Importantly, knockout of DHCR7 did not 
concur in a marked alteration in the protein concentrations of known 
ferroptosis regulators (Fig. 1c) nor the phospholipid composition of 

cells (Extended Data Fig. 1a–c). Using these cellular models, we vali-
dated the screening results showing that DHCR7-deficient HT1080 
cells present a marked resistance to ferroptosis (Fig. 1e). Similar results 
were obtained with three independent clonal cell lines derived from 
Pfa1, HT1080 and MDA-MB-435 cells, confirming the general impact 
of this system in specifically preventing ferroptosis (Extended Data 
Fig. 2a–d). We corroborated these findings by studies using a clonal 
cell line derived from the HT1080 DHCR7 knockout (KO) pool to avoid 
confounding results from non-edited cells (a detailed characterization 
of the genetic modification of these cells is provided in Extended Data 
Fig. 3a–d). Thereby, we could unequivocally demonstrate the profer-
roptotic activity of DHCR7 because the genetic reconstitution of DHCR7 
abolished 7-DHC concentrations and resensitized cells to ferroptosis 
without affecting the response of the cell to other cytotoxic agents 
(Extended Data Fig. 3e–g).

7-DHC is an antiferroptotic metabolite
In the penultimate step of the cholesterol biosynthesis pathway, 
lathosterol, through lathosterol oxidase (SC5D), is converted to 7-DHC, 
which, in turn, is reduced to cholesterol by DHCR7 in the final step of 
the pathway (Fig. 2a and Extended Data Fig. 4a). Several earlier studies 
have pointed to a toxic effect of 7-DHC accumulation through its inher-
ent propensity to autoxidize and propagate radical chain reactions 
within the lipid bilayer25. To shed light on these seemingly paradoxical 
observations, we generated a DHCR7 SC5D double-mutant cell line to 
address whether 7-DHC accumulation mediates the protective effects 
induced by the loss of DHCR7. In agreement with a protective effect of 
7-DHC, the loss of SC5D in the DHCR7 KO cell line completely abolished 
the resistance conferred by the single loss of DHCR7 (Fig. 2b). Similarly, 
pharmacological inhibition of upstream steps of cholesterol biosyn-
thesis recapitulated this effect (Extended Data Fig. 4b). Accordingly, 
combined loss of DHCR7 and SC5D led to a detectable accumulation 
of lathosterol and suppressed 7-DHC accumulation (Fig. 2c). Subse-
quently, the serial reconstitution of DHCR7 and SC5D in a DHCR7 SC5D 
KO background demonstrated that the re-expression of SC5D resulted 
in substantial accumulation of 7-DHC as also validated by monitor-
ing C13-labelled glucose incorporation into 7-DHC and cholesterol 
(Fig. 2d,e,f). This, in turn, resulted in a specific increased resistance 
to ferroptosis (Fig. 2g and Extended Data Fig. 4c). Using wild-type (WT), 
DHCR7 and DHCR7 SC5D-deficient cell lines in a series of sterol sup-
plementation experiments, we further demonstrated that exogenous 
supplementation of 7-DHC protected all cell lines from ferroptosis; also, 
lathosterol only increased ferroptosis resistance in cell lines able to 
produce 7-DHC (Fig. 2h). Similar observations were made in the sgRNA 
expressing polyclonal cell population, where we could also demon-
strate that squalene, a previously reported ferroptosis suppressor27, 
failed to inhibit cell death when supplemented exogenously (Extended 
Data Fig. 4d). Importantly, a similar protective effect of 7-DHC was 
observed in a genetic model of Gpx4 deficiency6 (Extended Data Fig. 4e). 
Curiously, free cholesterol blunted the protective effects in all geno-
types (Fig. 2h,i). Building on this observation we could show that an 
enantiomer of cholesterol, which has an opposite three-dimensional 
structure but identical physical properties to cholesterol28, was mark-
edly less efficient at blunting these protective effects (Extended Data 
Fig. 4f). Combined with the observed loss of 7-DHC in cells treated 
with free cholesterol (Extended Data Fig. 4g,h) our observations sug-
gest an inhibitory effect on SREBP2 and biosynthetic activity of the 
mevalonate pathway.

Given the suppressive function of cholesterol on the protective effect 
conferred by 7-DHC, we investigated the response to ferroptosis in 
settings where cholesterol supply is scarce. To accomplish this, we 
cultivated cells in delipidated fetal bovine serum (dlFBS), which effec-
tively removes sterols from the culture medium (Extended Data Fig. 5a). 
In dlFBS, we noted a decline in total cholesterol concentrations and 
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a concurrent increase in 7-DHC in DHCR7-deficient cells, indicating 
enhanced biosynthesis (Extended Data Fig. 5b). Under this experimen-
tal condition, we consistently observed similar responses, albeit with 
heightened sensitivity, which can probably be attributed to reduced 
expression of GPX4 resulting from the fumed silica treatment (Extended 
Data Fig. 5c,d). Notably, the loss of GPX4 seems to be independent 
of sterol concentrations and is probably due to selenium depletion 
(Extended Data Fig. 5e,f). To mitigate potential confounding factors, 
we investigated the impact of LDL-receptor (LDLR) KO (Extended Data 
Fig. 5g). As anticipated, the KO cells exhibited increased expression of 
SREBP2 target genes, no differences in GPX4 concentrations and an 
inability to efficiently internalize fluorescently labelled LDL (Extended 
Data Fig. 5h–k). Treatment with the EBP inhibitor Tasin-1 induced a 
substantial reduction in cholesterol concentrations in the LDLR KO 
cells, whereas the WT cells remained largely unaffected (Extended 
Data Fig. 5l). Using these models, we show that the loss of LDLR does 
not significantly affect ferroptosis under normal conditions but pre-
treatment with Tasin-1 markedly sensitizes LDLR KO cells to ferroptosis 
(Extended Data Fig. 5m). These findings substantiate the notion that 
7-DHC plays a crucial role in cellular protection, particularly in condi-
tions where biosynthesis is stimulated.

7-DHC blocks phospholipid peroxidation
The conjugated double-bond present in the sterol B-ring stands as 
the most prominent feature of 7-DHC, when compared to the other 

sterols. To probe the relevance of this feature in preventing ferroptosis 
we assayed the structurally related sterol ergosterol for its capacity to 
supress ferroptosis (Extended Data Fig. 6a) and showed that it has an 
equally potent antiferroptotic activity (Extended Data Fig. 6b). Given 
that ergosterol is the main sterol component in yeast and fungi, it was 
reasonable to assume that this lipid could be an important suppressor 
of cell death induced by PUFAs in these evolutionarily distant organ-
isms. In fact, we could validate this hypothesis in yeast strains with 
targeted deficiencies of genes important for ergosterol biosynthesis 
(that is, erg2, erg3 and erg6)29 by revealing a hypersensitivity to PUFA 
supplementation in cells unable to generate sterol with the character-
istic unsaturated B-ring structure (Extended Data Fig. 6c,d).

To investigate the impact of 7-DHC in a well-defined phospho-
lipid autoxidation model, we prepared unilamellar liposomes of soy 
phosphatidylcholine (PC) loaded with 7-DHC (Fig. 3a). We used the 
recently developed FENIX assay to indirectly monitor in real time the 
process of phospholipid peroxidation30. The assay relies on the specific 
generation of lipid peroxyl radicals arising from the lipophilic radi-
cal generator di-tert-undecylhyponitrite (DTUN). A small amount of 
STY-BODIPY dye competes with PUFA for propagating lipid peroxyl 
radicals and the fluorescence of its oxidized product(s), STY-BODIPYox, 
can be monitored by fluorescence (Fig. 3a). Typical RTAs, inhibit autoxi-
dation and thus retard STY-BODIPY oxidation until the RTA is con-
sumed (Fig. 3a,b). Interestingly, 7-DHC-loaded liposomes resulted in 
a dose-dependent suppression of STY-BODIPY oxidation (Fig. 3b,c). 
As the suppression of STY-BODIPY oxidation could arise from dilution 
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of the pool of autoxidizable phospholipids on supplementation of the 
liposomes with 7-DHC, similar experiments, wherein non-oxidizable 
DPPC were incorporated in place of 7-DHC, were performed, allowing 
us to demonstrate no difference from the native soy PC liposomes 
(Fig. 3b). Furthermore, because sterols alter membrane fluidity and 
may confer protection through dynamic parameters31 that could impact 
lipid peroxidation32, corresponding experiments were carried out on 
cholesterol-loaded liposomes (Fig. 3c). Yet again, there was no effect 
on the rate of STY-BODIPY oxidation—even beyond concentrations of 

7-DHC used (Extended Data Fig. 7a)—suggesting that physical changes 
in the bilayer imparted by the sterol framework do not impact the oxida-
tion rates in our model system, neither do they impact their integrity 
(Extended Data Fig. 7b). Given the indirect nature of the assay, we also 
directly measured the impact of 7-DHC on soy PC peroxidation, that 
is PLPC-OOH, DLPC-OOH and DLPC-2OOH, by LC-MS/MS (Extended 
Data Fig. 7d,e). Although supplementation of the liposomes with DPPC 
(up to 32 mol%) had no effect on the rate of PLPC and DLPC oxidation, 
cholesterol (at 8 mol%) had only a modest effect on the accumulation 
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loading control. e, Relative quantification of 7-DHC and cholesterol concentrations 
in HT1080 Cas9 DHCR7 SC5D KO stably overexpressing SC5D and DHCR7 
(SC5D/DHCR7), only SC5D (SC5D/mock), only DHCR7 (mock/DHCR7) and an 
empty vector (mock/mock). f, Assessment of de novo cholesterol biosynthesis, 
by means of the quantification of 13C-cholesterol and 13C-7-DHC originating 

from 13C-glucose, in HT1080 Cas9 WT, DHCR7 and SC5D KO cells and in the 
overexpressing SC5D/mock, mock/DHCR7 SC5D/DHCR7 or mock/mock  
cells. g, Dose-dependent toxicity of the ferroptosis inducers RSL3, ML210  
and Erastin in the HT1080 cell lines described in c–f. h, Effect of sterol 
supplementation [10 µM] on RSL3 toxicity in HT1080 Cas9 WT, DHCR7 and 
DHCR7 SC5D KO cell lines. i, Flow cytometry analysis of BODIPY 581/591 C11 
oxidation in HT1080 cell line induced by RSL3 treatment ([100 nM], 5 h) in cells 
pretreated for 16 h with 10 µM of different sterols. Cell viability was assessed 
after 24 h (b) or 48 h using Alamar blue (g,h). Data are the mean ± s.d. of n = 3 
wells of a 96-well plate (b,g,h) or a 6-well plate (c,e,f,i) from two (b,h,i) or three 
(g) or one (c,f) independent experiments. *P < 0.05; two-way ANOVA (b,c,e,g,h).
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of PLPC-OOH, DLPC-OOH and DLPC-2OOH. Entirely consistent with 
the FENIX results, 7-DHC supplementation led to a dose-dependent 
suppression in the rate of PLPC and DLPC oxidation (Extended Data 
Fig. 7d,e) which is in good agreement with previous reports in isotropic 
media33. To demonstrate that this suppression corresponded with the 
intervention of 7-DHC in the radical chain reaction, the consumption 
of 7-DHC was monitored spectrophotometrically through its charac-
teristic absorbance (Extended Data Fig. 7f,g). These data thus suggest 
that the oxidation of 7-DHC in vitro is responsible for the inhibition 
of phospholipid peroxidation, a notion we could further validate in 
a model using iron/ascorbate as the source of oxidation (Extended 
Data Fig. 7h). Accordingly, we detected significant concentrations 
of the free radical-mediated oxidation product of 7-DHC, namely 
3β,5α-dihydroxycholest-7-en-6-one (DHCEO) (Fig. 3d), during the 

liposomal oxidation under conditions where no phospholipid oxida-
tion product was detectable (Fig. 3e). Hence, if our hypothesis was 
correct, 7-DHC oxidation should lead to the accumulation of these 
products during the course of ferroptosis and by doing so, it could 
spare phospholipids from oxidative damage. To assess whether 7-DHC 
oxidation products also accumulate on triggering ferroptosis in cells, 
we treated the HT1080 DHCR7 SC5D double-KO cell line expressing 
SC5D and an empty vector with the GPX4 inhibitor RSL3. Although no 
substantial loss in the total content of 7-DHC was noticeable (Extended 
Data Fig. 7i), the quantification of the main non-enzymatic oxidation 
products of 7-DHC, namely DHCEO, revealed a significant increase 
(Fig. 3f and Extended Data Fig. 7i). To demonstrate that the 7-DHC prod-
ucts originate from the peroxyl radical-mediated oxidation of 7-DHC, 
we further incubated these cells with Lip1 (ref. 9). In good agreement 
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with the free radical-mediated formation of DHCEO25, Lip1 fully inhib-
ited the formation of this product (Fig. 3f and Extended Data Fig. 7i). 
Therefore, these results firmly establish a unique role of unsaturated 
B-ring sterols in protecting cells from ferroptosis-like cell death by 
diverting the propagation of peroxyl radical-mediated damage from 
phospholipid components to its sterol core.

Truncated phospholipids drive cell lysis
Following these results, we reasoned that the presence of 7-DHC 
in phospholipid bilayers generates a strong prosurvival effect by 
increasing the resistance of membranes to peroxidation-mediated 
permeabilization. Therefore, a model system was used that consists 
of 5(6)-carboxyfluorescein (CF) encapsulated in liposomes allowing 
for the detection of a fluorescent signal on membrane permeabiliza-
tion (Extended Data Fig. 8a). Using the iron/ascorbate couple as an 
oxidation model, we showed that liposomes containing 7-DHC were 
markedly resistant to peroxidation-mediated membrane permeabiliza-
tion (Extended Data Fig. 8b). To further support the relevance of this 
model system for ferroptosis, we could show that the process of vesicle 
rupture could be prevented by Lip1 (Extended Data Fig. 8c) and other 
molecules able to suppress ferroptosis, such as ergosterol, ubiquinone, 
α-tocopherol and squalene (Extended Data Fig. 8d), indicating that Lip1 
and naturally occurring ferroptosis supressors could act similarly to 
prevent membrane permeabilization of cells.

Recent reports studying the relative contribution of different photo-
sensitization mechanisms to membrane permeabilization suggested 
that truncated phospholipid species rather than phospholipid hydrop-
eroxides are key in generating membrane pores and consequently 
mediating the loss of membrane integrity34. Therefore, we reasoned 
that a similar mechanism could be at play during iron-induced per-
meabilization and ferroptosis execution35. To establish a functional 
link between truncated lipids and ferroptosis execution, we initially 
assayed a panel of different truncated species (Extended Data Fig. 9a) 
regarding their capacity to destabilize membranes. Accordingly, all 
tested truncated lipids were able to permeabilize liposomal mem-
branes and to induce cell death more efficiently than the parental 
lipid and the corresponding hydroperoxide (Extended Data Fig. 9b–e). 
Further validation was provided by using an orthogonal approach 
based on a photochemical probe (PhotoPC). Irradiation of the probe 
directly generates a truncated product (PhotoTrunc-PC) which does 
not rely on the presence of alkoxyl or peroxyl radicals intermediate 
(Extended Data Fig. 9f). Using this model we could demonstrate the 
higher membrane destabilizing capacity of the truncated product in 
vesicles and cells (Extended Data Fig. 9g,h). Although being highly 
supportive, it should be acknowledged that the truncated species 
were added exogenously and were performed using PC and not PE 
species12,14. To circumvent this issue, a system in which the species 
are formed in situ would be preferred. We took advantage of the 
cell’s own fatty acid incorporation machinery to achieve this goal. 
ACSL4-deficient cells have a profound loss of PUFA content in phos-
pholipids12. The absence of PUFA containing phospholipids results in 
a marked resistance to ferroptosis because of the lack of oxidizable 
substrates. Sensitivity to ferroptosis in this setting can be regained 
by feeding exogenous PUFAs12. This feature can be leveraged to bet-
ter control of the substrates used for ferroptosis execution. Using 
this model, we compared side-by-side the sensitization provided by 
α-linolenic acid (αLNN) and γ-linolenic acid (γLNN). Both fatty acids 
have an identical structure in length and number of double bonds lead-
ing to a similar propagation rate constant (kp), yet the position of the 
last double-bond determines the structure of the resulting truncated 
product. Analysis of the lipidomic changes of ACSL4 WT and KO cells 
treated with αLNN and γLNN confirmed that both lipids are directly 
and efficiently esterified into PE, thereby restoring the oxidizable pool 
of PUFA to a similar extent as in WT cells (Extended Data Fig. 10a,b). 

Remarkably, despite their equal abundance and propensity to undergo 
oxidation, γLNN seemed to be a superior ferroptosis-triggering sub-
strate (Extended Data Fig. 10c,d), in line with its potential to generate 
shorter truncated phospholipid products. These results are remark-
able because they indicate that the product formed determines cell 
death rather than solely its propensity to autoxidize. Supporting this 
notion, in-depth epilipidomics analysis indeed detected a substan-
tial accumulation of PE and plasmalogen PE truncated products in 
cells undergoing ferroptosis (Fig. 4a). Notably, cell permeabilization, 
monitored as propidium iodide (PI)-positive cells, was only detect-
able in conditions where an increase in these oxidized and truncated 
species occurred (Fig. 4b). We further showed that Lip1 fully inhibited 
the formation of these species, thus confirming their origin from the 
autocatalytic lipid peroxidation process (Fig. 4a,b). In accordance, 
cells accumulating 7-DHC behaved similarly to Lip1-treated cells and 
the specific oxidation product of 7-DHC, DHCEO, accumulated in these 
cells (Fig. 4b). This demonstrates that 7-DHC is preferentially oxidized 
in cells, thereby sparing phospholipids and preventing the formation 
of oxidized and truncated species (Extended Data Fig. 9i). Support-
ing the proposed mechanism, 7-DHC did not affect permeabilization 
mediated by truncated phospholipid species (Extended Data Fig. 9e). 
Together, these observations provide compelling evidence for the 
role of truncated products in contributing to ferroptosis execution 
and that 7-DHC and other ferroptosis inhibitors such as Lip1, directly 
suppress their formation.

7-DHC accumulation increase cell fitness
Having characterized the molecular underpinnings by which 7-DHC 
prevents ferroptosis execution, we next asked if this protective effect 
could have a potential role in supporting tumour growth under con-
ditions where ferroptosis inhibition is critical. To our initial surprise, 
DHCR7 mutations, despite being rare, have been described in people 
with Burkitt lymphoma (BL), with a reported 9.8% frequency of DHCR7 
mutations as shown by ref. 36. Moreover, a recent report has also identi-
fied rare pathological mutations in DHCR7 in a neuroblastoma cohort37. 
To gain insights into the topology of these mutations, we created a 
model for the DHCR7 structure using an homologous structure (pdb 
id 4QUV, sequence identity 37%, similarity 51%) and identified that 
they are primarily located in the transmembrane domain of DHCR7 
(Fig. 5a). Re-expression of DHCR7-Flag-tagged versions of the seven 
corresponding mutants in the DHCR7-deficient cells allowed us to 
validate these predictions experimentally. Fig. 5b illustrates that, 
except for T93M, N274K and V353fs, all mutations were generally well 
expressed as compared to WT. We then addressed the functionality of 
these mutations: the A24S and L317V mutations seemed to be functional 
when overexpressed as they were able to (1) metabolize 7-DHC when 
overexpressed (Fig. 5c) and (2) to re-sensitize DHCR7-deficient cells 
to ferroptosis akin to the WT enzyme (Fig. 5d). On the other hand, all 
other assayed variants were dysfunctional and failed to metabolize 
7-DHC (Fig. 5c) and were unable to restore sensitivity to ferroptosis 
(Fig. 5d). Further validation of the role of the DHCR7 was pursued by 
demonstrating that 7-DHC accumulation abolished the characteristic 
thiol-dependent growth of BL cell lines in the absence of thiol-donating 
compound (Extended Data Fig. 11a,b).

Next, the contribution of 7-DHC accumulation and tumour growth 
in a series of xenograft models was investigated. Initially, we deleted 
DHCR7 in two different cell lines: BL41 (a Burkitt lymphoma cell line) 
and MM1S (a multiple myeloma cell line). These cell lines showed 
distinct responses to ferroptosis when DHCR7 is deleted; whereas 
BL41 cells showed a significant increase in resistance against GPX4 
inhibitors (Fig. 5e), the protective effect in MM1S cells was negligible 
(Extended Data Fig. 12a,b). Accordingly, when implanted into the tail 
vein of mice, the MM1S xenograft did not show any noticeable behav-
ioural differences, in line with the absence of extra protective effect 
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caused by DHCR7 loss (Extended Data Fig. 12c,d). In striking contrast, 
the DHCR7-deficient BL41 cell line showed a significantly more aggres-
sive phenotype compared to its WT counterpart with marked decrease 
in overall survival of mice (±24 days versus ±60 days) (Fig. 5f–i).

To further substantiate if this effect was attributed to increased resist-
ance to ferroptosis, we performed an independent experiment where 
the growth of BL41 xenografts was compared in mice maintained on 
a selenium-adequate and -deprived diet (Extended Data Fig. 12e–h). 
This model mimics an in vivo ‘ferroptosis-prone’ condition38 by lim-
iting the supply of selenium for the translation of selenoproteins, 
including GPX4 (Extended Data Fig. 12f). Under this proferroptotic 
conditions, an even more pronounced difference in tumour growth 
was observed (Extended Data Fig. 12g), strengthening the notion that 
ferroptosis-sensitive cancer cell lines benefit from the accumula-
tion of 7-DHC and that its accumulation favours tumour growth by 
suppressing ferroptosis. In addition to this model, we also used an 
orthotopic neuroblastoma model (Extended Data Fig. 12i–p) using 
the ferroptosis-sensitive neuroblastoma cell line SK-N-DZ. Deletion 

of DHCR7 in SK-N-DZ cells provided a robust protection against 
GPX4 inhibitors (Extended Data Fig. 12i–l). Orthotopic implantation 
of these cells in the adrenal gland of mice led to a more aggressive 
phenotype, as indicated by the reduced survival of mice implanted 
with DHCR7-deficient cells (Extended Data Fig. 12m,n). Interestingly, 
and in agreement with the reduced survival, analysis of these mice 
showed a massive increase in the incidence of lung metastasis in the 
DHCR7-deficient neuroblastoma group (Extended Data Fig. 12o,p); 
we speculate that ferroptosis-sensitive tumour cell lines, such as 
SK-N-DZ and BL41, benefit from mechanisms that protect against fer-
roptosis in the bloodstream39. Collectively, our data indicate that in 
ferroptosis-sensitive cell lines, the extra survival advantage conferred 
by accumulating 7-DHC promotes a more aggressive phenotype in vivo.

Discussion
Our work introduces and characterizes an unforeseen role for DHCR7 
in modulating ferroptosis. Although many reverse and forward genetic 
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screens have been performed to identify regulators of ferroptosis 
meanwhile, DHCR7 has not consistently emerged as a regulator, unlike 
ACSL4 for example13,40. Possible factors affecting DHCR7 inhibition and 
7-DHC accumulation include defects in the cholesterol biosynthesis 
pathway and the impact of free cholesterol on the mevalonate pathway, 
a notion supported by our results. We now provide a comprehensive 

understanding of the protective role of B-ring-unsaturated sterols 
against phospholipid peroxidation and ferroptosis. Using 7-DHC and 
ergosterol as two representatives of this class of sterols, we show that 
the specific and robust protection against phospholipid peroxidation 
is a feature that is not only limited to mammalian cells but even shared 
between biologically distant organisms.
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shown (g,h). Images in f created with BioRender.com.
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This discovery in itself poses a paradox: a lipid frequently reported 
to propagate radical chain reaction25,41 is capable of suppressing a cell 
death modality known to exclusively depend on these same biochemi-
cal events15,42. Initial studies have firmly established that, in cells under-
going ferroptosis, phospholipids furnished with PUFAs are the prime 
target for oxidation14. We now expand on this concept as we provide 
ample evidence supporting their role in ferroptosis execution through 
the formation of membrane destabilizing truncated phospholipid 
species. These observations thus imply that lipid peroxidation can be 
uncoupled from cell death as only products of phospholipid peroxida-
tion generate efficient ferroptosis-inducing metabolites. By having 
established this interrelationship, these seemingly paradoxical findings 
can now be rationalized. Molecules able to suppress the peroxidation 
of fatty acids esterified into phospholipid species need to efficiently 
outcompete PUFAs during lipid peroxidation and stabilize radical chain 
propagating species. Mechanistically, in isotropic solution, PUFAs have 
reported propagation rate constants (kp) ranging from 62 in linoleic 
acid up to 197 M−1 s−1 for AA both of which can be easily outcompeted by 
7-DHC given its extremely high (kp) of 2,260 M−1 s−1. This renders 7-DHC 
a superior phospholipid shield when compared to other sterols (choles-
terol (kp) = 11 and lathosterol (kp) = 57 M−1 s−1). Despite 7-DHC and other 
B-ring-unsaturated sterols being principal contributors and targets of 
lipid peroxidation, radicals derived from these sterol metabolites are 
poor inducers of cell death, unlike radicals in phospholipids that can 
give rise to membrane-destabilizing truncated species.

Together with the accompanying paper20, we demonstrate that this 
process can be exploited to suppress ferroptosis in different settings. 
Specifically, inspired by the report that rare mutations in DHCR7 have 
been reported in both BL and NB patients, we demonstrate that the 
accumulation of 7-DHC can lead to a more aggressive phenotype in 
xenograft models relevant to both entities, thus presenting a potential 
compensatory mechanism for their intrinsic sensitivity to ferroptosis. 
This recognition could be relevant as recent reports have indicated that 
amplification of MYC and MYCN increase sensitivity to ferroptosis43–46 
and extra mechanism preventing ferroptosis in these oncogenic con-
texts could enhance cancer cell fitness. The ferroptosis-modulating 
activity of 7-DHC raises another noteworthy aspect; several recent 
screening studies have identified a series of FDA-approved drugs able to 
inhibit DHCR7 at nM concentrations47. For example, Trazodone which 
is prescribed more than 20 million times a year in the United States, 
sometimes off-label as a sleep aid and studies of patients on this drug 
have reported increased plasma concentrations of 7-DHC48. Epidemio-
logical studies will be required to explore whether there are any groups 
of patients that regularly consume ferroptosis-modulating drugs and 
whether this has any impact on cancer incidence, metastasis occurrence 
or other public health-relevant aspects.

Interestingly, higher organisms seem to have shifted away from this 
strategy. Specifically, DHCR7-like enzymes convert 5,7-unsaturated 
sterols to the less autoxidizable sterols, such as cholesterol, thus keep-
ing the concentration of B-ring unsaturated sterols low. The replace-
ment of 7-DHC with cholesterol in humans offers clear benefits; this is 
documented by the causative role of DHCR7 mutations and the devel-
opmental syndrome known as Smith–Lemli–Opitz syndrome (SLOS). 
This syndrome is characterized by varying levels of neurodevelop-
mental defects depending on the severity of the mutation. However, 
our findings reveal a paradoxical aspect. Whereas previous studies 
have shown that oxidation products of 7-DHC are toxic to neuronal 
cells3 and can suppress key (neuro)developmental pathways like the 
Wnt/β-catenin49 and Hedgehog50 signal pathways, our study presents 
a contrasting perspective. We have observed the accumulation of 
7-DHC oxidation formed during the process of preventing phospho-
lipid peroxidation in cancer cells exposed to oxidants, such as condi-
tions that induce ferroptosis. These findings emphasize the complex 
and context-dependent nature of 7-DHC and its oxidation products in 
different cellular contexts.
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Ultimately, the mechanisms described here shed light in an unrecog-
nized and primitive tolerance mechanism toward phospholipid peroxi-
dation that could be highjacked by cancer cells to evade ferroptosis.

Online content
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Extended Data Fig. 1 | Lipidomic characterization of DHCR7-deficient  
cells. a, Lipidomics analysis of HT1080 cells expressing a Cas9 containing 
lentiviral vector co-expressing sgRNA targeting DHCR7 or EGFP as a control. 
Represented are the total amount of PE containing PUFA and the ratio of  
mono- to polyunsaturated fatty acids (MUFA/PUFA) in PE species. Data are 

represented as mean values ± s.d. of n = 3 technical replicates (from 10 cm  
plate) performed once. b, Fatty acid composition of PE species in the indicate 
cell lines. Data are representative of mean values ± s.d. of n = 3 technical 
replicates (6 cm plate) performed twice. c, Principal component analysis of  
PE composition data.



Extended Data Fig. 2 | DHCR7 deficiency impact on ferroptosis and other 
cell death modalities. a and b, Dose-dependent toxicity of RSL3 and FIN56 in 
DHCR7-Knockout clonal cell lines generated in the HT1080 (a) and PFa1 (b) cell 
lines. c, Levels of 7-DHC in MDA-MB-435 parental lines untreated and treated 
with a DHCR7 inhibitor (RB38 [500 nM]) and three independent DHCR7-KO 
clones. Data are represented as mean values ± s.d. of n = 2 technical replicates 

(from 10 cm plate) performed once. d, Dose-dependent toxicity of RSL3, FIN56, 
ML210, Erastin, Atheronal, Brefeldin-A, PLX-4032, Carfilzomib, TBOOH, 
Auranofin; Bortezomib and Docetaxel in MDA-MB-435 parental cells and the 
three DHCR7 knockout clones. Cell viability was assessed after 48 h using 
Alamar blue and data are representative of mean ± s.d. of n = 3 technical 
replicates of 2 independent experiments.
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Extended Data Fig. 3 | See next page for caption.



Extended Data Fig. 3 | Characterization of HT1080 DHCR7-deficient clonal 
cell line. a, Graphical representation of the strategy used to generate DHCR7-
deficient cells with defined genomic alterations. b, Representative PCR of the 
pools and single clones derived thereof. c, Schematic representation of the 
sequencing results obtained from the PCR product (in blue) covering the 
edited region (in red) in comparison with the wild-type product. d, Sequencing 
chromatogram obtained from the edited allele. e, Relative quantification of 
7-DHC and levels of Cholesterol in HT1080 Cas9 WT, DHCR7-Knockout clone 
(DHCR7-KO) and the corresponding DHCR7-KO reconstituted with an empty 

lentiviral vector (mock) or overexpressing DHCR7. Data are the mean ± s.d. of 
n = 3 wells of a 6-well plate from one representative experiment. f, Dose-
dependent toxicity of RSL3 and FIN56 in HT1080 Cas9 DHCR7-KO clone and 
overexpressing DHCR7 or mock. g, Dose-dependent toxicity of ML210, Erastin, 
Carfilzomib, TBOOH, Atheronal B, Brefeldin-A, Auranofin and Docetaxel in 
HT1080 Cas9 DHCR7-KO clone transduced with a mock or a DHCR7 expressing 
vector. Cell viability was assessed after 48 h using Alamar blue and data are 
representative of mean ± s.d. of n = 3 technical replicates 2 independent 
experiments. *p < 0.05; two-way ANOVA (e, f).
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Extended Data Fig. 4 | See next page for caption.



Extended Data Fig. 4 | Impact of 7-DHC accumulation on ferroptosis.  
a, Schematic depiction of cholesterol biosynthesis, highlighting the 
pharmacological targets of the enzymes used in the present work. b, Dose-
dependent toxicity of RSL3 in DHCR7 WT and knockout HT1080 cells in the 
presence of pharmacological agents modulating cholesterol biosynthesis. 
Concentrations for the different inhibitors are: atorvastatin [1 µM], Amorolfine 
[500 nM], Tasin-1 [500 nM], Tamoxifen [1 µM] and RB38 [500 nM]. c, Dose-
dependent toxicity of Paclitaxel and Auranofin in HT1080 Cas9 DHCR7/SC5D 
knockout transduced with SC5D and/or DHCR7. d, Effect of sterols and squalene 
supplementation (10 µM) on RSL3 toxicity in cell expressing a control and two 
independent sgRNA targeting DHCR7. e, Effect of sterol supplementation on a 

genetic model of Gpx4 deficiency, i.e Pfa1 cells treated with TAM. f, Impact of 
exogenous free cholesterol and ent-cholesterol on the sensitivity of DHCR7-
deficient cells to GPX4 inhibitors. g, Relative quantification of 7-DHC and 
Cholesterol levels in DHCR7-deficient cells treated with cholesterol and ent-
cholesterol (8 µM). h, 7-DHC levels in HT1080 Cas9 DHCR7-KO clone and pool 
of HT1080 expressing two independent sgRNA targeting DHCR7 treated with 
Cholesterol (5 µM). Data are representative data of mean ± s.d. of n = 3 technical 
replicate of a 96-well plate (b-f) or 6-well (g, h) performed twice. Cell viability 
was assessed after 48 h (b-d) or 72 h (e, f) using Alamar blue and data are 
representative of mean ± s.d. of n = 3 technical replicates (96-well plate) 
performed three times.
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Extended Data Fig. 5 | See next page for caption.



Extended Data Fig. 5 | Influence of cholesterol low conditions on the 
antiferroptotic activity of the 7-DHC/DHCR7 axis. a, Quantification of 
cholesterol in FBS samples treated with fumed silica (20 g/L). Results are 
representative of one batch preparation used throughout this experiments.  
b, Relative quantification of 7-DHC and Cholesterol levels in HT1080 cells 
expressing a control and a DHCR7 targeting sgRNA grown in normal and 
delipidated FBS (dlFBS). c, Assessment of the response to RSL3 of DHCR7-
deficient and proficent cells in FBS and dlFBS containing the indicated 
metabolites. d, Immunoblot analysis of ferroptosis regulators, FSP1, ACSL4 
and GPX4 in cells grown in FBS and dlFBS. e, Immunoblot analysis of LRP8 and 
GPX4 in the indicated cell lines grown in FBS and dlFBS in the presence of the 
specified sterols (10 µM, 48 h). f, Total quantification of selenium by ICP-MS in 

FBS and dlFBS. g, Strategy and validation of LDLR-A375 KO cell lines using 
primers specifics for the LDLR transcript. h, Assessment of SREBP2 target 
genes (DHCR7, HMGR, MSMO1 and MVK) in LDLR proficient and deficient cells. 
i, Immunoblot of LRP8 and GPX4 in the indicated cell lines. j, Assessment of 
uptake capacity of fluorescently labelled LDL in LDLR proficient and deficient 
cells. Visualization ( j) and quantification of LDL (k) or cholesterol upon Tasin-1 
(500 nM) treatment for 48 h (l) in LDLR proficient and deficient cells. m, Effect 
of LDLR loss on ferroptosis induction (ML210 + 2 µM iFSP1) in RB38 (500 nM) 
and Tasin-1 (500 nM) treated cells. Data are representative of mean ± s.d. of 
n = 2 (f, g), n = 3 (b, c, l, m), n = 4 (h) or n = 12 (k) technical replicates of a 96-well 
plate (c, m, j, k) or 6-well plate (b, g, h, l, m) performed twice. Cell viability was 
assessed after 72 h using Alamar blue (c, m).
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Extended Data Fig. 6 | Role of B-ring unsaturated sterol in ferroptosis.  
a, Chemical structure of 7-DHC and ergosterol highlighting the conjugated 
double-bond. b, Effect of sterols and squalene supplementation (5 µM) on 
RSL3-induced cell death in the HT1080 cell line. Cell viability was assessed after 
48 h using Alamar blue, data are representative of mean ± s.d. of n = 3 technical 

replicates from one representative of 2 independent experiments. c, Schematic 
representation of the ergosterol biosynthesis pathway in S. cerevisae, highlighting 
the major products reported to accumulate in these strains. d, Spot dilutions of 
the indicated strains of S. cerevisiae treated with the designated PUFAs (50 µM).



Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Impact and consequence of 7-DHC on phospholipid 
peroxidation. a, Rate of initiation (Ri) in each soy PC liposome composition.  
b, Dynamic light scattering assessment of the impact of different sterols on the 
integrity of liposomes c, Scheme of the formation of PLPC-OOH, DLPC-OOH 
and DLPC-2OOH during autoxidation of soy PC that can be analysed by LC-MS/
MS using MRM. d, The resulting profiles of PLPC-OOH, DLPC-OOH and DLPC-
2OOH formation over time (integrations are relative to an internal standard 
(prostaglandin B2). e, Calculated rates from linear regression of the data 
related to d. f, Representative UV-Vis spectra obtained from a sample of soy PC 
with 8 mol% 7-DHC during autoxidation. Spectra were processed by subtracting 
the background trace of vehicle liposomes immediately after the addition of 
DTUN. Loss of 7-DHC was plotted from the 294 nm peak (inset) with concentrations 
determined from a standard curve from liposomes prepared with soy PC with 

inhibitor and added 7-DHC (see Supporting Information). g, Standard curve  
for 7-DHC prepared in either 95% EtOH or in soy PC liposomes with inhibitor.  
h, Time course of iron/ascorbate mediated oxidation of Egg-PC and sterol 
consumption in liposomes containing cholesterol, lathosterol or 7-DHC 
monitored via HPLC-UV detection (235 nm for PCOOH, 205 nm for cholesterol 
and lathosterol and 275 nm for 7-DHC). i, Quantification of 7-DHC and 
secondary oxidation products of 7-DHC in HT1080 SC5D/DHCR7 knockout 
cells expressing empty vector (black) and SC5D (red) upon 200 nM RSL3 with 
and without 500 nM Lip1 (6 h). Data are the mean ± s.d of n = 6 wells of a 10 cm 
plate from two independent experiments, *p < 0.05 two-way ANOVA (i). Each 
reaction (b, d, e, f, h) was repeated three times and is reported as the mean ± s.d 
for the kinetic plot (d) or error propagation from the slopes of d derived from 
linear regression.



Extended Data Fig. 8 | Impact of ferroptosis inhibitors on oxidant mediated 
liposomal rupture. a, Schematic representation of the CF/liposome assay 
used to monitor vesicle permeability. b, CF release from CF encapsulated 
liposomes generated using different sterols. CF release was stimulated using a 
mixture of iron and ascorbate (10 µM and 100 µM respectively). c, Impact of 
Lip1 on CF release from CF encapsulated liposomes containing cholesterol or 

7-DHC. d, CF release in vesicles containing different ferroptosis inhibitors 
(10 µM) stimulated using a mixture of iron and ascorbate (20 µM and 200 µM 
respectively) in the absence (left panel) or in the presence of Ferrostatin-1  
(Fer-1; right panel). Data are representative of mean ± s.d. of n = 3 technical 
replicates of 2 independent experiments.
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Extended Data Fig. 9 | See next page for caption.



Extended Data Fig. 9 | Role of truncated phospholipid in membrane 
permeability. a, Structure of selected truncated PC and related molecules 
tested. b Impact of native, peroxidised and truncated PC species in CF 
permeabilization. c, CF release in liposomes treated with different PC 
truncated species in a time and dose-dependent manner. d, Cell death 
induction by different PC truncated species in HT1080 cells in a time and dose-
dependent manner. e, C50 of different truncated PL on CF release from 
liposomes containing 7-DHC or cholesterol. f, Schematic representation for 
the chemical basis of the PhotoPC probe: photoactivation leads to the 
generation of a defined mixture between the oxidized derivative PhotoOx-PC 

and the truncated derivative PhotoTrunc-PC. g, CF release in liposomes treated 
with PhotoPC before and after photoactivation in response to dose (fixed 1 h 
exposure) and time (fixed 365 µM). h, assessment of cell death (Draq7 positive) 
induced by equimolar concentrations of PhotoPC and PhotoTrunc-PC in 
HT1080 cells. Data are the mean ± s.d. of n = 6 wells of a 96-well plate from one 
representative of two independent experiments. i, Schematic representations 
of the events leading to the formation of truncated phospholipid species of 
formation of oxidatively truncated (phospho)lipid species and 7-DHC impact 
on it. Proferroptotic players are depicted in red and suppressing events are 
depicted in green.
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Extended Data Fig. 10 | Conjugation at the omega position affects 
ferroptosis sensitivity. a, Lipidomics analysis of WT and ACSL4 KO HT1080 
cell lines incubated for 16 h with αLNN and γLNN (20 µM). Presented are the 
total amount of PE containing PUFA and the ratio of mono- to polyunsaturated 
fatty acids (MUFA/PUFA) in PE species. Mean values ± s.d. of n = 3 technical 
replicates (10 cm plate) performed twice. b, Fatty acid composition of PE 
species in WT and ACSL4 KO HT1080 cell lines incubated for 16 h with αLNN and 
γLNN (20 µM). Mean values ± s.d. of n = 3 technical replicates (10 cm plate) 

performed twice. c, Assessment of the impact of αLNN and γLNN [20 µM] 
re-senitization on RSL3-induced ferroptosis. Cell viability was assessed after 
24 h measuring PI incorporation. Mean values ± s.d. of n = 3 technical replicates 
(6 cm plate) performed twice are presented. d. Dose-dependent effect of 
α-LNN and γ-LNN on RSL3 mediated toxicity in HT1080 ACSL4 KO cell lines. 
Data are the mean ± s.d. of n = 6 wells of a 96-well plate from one representative 
of two independent experiments. *p < 0.05; two-way ANOVA.



Extended Data Fig. 11 | Impact of 7-DHC accumulation on BL growth.  
a, Impact of selected pharmacological inhibitors of DHCR7 (RB38) and Lip1 on 
Multiple Myeloma cell line OPM2 and the BL cell lines RAMOS, BL02 and BL30 

grown in the absence of thiols and pyruvate. b, Relative quantification of 7-DHC 
and cholesterol levels in cell lines treated with RB38 and Tasin-1. Data are the 
mean ± s.d. of n = 3 wells, of a 6-well plate from one representative experiment.
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Extended Data Fig. 12 | See next page for caption.



Extended Data Fig. 12 | Impact of DHCR7 loss in vivo. a, Immunoblot for 
DHCR7 in MM1S cells DHCR7-proficient and deficient. Representative of n = 2. 
b, Dose-dependent toxicity of ML210 in DHCR7WT or DHCR7KO in the presence 
of indicated treatments. c, Tumour growth upon implantation of MM1S 
DHCR7WT (n = 10) or DHCR7KO (n = 10). Data are mean ± SEM; p value n.s., Mann–
Whitney test one-tailed. In each box, horizontal lines denote mean values, while 
the box contains the 25th to 75th percentiles of dataset and whiskers mark the 
5th and 95th percentiles. d, Representative luminescence images of mice from 
c. e, Schematic of tail vein injection of DHCR7WT (n = 5) or DHCR7KO (n = 5) BL41 
cell in mice under selenium-adequate or -deprived diet. f, Immunoblot for GPX4 
from tissues of animals related to e. g, Kaplan–Meier plot displaying tumour-
free survival (TFS) for mice injected with DHCR7WT (n = 5) or DHCR7KO (n = 5) 
BL41 cells. Data represent the mean ± s.e.m.; Mann–Whitney test one-tailed;  
A Log-rank (Mantel–Cox) test was conducted for statistical analysis, p values 
are indicated. h, Luminescence images related to g. i, Immunoblot for DHCR7  
in SK-N-DZ DHCR7KO and DHCR7WT. j, Relative quantification of cholesterol  
and 7-DHC levels in SK-N-DZ cells treated with RB38 and Tasin-1. Data are the 
mean ± s.d. of n = 3 wells from one representative experiment. k, Dose-

dependent toxicity of ML210 in the indicated cells. l, Flow cytometry analysis of 
BODIPY 581/591 C11 oxidation in SK-N-DZ cells induced by RSL3 treatment 
([100 nM], 3 h) and Lip1 500 nM. m, Schematic representation illustrates an 
orthotopic mouse model created by transplanting DHCR7WT or DHCR7KO SK-N-
DZ cells into the right adrenal gland of NSG mice. n, Kaplan- Meier plot 
displaying TFS for mice injected orthotopically with DHCR7WT (blue, n = 6) or 
DHCR7KO (red, n = 9) SK-N-DZ cells; *p < 0.05, A Log-rank (Mantel–Cox) test was 
conducted for statistical analysis. o, Lung colonization was evaluated (left 
panel) in mice orthotopically transplanted with SK-N-DZ neuroblastoma  
cells, with DHCR7WT (red, n = 6) or DHCR7KO (blue, n = 9), using ex vivo lung 
bioluminescence analysis (right panel);. p, Representative examples of 
evidence of metastases from o (indicated by green circle lines), determined  
by Hematoxylin and Eosin staining from samples of n. Scale bar: 500 µM. Cell 
viabilities were assessed after 72 h using Alamar blue, data are mean ±s.d. of 
n = 3 replicates from one representative of three independent experiments  
(b, k). RB38 (500 nM) and Tasin-1 (500 nM) (b, j, k). Panels created with 
BioRender.com (e, m).
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Ethics oversight Animal studies were in compliance with German Cancer Center Institute guidelines and approved by the district government of lower 
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Methodology

Sample preparation 100,000 cells per well were seeded on 6-well dishes (Sarstedt) one day prior to the experiment in the presence of the tested 
lipid. On the next day, cells were washed and treated with the indicated concentration of RSL3 to induce ferroptosis. Cells 
were subsequently incubated with C11-BODIPY (581/591) (1 μM) for 20 min at 37°C before they were harvested by 
trypsinisation. Subsequently, cells were resuspended in 500 μL of fresh PBS (DPBS, Gibco) and analysed using an excitation of 
488-nm (FACS Canto II, BD Biosciences). Data was collected from the FL1 detector (C11-BODIPY) with a 502LP and 530/30 BP 
filter. At least 10,000 events were analysed per sample. Data was analysed using FlowJo Software.

Instrument FACS Canto II

Software For data collection the BF Bioscience was used. 
For data analysis Flowing software was used.

Cell population abundance The abundance of the desired cell population in post-sort fractions was generally > 96% of the total post-sort population. 

Gating strategy Live cell population were separated from cellular debris and dead cells using FSC/SSC.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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