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Abstract Backgrounds and aims:
The functioning of temperate forests may change dramatically in the future due to more extreme
precipitation events. In contrast to drought effects, little is known about the reaction of soil fungi to
rewatering. We studied soil fungal communities and soil enzymatic activities over a period of 3 months
following rewatering after 5 years of experimental drought.
Results:
The most pronounced changes compared to the drought phase occurred early after rewatering in the
beech root zone and were mainly attributed to litter decomposers. In the spruce zone, the relative
abundance of ectomycorrhizal fungi (ECMf) was lower during the initial phase of response to rewatering
but approached control levels after 3 months. The previous drought treatment was influencing the
structure of the saprotrophic fungal community (SAPf) more than that of the ECMf community during
rewatering. The composition of the SAPf community was associated with changes in nitrogen (mineral
nitrogen: control 2.86, rewatering = 1.53), while that of the ECMf community was associated with the
soil water content (control = 26%, and rewatering = 22%). Soil enzyme activities were positively
correlated with the diversity and composition of SAPf communities, especially in previously drought-



treated plots. In beech and mixed root zones, plant cell wall-degrading enzyme activities were elevated in
rewatered plots compared with control plots, while in spruce, only cellobiohydrolase and β-glucosidase
were elevated.
Conclusion:
Structural changes within SAPf communities associated with nitrogen dynamics correlated with
enzymatic activity in response to rewatering. A low responsiveness of fungal community composition in
the mixed root zone suggests its buffering capacity against fluctuating soil moisture conditions.

Keywords (separated by '-') Forest soil fungi - Soil enzyme activities - Norway spruce - European beech - Mixed interaction -
Experimental drought - Rewatering
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in the beech root zone and were mainly attributed to 
litter decomposers. In the spruce zone, the relative 
abundance of ectomycorrhizal fungi (ECMf) was 
lower during the initial phase of response to rewa-
tering but approached control levels after 3  months. 
The previous drought treatment was influencing 
the structure of the saprotrophic fungal community 
(SAPf) more than that of the ECMf community dur-
ing rewatering. The composition of the SAPf commu-
nity was associated with changes in nitrogen (mineral 
nitrogen: control 2.86, rewatering = 1.53), while that 
of the ECMf community was associated with the soil 
water content (control = 26%, and rewatering = 22%). 
Soil enzyme activities were positively correlated with 
the diversity and composition of SAPf communi-
ties, especially in previously drought-treated plots. In 

Abstract 
Backgrounds and aims  The functioning of temper-
ate forests may change dramatically in the future due 
to more extreme precipitation events. In contrast to 
drought effects, little is known about the reaction of 
soil fungi to rewatering. We studied soil fungal com-
munities and soil enzymatic activities over a period of 
3 months following rewatering after 5 years of experi-
mental drought.
Results  The most pronounced changes compared 
to the drought phase occurred early after rewatering 
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beech and mixed root zones, plant cell wall-degrading 
enzyme activities were elevated in rewatered plots 
compared with control plots, while in spruce, only 
cellobiohydrolase and β-glucosidase were elevated.
Conclusion  Structural changes within SAPf com-
munities associated with nitrogen dynamics cor-
related with enzymatic activity in response to rewa-
tering. A low responsiveness of fungal community 
composition in the mixed root zone suggests its 
buffering capacity against fluctuating soil moisture 
conditions.

Keywords  Forest soil fungi · Soil enzyme 
activities · Norway spruce · European beech · Mixed 
interaction · Experimental drought · Rewatering

Introduction

Many forest ecosystems in Europe are at risk because 
of the predicted highly variable precipitation and 
temperature regimes (Sherwood and Fu 2014; IPCC 
2021). Few studies on forest tree drought have 
included the recovery process after drought and 
the mechanisms employed by different tree species 
(Arend et  al. 2022; Hikino et  al. 2022; Grams et  al. 
2021). The two dominant forest tree species in Cen-
tral Europe, Norway spruce (Picea abies [L.] Karst) 
and European beech (Fagus sylvatica [L.]) are con-
sidered vulnerable to drought (Pretzsch et  al. 2014, 
2020; Leuschner 2020). However, both tree species 
often grow better in mixed stands than in monocul-
tures (cf. Pretzsch et al. 2020). In the case of spruce 
and beech, positive mixture effects have been attrib-
uted to the overall beneficial trait complementarity 
of both tree species, such as differences in the sea-
sonality of water use (Allen et al. 2019), litter types 
(Berger and Berger 2012), rooting depths (Zapater 
et  al. 2011), and fine root growth (Nikolova et  al. 
2020). A higher diversity of niches resulting from this 
complex trait diversity also influences the composi-
tion and functional roles of soil fungal communities 
(Asplund et al. 2018, 2019).

Under soil drought, the relative abundance of fun-
gal functional groups is changed (Ekblad et al. 2013), 
and soil saprotrophic fungi (SAPf) are more affected 
than ectomycorrhizal fungi (ECMf) (Castaño et  al. 
2018). SAPf are particularily exposed to changes 
in the soil physicochemical environment, and their 

performance under drought conditions depends on 
the specific response of fungal species (Schimel et al. 
2007). In addition to environmental factors, the com-
position of forest soil fungal communities is largely 
driven by tree species (Tedersoo et  al. 2016). Thus, 
soil fungal community composition may be indirectly 
affected by tree species-specific reactions to soil 
drought (Buscardo et al. 2021; Baldrian et al. 2023), 
i.e., adapted root growth (Nikolova 2008; Nikolova 
et al. 2020), changes in root exudation (Brunn et al. 
2022), regulation of water use (isohydric vs. anisohy-
dric, Hesse et al. 2022; Ulrich and Grossiord 2023), 
hydraulic redistribution (Pretzsch et al. 2014; Zapater 
et  al. 2011), and increased amounts of root and leaf 
litter (Landesman and Dighton 2011). In contrast to 
predominantly soil living and litter associated SAPf, 
ECMf are physically and physiologically connected 
to their host tree and thus particularly depend on 
the tree species-specific fine root reaction to drought 
(Lehto and Zwiazek 2011). This may also apply for 
root endophytic fungi and saprotophic fungi with 
a secondary root associated life style. ECMf form 
mutualistic symbioses with tree fine roots, includ-
ing species of Pinaceae and Fagales (Smith and Read 
2010). ECMf are taxonomically diverse (Tedersoo 
et  al. 2010), but can be classified morphologically 
into different exploration types as long-, medium-, 
contact types (Agerer 2001). This classification 
accounts for the different extents the soil volume 
can be exploited by mycorrhizal roots through their 
extramatrical hyphae at different distances depending 
on the exploration type (Agerer 2001). It is discussed 
that long-distance exploration type ECMf have access 
to root-unaccessible water and thus support the tree 
drought survival (Lamhamedi et  al. 1992). How-
ever, the observation of an ambiguous trend or even 
an increase in exploration types characterized by a 
lower biomass of extramatrical mycelium in the soil 
under drought conditions (Barnes et al. 2018; Castaño 
et al. 2018, Köhler et al. 2018) may indicate that an 
increase in the abundance of ECMf forming the long-
distance exploration type under drought conditions 
may occur with a concomitant increase in photosyn-
thetic efficiency, allowing the maintenance of myce-
lium that requires an increased supply of C (Castaño 
et al. 2023)..

Spruce and beech trees have been studied for their 
fine root growth under single and repeated droughts 
(Nikolova 2008; Nikolova et al. 2020; Zwetsloot and 
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Bauerle 2021). Under lasting severe drought, spruce 
fine roots become suberized and stay alive in a state 
of dormancy, while beech fine roots are subject to 
constant renewal under drought but with a short life 
span and fast turnover (Nikolova 2008; Nikolova 
et al. 2020). This is thought to allow ECMf to colo-
nize newly formed beech fine roots, while suberiza-
tion of spruce fine roots and a very limited formation 
of new fine roots over longer drought periods may 
hinder recolonization (Sharda and Koide 2008). Upon 
rewatering, a faster regeneration of ectomycorrhizae 
with a smaller extramatrical mycelium (Tedersoo and 
Smith 2013) may also influence the composition of 
ECMf communities in soil. However, ECMf com-
munities on fine roots showed little response closely 
associated with tree species-specific response patterns 
related to root survival and recovery (Danzberger 
et al. 2023).

Drought causes changes in the physical and 
chemical conditions in soils and strongly reduces 
soil microbial activities (Castaño et  al. 2018) result-
ing in low soil respiration and decreased extracellu-
lar enzyme activities (Baldrian et  al. 2010; Brockett 
et  al. 2012). This leads to an accumulation of litter 
(Landesman and Dighton 2011) and nutrients, e.g., 
nitrogen, in the soil (Schimel et  al. 2007), which in 
turn further influence fungal community composi-
tion (Högberg et  al. 2003). Soil fungal communities 
play an integral functional role in forest soil nutrient 
cycling (Lindahl and Tunlid 2015), and SAPf are the 
main decomposers of dead organic materials such 
as leaf litter and wood in forest soils (Talbot et  al. 
2013; Asplund et  al. 2018). SAPf are characterized 
by their high genetic potential for enzymatic decom-
position (Baldrian 2017) in contrast to ECMf (Lin-
dahl and Tunlid 2015). Enzymes, being responsible 
for acquisition of the three main nutrients carbon, 
nitrogen, and phosphorus respond differently to the 
same degree of soil moisture reduction (Sardans and 
Peñuelas 2005). The activity of soil enzymes, even of 
the same enzyme, in response to precipiation can be 
significantly modified by the plant species (Kreyling 
et  al. 2008; Zhou et  al. 2013). The composition and 
functional changes of soil microbial communities as 
well as activities of extracellular soil enzymes may be 
driven by the changes in soil moisture, microclimate 
and plant root exudates (Puissant et al. 2015). Thus, 
soil biological feedback is dependent also on the reac-
tion of plants upon drought variables.

Upon rewatering, physicochemical conditions in 
soils change abruptly with different reaction pat-
terns of soil microbial communities (Fierer et  al. 
2021). While soil bacterial biomass increased 
within hours, soil fungal biomass did not change 
over weeks in a pine forest (Landesman and 
Dighton 2011). In a recent study, Joseph et  al. 
(2020) showed that even small additions of water in 
a dry Scots pine forest led to a regain of rhizosphere 
microbial activity. Although the structural and func-
tional dynamics of changes in soil fungal commu-
nities in response to rewatering have been poorly 
understood, there has been even less understanding 
of how this is related to soil enzyme activity, par-
ticularly upon influence of different tree species. At 
the Kranzberg roof (KROOF) experimental forest 
site, controlled rewatering after 5 years of summer 
rain exclusion revealed a faster recovery of beech 
than spruce (Grams et al. 2021).

Here, we focused on the dynamics of soil fun-
gal communities during the 3-month period after 
controlled rewatering in the KROOF experiment. 
We examined how changes in soil abiotic condi-
tion (the soil water and nitrogen content) may drive 
the composition of the soil fungal community and 
connected with them the soil enzymes involved in 
nutrient cycling in monospecific and two species 
mixed root zones (beech and spruce) to each other. 
Because of the stronger soil influence on SAPf than 
ECMf, we hypothesized the following:

H1: SAPf communities are more responsive than 
ECMf communities to rewatering due to a change 
in abiotic soil conditions that is faster than the 
speed of root regeneration; rewatering will favor 
contact exploration type ECMf.
H2: The response of soil fungal communities 
will be modified by the root interaction zones; in 
particular, fungal community composition (taxo-
nomic and functional groups) will more quickly 
resemble controls in the mixed root zone than in 
the monospecific root zones.
H3: Changes in soil enzyme activities reflect 
changes in the SAPf community composition and 
are more pronounced in monospecific zones than 
in mixed zones due to greater changes in abiotic 
factors.
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Material and methods

Research site and sampling

The experimental “Kranzberg Forest” site is located 
in Southern Germany (11°39,042″E, 48°25012″N; 
490  m a.s.l.) with an average annual precipitation 
of 750–800  mm and a mean annual air temperature 
of 7.8  °C (1971–2000) (Pretzsch et  al. 2014). The 
experiment was set up in a mature stand with Nor-
way spruce (P. abies (L.) Karst.) and European beech 
(F. sylvatica L.) grown in luvisol originating from 
loess over Tertiary sediments (for more details, see 
Grams et  al. 2021). In 2011, 12 plots with a size of 
111–199 m2 were established. A thick plastic tarp 
was installed in 1  m deep trenches to avoid lateral 
water flow (Grams et  al. 2021). Each plot contained 
at least three beech and three spruce trees, leading to 
three tree root zones: mainly intraspecific root contact 
with beech or spruce and interspecific root contact 
of both tree species (Mix). Six plots served as con-
trols receiving ambient precipitation, and six plots 
were assigned to throughfall exclusion using retract-
able roofs below the canopy to exclude precipita-
tion during the vegetation period (March-November) 
from 2014–2018. Control and rewatering plots were 
arranged pairwise next to each other across the exper-
imental site. Temperature on site was measured every 
10 min at 2 m height, and volumetric soil water con-
tent was recorded by time-domain reflectometer sen-
sors on each plot and in each tree root zone (Grams 
et al. 2021).

In 2015, two rewatering plots and the neighboring 
control plots were excluded from the study because 
spruces were felled after bark beetle infestation. In 
early summer 2019, the remaining four rewatering 
plots were watered by drip irrigation to attain the 
soil water content of the control plots (“rewatering”) 
(Grams et  al. 2021). Watering of the plots was per-
formed in three campaigns within 4  weeks, as the 
intensive sampling and sample processing activities 
did not allow to water all plots at the same time. In 
each campaign, soil samples were collected 7 days (d) 
before (-7 d) and after irrigation at 7 d, 18 d, 42 d, and 
84 d. On each sampling date, 10 soil cores (diameter 
1.4 cm, 25 cm depth) were taken from each tree root 
zone on each plot, and the upper organic-rich layer, 
visible by a dark color, with a depth of 0–10  cm. 
was pooled. The samples were homogenized at the 

sampling site. The soil cores were pooled before filled 
in the bag and then the soil subsample were taken for 
the further analysis. Subsamples designated for the 
enzyme activity test and DNA analyses were retrieved 
from each such soil sample, avoiding roots and par-
ticles > 2  mm in diameter. These soil samples were 
placed on dry ice within 30 min and frozen at -80 °C 
until further processing. In addition, 3  g and 5  g of 
fresh soil were weighed into 50 mL plastic tubes to 
determine the gravimetric water content and nitro-
gen content, respectively. In summary, the sampling 
included 2 treatments × 4 plots × 3 tree root zones × 5 
time points, resulting in a total of 120 samples, giving 
4 replicates of each treatment.

Soil enzyme analysis

Soil samples were thawed and allowed to adapt for 
1  day at 6  °C prior to analyses. A total of 400  mg 
of soil was mixed with 40 ml of distilled water and 
shaken vigorously first for 10 s by hand and then for 
15  min on an overhead shaker at room temperature 
at 100  rpm. The soil suspension was ultra-sonicated 
in an ice water bath for 3 min and filtered through a 
90 μm nylon mesh to remove coarse particles, and fil-
trates were immediately used for enzyme assays. 3 g 
of the same soil sample were used to determine the 
soil dry matter in each sample.

Soil enzyme activities were determined using 
methylumbelliferone (MU) labeled substrates 
(Sigma‒Aldrich Chemicals, Germany) as described 
in Pritsch et al. (2005), and with the following modi-
fications of substrate concentrations and incuba-
tion times: 750  µM 4‐MU‐β‐d‐xylopyranoside for 
xylosidase (xyl, EC 3.2.1.37) and 120 min; 750 µM 
4‐MU‐β‐d d‐glucuronide hydrate for glucuronidase 
(glr, EC 3.2.1.31) and 120 min; 300 µM 4‐MU‐β‐d‐
cellobioside for cellobiohydrolase (cbh, EC 3.2.1.91) 
and 20  h; 750  µM 4‐MU‐N‐acetyl‐β‐glucosaminide 
for N‐acetyl‐glucosaminidase (nag, EC 3.2.1.14) 
and 120  min; 600  µM 4‐MU‐β‐d‐glucopyranoside 
for β‐glucosidase (gls, EC 3.2.1.3) and 120 min; and 
1200 µM 4‐MU‐phosphate for phosphatase (pho, EC 
3.1.3.2) and 30 min. The 100 μL of labeled substrate 
was mixed with 50 μL of soil suspension (three tech-
nical replicates per sample). The enzymatic reaction 
was stopped with 100 μL of 1 M Tris, pH > 10 (Pritsch 
et  al. 2005). Possible autofluorescence or quenching 
of the fluorescence signal influenced by the soil was 
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accounted for by using 50 μL of soil suspension of 
each sample and 100 μL containing 0–500 pmol MU 
as used for calibration(see below). Additionally, we 
included negative controls containing distilled water 
instead of soil suspension along with the respective 
substrate. Calibration curves were included in every 
measurement plate containing 50 μL each of sterile 
distilled water and 100 µL calibration solutions con-
taining 0, 100, 200, 300, 400, 500  pmol MU, each. 
Prior to fluorescence measurements, the microplates 
were centrifuged for 5 min at 2500 × g. Fluorescence 
measurements were performed on an Infinite M1000 
Pro spectrofluorometer and accompanying i-control 
software (Tecan, Männedorf, Switzerland) at excita-
tion/emission wavelengths of 365/450  nm. Released 
amounts of MU were calculated based on calibra-
tion curves (taking into account negative controls and 
quenching) and expressed as MU release in nmol per 
g soil dry weight and minutes (nmol g–1 min–1).

To determine laccase activity (EC 1.10.3.2), soil 
suspensions were incubated with 500 µM 2,2′‐azino‐
bis(3‐ethylbenzothiazoline‐6‐sulfonic acid) (ABTS) 
for 180 min. The plates were centrifuged to spin down 
particles for 5 min at 750 × g and then the 250 µl with-
out sediment were transferred into a new transparent 
plate. The intensity of green color was measured at 
420 nm on an Infinite M1000 Pro spectrofluorometer 
and accompanying i-control software (Tecan, Männe-
dorf, Switzerland). Laccase activities were expressed 
as the turnover of ABTS in nmol per g soil dry weight 
and min (nmol g–1  min–1). Water instead of soil sus-
pension was used as a negative control.

DNA extraction, PCR amplification, and sequencing

To assess the diversity and composition of soil fun-
gal communities, DNA was extracted from 0.25  g 
of soil samples and five negative controls using the 
DNeasy PowerSoil Pro Kit (Qiagen, Hilden, Ger-
many) according to the manufacturer’s instructions 
and using a Fastprep-24 (MP Biomedicals, Irvine, 
CA, USA) for bead beating (24 m  s−1 2 × 30 s). For 
targeting fungal ITS2 (internal transcribed spacer 
2 rDNA), equimolar forward (ITS3 mix 1–5) and 
reverse primer (ITS4 mix 1–4) mixes were used 
according to Tedersoo et  al. (2015). Primers carried 
overhangs for Illumina amplicon sequencing (Illu-
mina protocol Part # 15044223; Illumina, San Diego, 
CA, USA) (Table  S1). Reactions consisted of 1  μL 

DNA (5  ng), 0.5  μL 10  pmol ITS3tagmix, 0.5  μL 
10 pmol ITS4tagmix, 10 μL NEBNext® High‐Fidel-
ity 2 × PCR Master Mix (New England Biolabs, 
Frankfurt, Germany) and 8 μL H2O. PCR conditions 
were 5 min at 95 °C, 28 × [30 s at 95 °C, 30 s at 55 °C 
and 60 s at 72 °C] and 10 min at 72 °C. For each sam-
ple, three independent PCRs were run, and the quality 
of the products was assessed in 2% agarose gels. After 
pooling of the replicates, PCR products were cleaned 
using Agencourt AMPure XP (Beckman Coulter, 
Krefeld, Germany) at a 1:1 concentration according 
to the manufacturer’s instructions. DNA concentra-
tions were determined using an AccuClear® Ultra 
High Sensitivity dsDNA Quantitation Kit (Biotium, 
Inc., Fremont, CA, USA).

Amplicons were indexed with using PCR with 
individual dual‐index combinations of Nextera XT 
Index Kit v2 Sets A and B (Illumina) for each sample, 
and then cleaned, size‐checked and quantified. The 
indexing PCRs contained 1 µl (c)DNA (5 ng), 2.5 µl 
Nextera i7 primer, 2.5 µl Nextera i5 primer, 12.5 µl 
NEBNext High-Fidelity 2X PCR MasterMix, and 
6.5  µl ultra-pure H2O. PCR conditions were 3  min 
at 95  °C, 8 × [30  s at 95  °C, 30  s at 55  °C, 30  s at 
72  °C] and 10  min at 72  °C. The final preparations 
and sequencing (Miseq v3 chemistry, 600 cycles flow 
cell, Illumina) followed the manufacturer’s recom-
mendations for ITS Metagenomic Sequencing Library 
Preparation (protocol Part # 15044223 Rev. B).

DNA sequence processing

Raw reads from Illumina MiSeq were processed with 
the automated pipeline PIPITS v2.7 (Gweon et  al. 
2015). Briefly, fungal sequences were prepared by 
joining read pairs and by quality filtering according 
to the pipeline’s standard parameters. The ITS2 sub-
region was extracted using ITSx (Bengtsson-Palme 
et  al. 2013). Short reads (< 100  bp) were removed, 
and sequences were assigned to operational taxo-
nomic units (OTUs) with a 97% similarity threshold 
using VSEARCH (Rognes et  al. 2016). Chimeric 
sequences were removed by comparison with the 
UNITE UCHIME database (v. 7.2, http://​unite.​ut.​ee/​
repos​itory.​php). Taxonomic assignment to the level 
of species hypotheses (Nilsson et al. 2019) was per-
formed using the RDP classifier (Wang et al. 2007) in 
combination with the UNITE fungal ITS database (v 
8.2; Kõljalg et al. 2013; Abarenkov et al. 2020).

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

http://unite.ut.ee/repository.php
http://unite.ut.ee/repository.php


UNCORRECTED PROOF

Journal : Medium 11104 Article No : 6564 Pages : 22 MS Code : 6564 Dispatch : 23-2-2024

	 Plant Soil

1 3
Vol:. (1234567890)

FungalTraits was used to identify different func-
tional groups within the fungal communities (Põlme 
et  al. 2020). It allows to assign fungal OTUs to 
trophic groups subdivided into specific guilds com-
prised of fungi that share similar lifestyle modes (e.g., 
ECM fungi, litter saprotrophs, soil saprotrophs, and 
root endophytes) and also to ECM “exploration type” 
(Agerer 2001) on genus level. Fungal OTUs assigned 
to SAPf were characterized by their major known 
capabilities and high saprotrophic potential according 
to their "primary lifestyle".

Soil parameter analysis

The water content of each soil sample was deter-
mined in triplicate (3 g each) after drying at 110 °C 
for 24  h and expressed as percent water content. 
Nitrate and ammonium were determined by the wet 
chemical method in triplicate as described in Nickel 
et al. (2017). Mineral nitrogen (Nmin) was calculated 
as a sum of nitrate and ammonium.,

Statistical analysis

For analysis of the whole soil fungal community, 
OTUs with less than 10 total reads were considered 
potential contaminants and excluded from further 
analyses. Data were rarefied 1000 times using the 
‘rarefy’ function (GNuniFrac, Chen et al. 2012) to a 
depth of 10,000 sequences per sample, and the results 
averaged. Analyses were conducted on the entire soil 
fungal community (ALLf) or on subsets of SAPf and 
ECMf.

Pair-wise correlations between soil parameters 
(soil water percentage and various nitrogen forms) 
and among various enzymes were assessed with 
Spearman correlation using the function ‘cor.test’ 
(stats).

To check the normality of the data distribution, the 
Shapiro‒Wilk test was used (‘shapiro.test’ in pack-
age stats). For normally distributed data, differences 
between mean values of α-diversity metrics were ana-
lyzed using an analysis of variance – ANOVA (‘aov’ 
in package stats) followed by Tukey’s honest signifi-
cance test (‘TukeyHSD’ in the stats package). Models 
included the pairs of experimental plots (TE-CO-) as 
random factor. When the assumptions of normality 
were not met, data were analyzed using the nonpara-
metric Kruskal‒Wallis test (‘kruskal.test’ in package 

stats), and then the differences were analyzed by 
Dunn’s test for multiple comparisons (‘dunn.test’ in 
the dunn.test package).

The Shannon–Wiener diversity index and Simp-
son’s index of diversity were calculated using the 
function ‘diversity’ and species richness by using 
the function ‘specnumber’ in vegan (version 2.5–7; 
Oksanen et  al. 2021). Evenness was determined as 
Shannon Index/log(species count).

To investigate the dissimilarity between individual 
samples, for fungal communities, the Bray‒Curtis 
dissimilarity and for enzyme activities, the Euclid-
ean distance were calculated using the function ‘veg-
dist’ in the vegan package. We used a permutational 
multivariate analysis of variance (PERMANOVA) 
using distance matrices with the function ‘adonis2’ 
implemented in vegan to test the effects of the main 
factors (tree root zone, treatment and day relative to 
watering) and soil parameters on the fungal commu-
nity composition. The nestedness of the experimen-
tal design was considered using the paired (control-
rewatering) plots as random factor and for the ‘strata’ 
option. To uncover significant differences between 
factors (treatment, root zone, and day relative to 
watering), we used multilevel pairwise compari-
sons of permutational multivariate analysis of vari-
ance (pairwise PERMANOVA), function ‘pairwise.
adonis’ (Martinez Arbizu 2020) with Bonferroni p 
value correction. Fungal community composition and 
enzyme profiles were visualized using principal coor-
dinate analysis (PCoA) ordinations. The package phy-
loseq (McMurdie and Holmes 2013) was used create 
charts on relative abundances.

To estimate the dynamics of fungal communities 
in the rewatering treatment relative to the control 
treatment (averaged by “day relative to watering”), 
the standard error of the difference between means 
( �

M1−M2
 ) was calculated according to Foster et  al. 

(2018) as follows:

where �2

1
 and �2

2
 describe the respective variances of 

control and rewatering samples and replicate number 
( n1 and n2).

Mantel tests were used to test correlations between 
variations in enzyme activities and variations in fun-
gal community composition in the R package ecodist 

�
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�
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(Goslee and Urban 2007) given by the Bray–Curtis 
index as a dissimilarity metric. Pearson correlations 
between the relative abundance of genera in samples 
and enzyme activities were established using the R 
package Hmisc (Harrell and Harrell 2019).

For each genus, a set of specific enzyme activities 
ES,X were calculated as abundance weighted averages 
with the formula described by Bödeker et al. (2014) 
as follows:

where Exi is the activity of enzyme X in sample i, Pi 
is the relative amplicon abundance of genera in sam-
ple i and n is the total number of samples.

All statistical analyses were performed using R 
(version 4.1.2, RCore Team 2021) and RStudio Desk-
top (version 2021.09.2–382, RStudio Inc.). P val-
ues < 0.05 were considered statistically significant.

Results

Abiotic soil parameters

Both, total soil nitrogen content and Nmin were sig-
nificantly affected by all three factors, treatment, root 
zone and day relative to watering (Fig. S1, Table S2). 
Treatment and day relative to watering significantly 
influenced ammonium concentrations, while nitrate 
concentrations were influenced by the root zone 
(Table S2). All inorganic nitrogen forms were highly 
correlated (Fig.  S2). The soil water content reached 
the same level in the rewatering and control samples 
at different time points according to root zone: at 7 
d in the spruce zone, at 42 d in the beech zone, and 
with an unclear pattern in the Mix zone (higher in 
rewatered than control at 42d, 84 d) (Fig. S1).

Sequencing output

A total of 2,824,111 fungal sequences were obtained 
and assigned to 3,966 OTUs. The average sequencing 
depth of the samples was 23,466 reads. Eleven sam-
ples of the real samples had readings below 10,000 
and were excluded from further analysis. The most 
abundant phyla were Ascomycota (34% of fungal 
OTUs, 20% of fungal sequences), Basidiomycota 

E
s,x =

∑n

i=1
E

xi
Pi

∑n

i=1
Pi

(21%, 54%), Mortierellomycota (3%, 16%), Muco-
romycota (2%, 2%), Rozellomycota (2%, 2%), and 
Chytridiomycota (1%, < 1%). Considering the pri-
mary fungal lifestyle, 896 OTUs (23% of fungal 
OTUs, 34% of sequences) were assigned to SAPf, 
followed by ECMf (6%, 39%), pathogenic fungi 
(1%, < 1%), others (3%, < 1%), and fungi of unknown 
lifestyle (67%, 26%). In the SAPf, fungi that also 
had root endophyte ability represented 2.8% of all 
sequences, and 0.2% of sequences could be assigned 
to ectomycorrhizal fungi (Fig. 1).

Diversity of soil fungi in response to rewatering in 
different root zones

Treatment had no effect on any of the α-diversity 
indices of ALLf (Table  1). However, Pielou’s even-
ness was higher for SAPf in rewatered than in con-
trol (Table  S3). Greater Shannon diversity and spe-
cies richness were observed for ECMf under control 
conditions than under rewatered conditions (P < 0.05) 
(Table 1, Table S3).

Tree root zone significantly affected all α-diversity 
indices for ALLf (Shannon – P < 0.001, ANOVA; 
Simpson – P < 0.001, Kruskal‒Wallis; Pielou even-
ness—P < 0.001, ANOVA) (Table 1). ALLf commu-
nities from spruce zone of rewatering and controls, 
were characterized by the highest Shannon index 
(mean H = 4.35) in contrast to the beech root zone 
with the lowest (mean H = 3.84) and intermediate val-
ues for the Mix root zone (mean H = 4.02) (Table 1, 
Table S3). Similar results were obtained for the other 
α-diversity indices (Simpson index, Pielou Eveness) 
for ALLf (Table S3, S4). Separated by trophic mode, 
SAPf diversity indices followed the same pattern as 
those of ALLf; however, for ECMf, Shannon, Simp-
son, and Pielou evenness were not influenced by root 
zone (Table 1; Tables S3, S4).

‘Day relative to watering’ had no significant effect 
on the diversity of ALLf, SAPf, or ECMf (Table 1).

Composition of soil fungal communities following 
rewatering

Tree root zone and treatment significantly affected 
the community composition of ALLf, SAPf and 
ECMf (Table  2, S5). Principal Coordinate Analy-
sis indicated that groupings according to these fac-
tors were evident for ALLf (Fig. 2a). In contrast to 
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Fig. 1   Dynamics of 
changes in temperature and 
precipitation during day 
(light blue) and night (dark 
blue) at the experimental 
plots during the rewatering 
experiments (a). Volumetric 
soil water content (b) in 
0 – 7 cm of control (blue) 
and rewatered plots (red) 
whereas the line types 
indicate the plots of dif-
ferent watering campaigns 
(solid = first, broke = second 
and dotted = third watering 
campaign) within the sam-
pling period. The vertical 
lines on both figures specify 
the days of the watering 
events

Table 1   Effects of treatment, root zone and day relative to watering on different α-diversity indices calculated for all soil fungi 
(ALLf), saprotrophic (SAPf), and ectomycorrhizal fungi (ECMf)

Comparison of diversity indices for the factors treatment (control vs. rewatered drought treated), different tree root zone (spruce-
monospecific, beech-monospecific, mixture zone between beech and spruce), and day relative to start of rewatering (day -7, 7, 18, 
42, and 84): when data passed the Shapiro test for normal distribution, ANOVA was applied, if not the Kruskal–Wallis test was used. 
Significant differences are highlighted in bold (P < 0.05)

Diversity indices Fungal group Treatment
(df = 1)

Root zone
(df = 2)

Day relative to rewatering
(df = 4)

Shannon index ALLf F = 2.48, P = 0.119 F = 39.45, P < 0.001 F = 0.12, P = 0.730
SAPf χ2 = 2.40, P = 0.122 χ2 = 33.92, P < 0.001 χ2 = 4.96, P = 0.292
ECMf F = 7.45, P < 0.01 F = 0.06, P = 0.939 F = 1.55, P = 0.215

Simpson index ALLf χ2 = 0.16, P = 0.687 χ2 = 31.80, P < 0.001 χ2 = 2.58, P = 0.629
SAPf χ2 = 3.40, P = 0.065 χ2 = 28.22, P < 0.001 χ2 = 5.38, P = 0.251
ECMf χ2 = 1.64, P = 0.199 χ2 = 1.43, P = 0.488 χ2 = 3.07, P = 0.546

Pielou Eveness ALLf F = 0.10, P = 0.749 F = 29.94, P < 0.001 F = 0.06, P = 0.802
SAPf χ2 = 6.49, P < 0.05 χ2 = 20.33, P < 0.001 χ2 = 1.95, P = 0.745
ECMf χ2 = 0.11, P = 0.740 χ2 = 3.55, P = 0.169 χ2 = 0.81, P = 0.937
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ECMf, the clustering of the SAPf among the inves-
tigated factors was very pronounced (Fig.  2b, c). 
Day relative to watering had no significant effect 
(Table  2, S5). The community composition in the 
different (spruce, beech and mix between them) 
root zones responded differently to the treatment 
for ALLf, SAPf and ECMf, as indicated by the sig-
nificant root zone × treatment interaction (Table  2, 
Table  S6). A pairwise comparison between beech, 
spruce and Mix root zones showed that the com-
munity composition differed between beech and 
spruce soils and that the composition of communi-
ties from the Mix root zone was more similar to the 
beech root zone than to spruce root zone (Table S7). 
Both, soil water content at the time of sampling 
(P = 0.0465, PERMANOVA) and Nmin (P = 0.0184, 
PERMANOVA) had significant effects on the ALLf 
community, whereas Nmin only had a significant 
effect on the SAPf community and soil water con-
tent only had a significant effect on ECMf commu-
nity composition (Table 2, Table S7).

In the beech root zone, higher relative abun-
dances of SAPf in rewatered samples than in con-
trol were observed directly after rewatering, which 
declined within two weeks, while the abundance of 
ECMf increased at the same time (Fig. 3a, b). In the 
spruce root zone, the relative abundance of ECMf in 
the rewatered samples was lower than that of control 
most of the time but returned to the level of control 
at the end of the experiment, in contrast to the abun-
dance of SAPf (Fig. 3a, b). From 18 d after rewater-
ing and onwards, the abundance of ECMf in the Mix 
root zone increased and remained above control levels 
until the end of the sampling period (Fig. 3a, b).

Among SAPf, the subgroup of soil saprotrophs was 
dominant in all samples (Fig.  3c). However, in the 
beech root zone, the relative amounts of litter sapro-
trophs in rewatered samples decreased from 18% 7 d 
before rewatering to 10% 7 d after rewatering in favor 
of soil saprotrophs (Fig. 3b, d). Apart from this fluc-
tuation, the difference was very small (c. 6%) between 
sampling dates relative to control (Fig. 3b, d).

The relative abundances of exploration types of the 
ECMf communities changed differently in rewatered 
samples relative to control of the different root zones 
after rewatering (Fig. S3).

In the beech root zone of the rewatering, medium-
distance fringe types were absent before rewater-
ing (Fig. S3a) but were seen as a stable community 
component (c. 6% lower than in control) afterwards 
(Fig.  S3b). This mostly happened at the expense of 
the contact exploration types, which dominated at 
all times (Fig. S3a). Long distance exploration types 
were a minor component of the beech root zone in 
the rewatered community before rewatering and were 
even less abundant after rewatering (Fig. S3a). While 
the distribution of exploration types in the beech 
zone differed between control and rewatered samples 
before rewatering, the two became similar at the end 
of the observation period (Fig. S3b).

In the Mix root zone, contact types also domi-
nated at all times, with minor fluctuation. Exploration 
types from the Mix root zone of rewatered samples 
resembled those of control, albeit with a higher share 
of contact types and a lower share of short distance 
types (Fig S3b).

In the spruce root zone, medium-distance fringe-
type taxa were absent in rewatered samples, while 

Table 2   PERMANOVA on the composition of all fungi (ALLf), soil saprotrophic fungi (SAPf), and ectomycorrhizal fungi (ECMf) 
based on Bray-Curtis dissimilarities following the overall experimental design

Effect of tree species (root zone, RZ), control and rewatering (treatment, T), soil water content (SWC) and soil Nnim (N) and their 
interactions, excluding insignificant terms. Full model with all factors in Table S5

Factor df ALLf SAPf ECMf

R2 P R2 P R2 P

Treatment (T) 1 0.065  < 0.0001 0.085  < 0.0001 0.050  < 0.0001
Root zone (RZ) 2 0.18  < 0.0001 0.218  < 0.0001 0.164  < 0.0001
Soil Water Content (SWC) 1 0.01 0.0465 0.009 0.1286 0.014 0.0178
Nmin (N) 1 0.01 0.0184 0.017 0.0134 0.012 0.1266
T x RZ 2 0.04 0.0003 0.030 0.0020 0.044 0.0002
RZ x N 2 0.02 0.0378 0.026 0.0094 0.020 0.1442
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they made up a small fraction (3%) in control. Simi-
larly, short-distance-type taxa were mainly lower 
in rewatered samples than in control. Long-distance 
exploration types were more abundant in rewatered 
samples (approximately 3% higher than in control) 
than in control before rewatering and even increased 
to 4–8% after rewatering in rewatered relative to 
the control (Fig.  S3b) compared to c. 4% in control 
(Fig. S3a).

Among the SAPf, no changes in abundance were 
observed between rewatering and control soil in the 
spruce root zone (Fig.  S4). Only 3 genera differed 
in relative abundances between control and rewa-
tered samples in the beech root zone, with relatively 
higher abundances in rewatered samples for Geomy-
ces and Solizoccozyma (P < 0.05, Kruskal‒Wallis) 
and the opposite for Mortierella (control > rewatered, 
P < 0.05, Kruskal‒Wallis). In the Mix root zone, the 
genera Absidia, Geomyces, Oidodendron, Rhodocol-
lybia, Solizoccozyma, Trechiospora and Umbelop-
sis were more abundant in rewatered samples than 
in control (P < 0.05, Kruskal‒Wallis). Although the 
samples were isolated from soil, some of the taxa 
classified as saprotrophic also show a different life-
style. For example, Archaeorhizomyces, Mortierella, 
and Umbelopsis may also be root-associated fungi, 
and Oidiodendron may function as a root endophyte 
(Fig. S4).

Comparing ECMf genera, Amanita was more 
abundant in rewatered samples than in control in all 
zones (P < 0.05), Thelephora was more abundant in 
the Mix and spruce root zones, and Xerocomellus 
was more abundant only in the spruce zone (Fig. S4). 
Some ECMf genera were more abundant in control 
than in rewatered samples: Cortinarius in the spruce 
and Mix root zones and Lactarius, Piloderma, and 
Tylospora in the spruce zone.

Soil enzyme activities

Treatment and tree root zone both had a significant 
effect on all measured soil enzyme activities, but the 
day after watering did not (Table 3).

Five out of seven enzymes significantly differed 
between rewatering and control (Tables  3 and 4), 
with nag and lac activities being higher in control 
than in rewatered plots. The two enzymes gls and 
glr had higher activity in the rewatered plots than 
in the control plots. The greatest difference between 

Fig. 2   Principal Coordinate Analysis based on fungal com-
munity dissimilarity (Bray-Curtis) for ALLf (a), SAPf (b) and 
ECMf (c). Each point represents the soil fungal community 
of one sample. Ellipses: 95% confidence interval for samples 
from control (CO, solid line, blue points) and rewatered (RE, 
dotted line, red points). Shapes: tree root zones of beech-beech 
(round BB), spruce-spruce (triangle SS) and beech-spruce 
mixture (square Mix)
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rewatered and control (higher in rewatered plots) 
was observed in soil samples from the beech root 
zone for enzyme activities related to cell wall deg-
radation (cbh, glr, gls, xyl) (Fig.  S5). For these 
enzymes, higher activities were also observed in 
the Mix root zone. In the spruce root zone, only cbh 
and gls had higher activities in the rewatered plots 
than in the control plots.

The tree root zone had the greatest influence of 
the tested factors on most soil enzyme activities in 
control and rewatered plots, except for pho (Table 4). 
The activities of enzymes related to cell wall degrada-
tion were highest in the spruce root zone and lowest 
in the beech root zone, with intermediate activity in 
the Mix root zone (Table 5). Nag activity was signifi-
cantly higher in samples from the spruce root zone, 

Fig. 3   Time course of relative abundances of different soil 
fungal groups in control (CO), and rewatering plots (TE) rela-
tive to watering (day -7, 7, 18, 42, and 84) and in three root 
zones (SS – spruce monospecific, BB- beech monospecific, 
Mix-mixture zone of both). Left panels (a, c) relative shares of 
a) all fungal groups; c) fungal saprotrophic groups; right panels 
(b, d) changes in TE (colored lines) relative to CO (black line) 

based on average values ± standard errors of the difference 
between means of b) ectomycorrhizal and saprotroph fungi; d) 
litter, soil, wood saprotrophs. “other” sums up the following 
fungal groups: algal parasite, animal parasite, mycoparasite, 
root endophyte, epiphyte, foliar endophyte, lichenized, arbus-
cular mycorrhizal
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Table 3   Soil enzyme activities (pho—phosphatase; nag—N‐
acetyl‐glucosaminidase; gls—β‐glucosidase; cbh—cellobiohy-
drolase; glr—glucuronidase; xyl—xylosidase; lac – laccase) as 
affected by. treatments (CO and RE), three different root zones 
(spruce – spruce, beech –beech, and mixture zone between the 

two species), and time of watering (-7, 7, 18, 42, and 84 after 
starting rewatering): a – for normally distributed data ANOVA 
was applied; b – for non-normal distributed data Kruskal–Wal-
lis test

Significant differences in bold (p < 0.05). To achieve normal distribution the data were log transformed

enzyme Treatment
(df = 1)

Root zone
(df = 2)

Day relative to rewatering
(df = 4)

pho χ2 = 2.81, P = 0.0935 χ2 = 2.18, P = 0.3367 χ2 = 5.17, 0.2702
nag χ2 = 4.71, P = 0.0301 χ2 = 10.21, 0.0061 χ2 = 4.63, P = 0.3278
gls F = 8.13, P = 0.0053 F = 66.43, P < 0.0001 F = 0.05, P = 0.8164
cbh F = 7.10, P = 0.0089 F = 58.52, P < 0.0001 F = 0.16, P = 0.6920
glr F = 5.19, P = 0.0248 F = 48.06, P < 0.0001 F = 0.05, P = 0.8263
xyl χ2 = 0.65, P = 0.4219 χ2 = 64.84, P < 0.0001 χ2 = 4.63, P = 0.3278
lac F = 17.03, P < 0.0001 F = 4.46, P = 0.0139 F = 0.06, P = 0.8017

Table 4   Soil enzymes activities according to treatment (CO 
– control, RE – previously drought treated plots) and root 
zone (RZ: BB – beech, Mix – mix zone, SS – spruce), values 
are given as mean with SE in brackets, and are expressed as 
release of methylumbelliferone (MU) release (pM/mg dry soil/

min) for pho—phosphatase, nag—N‐acetyl‐glucosaminidase, 
gls—β‐glucosidase, cbh—cellobiohydrolase, glr—glucuroni-
dase, xyl—xylosidase; and as ABTS turnover (nM/g dry soil/
min) for lac—laccase

RZ pho nag gls cbh glr xyl lac

CO BB 32.32 (2.29) 5.38 (0.53) 8.50 (1.28) 1.02 (0.18) 1.24 (0.40) 4.16 (0.58) 267.33 (32.33)
Mix 33.70 (3.66) 6.13 (1.15) 15.35 (1.98) 1.69 (0.26) 1.77 (0.24) 9.43 (1.23) 222.05 (36.13)
SS 39.55 (3.12) 12.90 (3.86) 36.19 (3.34) 4.80 (0.71) 3.30 (0.19) 18.19 (0.95) 213.74 (18.56)

RE BB 33.98 (3.62) 7.24 (0.81) 12.81 (1.18) 1.47 (0.14) 1.37 (0.14) 6.28 (0.70) 180.35 (24.97)
Mix 27.98 (2.37) 7.40 (0.81) 21.31 (2.38) 2.48 (0.35) 2.46 (0.31) 11.14 (1.13) 115.63 (22.61)
SS 32.55 (4.44) 9.05 (1.28) 33.03 (2.52) 4.50 (0.50) 3.48 (0.38) 15.99 (1.43) 161.33 (14.68)

Table 5   Correlation between soil enzyme activities and SAPf and ECMf diversity and composition (PCoA1, PCoA2)

Only significant relationships (P < 0.05) are marked with Spearman correlation coefficients. pho—phosphatase; nag—N‐acetyl‐glu-
cosaminidase; gls—β‐glucosidase; cbh—cellobiohydrolase; glr—glucuronidase; xyl—xylosidase; lac – laccase

SAPf ECMf

Shannon diver-
sity

PCoA1 PCoA2 Shannon diver-
sity

PCoA1 PCoA2

Nutrient acquring pho
nag 0.31 -0.39 -0.11

hydrolytic cbh 0.56 -0.78 -0.42 -0.46
xyl 0.49 -0.81 -0.37 -0.58
gls 0.54 -0.81 -0.39 -0.53
glr 0.51 -0.77 -0.36 -0.52

oxidative lac 0.19 -0.41 -0.38 0.32
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and there were no differences between beech and Mix 
root zones for this enzyme. In contrast, lac had the 
highest activity in the beech zone, with no differences 
between the spruce and Mix root zones (Table  5, 
Fig. S5).

Soil enzyme activity profiles partly separated soil 
samples in principal coordinate analysis (Fig.  4). 
Enzyme activity profiles correlated with fungal com-
munity composition: ALLf (rho = 0.47, P < 0.001, 
Mantel test), SAPf (rho = 0.42, P < 0.001, Mantel 
test), and ECMf (rho = 0.34, P < 0.001, Mantel test). 
Analyzing control and rewatered samples separately 
using Mantel tests, soil enzyme activity profiles cor-
related with higher values for SAPf (rho = 0.50, 
P < 0.001, Mantel test) than EMCf (rho = 0.29, 
P < 0.001, Mantel test) in rewatered plots, while 
enzyme profiles of control similarly correlated with 
SAPf (rho = 0.43, P < 0.001, Mantel test) and ECMf 
(rho = 0.41, P < 0.001, Mantel test). Moreover, sig-
nificantly more SAPf taxa than ECMf taxa correlated 
with soil enzyme activities (Table  6). The relative 
abundance of SAPf taxa was positively correlated 
with most enzymes, particularly with C-compound 
degrading enzymes (cbh, xyl, gls, glr, lac), and signif-
icantly less correlated with nag and pho. All 10 of the 

most abundant genera of SAPf were positively corre-
lated with different soil enzyme activities (Table 6). 
Additionally, some ECMf genera correlated posi-
tively with soil enzyme activities (Elaphomyces, 
Pseudotomentella, Tylopilus, and Tylospora), while 
most were negatively associated (Cenoccocum, Cla-
vulina, Lactarius, Melanogaster, Piloderma, Russula, 
Thelephora).

Discussion

Response of SAPf vs. ECMf communities to 
rewatering

Spruce ECMf communities did not rapidly change, 
resembling the dynamics of ECMf on regenerat-
ing spruce fine roots after rewatering (Danzberger 
et  al. 2023). In our study, we observed an increase 
in long distance exploration type in spruce soil dur-
ing rewatering. Although these exploration types, 
together with medium distance mat, and medium dis-
tance fringe, are characterized by increased nitrogen 
uptake, unlike the others (Hobbie and Agerer 2010), 
this may not be the result of chitinase production, 

Fig. 4   Ordination plot of the first (x-axis) and the second 
dimensions (y-axis) of principal coordinate (PCoA) scores for 
soil enzyme activity profiles with each dot representing seven 
enzymes (phosphatase, N‐acetyl‐glucosaminidase, β‐glucosi-
dase, cellobiohydrolase, glucuronidase, xylosidase, laccase). 

Ellipses show 95% confidence interval for samples from con-
trol (CO, solid line, blue points) and rewatering plots (RE, dot-
ted line, red points). Symbols represent soil samples from three 
root zones: beech-beech (round BB), spruce-spruce (square 
SS) and beech-spruce mixture (triangle Mix)
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Table 6   Correlation between relative abundance of a genus and soil enzyme activity
Genus Primary lifestyle Secondary lifestyle Endophytic interaction capability pho nag gls cbh glr xyl lac
Cenococcum ectomycorrhizal - -0.18 -0.21 0.26

Clavulina ectomycorrhizal - -0.18 -0.19 -0.20

Elaphomyces ectomycorrhizal - 0.24 0.26 0.29 0.33

Lactarius ectomycorrhizal - -0.23 -0.24 -0.26

Leotia ectomycorrhizal - 0.19

Melanogaster ectomycorrhizal - -0.18 -0.21

Piloderma ectomycorrhizal - -0.18 -0.27 -0.28 -0.28 -0.26 -0.31

Pseudotomentella ectomycorrhizal - 0.31 0.24

Russula ectomycorrhizal - -0.33 -0.19 -0.28 0.34

Thelephora ectomycorrhizal - -0.29

Tomentella ectomycorrhizal - 0.26

Tylopilus ectomycorrhizal - 0.20 0.25

Tylospora ectomycorrhizal - 0.25 0.24 0.26 0.31

Amaurodon litter saprotroh - 0.29 0.23

Byssonectria litter saprotroph - 0.26 0.18 0.21 0.28

Cadophora litter saprotroph - ectomycorrhizal 0.20 0.18

Chaetosphaeria litter saprotroph wood saprotroph foliar endophyte -0.27 -0.24 -0.25 -0.24

Entoloma litter saprotroph - ectomycorrhizal 0.25 0.28 0.31

Hyaloscypha litter saprotroph wood saptroph ectomycorrhizal 0.20

Leptodontidium litter saprotroph ericoid mycorrhizal root endophyte -0.26

Maasoglossum litter saprotroph - 0.25

Pseudopenidiella litter saprotroph - 0.27 0.24 0.28

Rhodocollybia litter saprotroph - 0.26 0.33 0.20

Ripartites litter saprotroph - 0.20 0.28

Absidia soil saprotroph - 0.32 0.27 -0.18

Archaeorhizomyces soil saprotroph root associated root associated 0.26 0.20 0.19 0.26

Cladophialophora soil saprotroph - root endophyte 0.27

Geomyces soil saprotroph - 0.21 -0.21

Glarea soil saprotroph - 0.18 0.18 0.24

Goffeauzyma soil saprotroph plant associated 0.23

Mortierella soil saprotroph root associated root associated -0.26 -0.27

Mucor soil saprotroph - 0.19 0.21

Oidiodendron soil saprotroph root endophyte root endophyte 0.29 -0.21

Phallus soil saprotroph - 0.28 0.26

Phialocephala soil saprotroph root endophyte root endophyte 0.34

Ramicandelaber soil saprotroph - -0.30 -0.32

Solicoccozyma soil saprotroph epiphyte 0.24

Umbelopsis soil saprotroph root associated root associated -0.25 -0.24

Basidiobolus unspecified saprotroph - 0.34 0.20 0.26 0.30

Brachysporium unspecified saprotroph - -0.19 0.25

Chalara unspecified saprotroph wood pathogen foliar endophyte 0.22 0.28 0.31 0.31 0.28

Lasiosphaeris unspecified saprotroph - 0.30

Penicillium unspecified saprotroph - foliar endophyte 0.29 0.26 0.33 0.34 -0.32

Rhodotorula unspecified saprotroph foliar endophyte foliar endophyte 0.18

Sagenomella unspecified saprotroph - -0.19

Slooffia unspecified saprotroph - 0.19

Talaromyces unspecified saprotroph - 0.28 0.30 0.29 0.30 -0.21

Tritirachium unspecified saprotroph animal pathogen 0.34 0.29

Acericola wood saprotroph - 0.22

Arachnopeziza wood saprotroph - -0.19

Ascocorticium wood saprotroph - 0.19 0.24

Ciliciopodium wood saprotroph litter saprotroph 0.20 0.21 0.24 0.32 0.21 0.19

Connersia wood saprotroph - 0.21

Cristinia wood saprotroph - 0.18

Diplococcium wood saprotroph litter saprotroph 0.18

Hyphoderma wood saprotroph - 0.21

Hypholoma wood saprotroph - 0.20

Lophiostoma wood saprotroph litter saprotroph 0.19

Neobulgaria wood saprotroph - -0.19

Phragmocephala wood saprotroph - -0.20 -0.18 -0.22

Rigidoporus wood saprotroph -

Scytalidium wood saprotroph - -0.18 -0.18

Trechispora wood saprotroph - 0.33 0.30 0.30 -0.19

Spizellomyces pollen saprotroph - 0.25

Terramyces pollen saprotroph - -0.19 -0.20 -0.20

Exophiala animal pathogen litter saprotroph root endophyte 0.25 0.19

Sugiyamaella animal endosymbiont necter/tap saprotroph 0.30 0.27 0.28

Cutaneotrichosporon animal parasite animal decomposer -0.20 -0.18

Haptocillium animal parasite animal decomposer 0.22 0.21
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but better competition and protection of the occupied 
area (Mucha 2011). Fungi that make up the contact, 
short and medium smooth exploration type have a 
smaller biomass of extramatrical mycelium (Agerer 
2001). According to Tedersoo and Smith (2013) fungi 
forming exploration types with smaller extramatrical 
mycelium regenerate faster in response to environ-
mental disturbances, and in our study they were more 
abundant in soil of beech and Mix root zone in rewa-
tered plots than in control. High turnover of fine roots 
(dieback and regrowth) during a previous severe natu-
ral drought (Nikolova et al. 2020) provided a dynamic 
habitat for ECMf with continuously recovering beech 
roots to be colonized in the beech and Mix root zones. 
Accordingly, ECMf communities had a high potential 
to recover under rewatering conditions (Danzberger 
et al. 2023). As a consequence of a substantial accu-
mulation of litter over the 5 drought years (personal 
observation) in the beech root zones of rewatered 
plots, rewatering resulted in a rapid turnover of litter 
decomposer communities to more soil saprotrophic 
communities within two weeks. This is in agree-
ment with the fast decay of high-quality beech litter 
(Berger and Berger 2014) and the natural turnover of 
decomposer communities with changing substrates in 
litter after drought (Asplund et al. 2018). SAPf in our 
study also followed different dynamics in beech soils 
with a decrease in litter decomposers one week after 
rewatering, which was not the case in spruce soils. 
This may be explained by the initial hydrophobicity 
of spruce litter and its overall higher recalcitrance due 
to its high content of phenolic compounds (Thai et al. 
2023). Aligning with our results, SAPf richness and 
diversity in soils were found to be higher under coni-
fers than under beech trees (Cornelissen et al. 2001; 
Kubartová et  al. 2009), which the authors attributed 

to a more recalcitrant litter quality in conifers requir-
ing a more diverse enzyme profile for decay. The 
faster dynamics of changes in saprotrophic fungal 
communities combined with their greater produc-
tion of enzymes may result in a faster availability of 
released nutrients necessary for root regeneration in 
soil with beech litter.

In our study, Nmin significantly increased in 
accordance with other drought experiments that 
found reduced mineralization and nitrification under 
drought (Deng et al. 2021). In addition, the variation 
in Nmin with different root zone confirms an influence 
of litter (amount and/or quality) on mineral nitro-
gen release (Martínez-García et  al. 2021). Among 
the measured soil abiotic factors, soil moisture con-
tent was mainly associated with ECMf, in contrast to 
H1. Nmin, on the contrary, was associated with SAPf. 
This seemingly contradicts results from a Mediter-
ranean forest where soil SAPf was more affected by 
drought than ECMf (Castaño et  al. 2018). However, 
a recent study showed that ECMf biomass is mainly 
driven by soil temperature, moisture and pH, while 
SAPf biomass is associated with soil organic C and 
the C:N ratio and forest attributes (tree basal area and 
proportion of harvested tree biomass) (Awad et  al. 
2019). Moreover, our finding of a positive correlation 
between SAPf abundance and Nmin is consistent with 
the results of another study showing that the accumu-
lation of nitrogen along with organic matter can drive 
the abundance of saprotrophic fungi (Morrison et al. 
2016).

Some fungal species may have more than one 
nutritional mode reflected in their lifestyle, as they 
may occupy more than one ecological niche (Lof-
gren et  al. 2018; Martino et  al. 2018). One of the 
dominant genera in our study, Archaeorhizomyces, is 

Table 6   (continued)
Monacrosporium animal parasite wood saprotroph -0.32 -0.30 -0.27 -0.26

Ochroconis animal parasite plant pathogen 0.18 0.20 0.31 0.23 0.21

Phialemonium animal parasite - -0.18 -0.19

Pochonia animal parasite animal decomposer 0.20

Polycephalomyces animal parasite - 0.22

Mycosymbioces mycoparasite fungal decomposer -0.21

Sepedonium mycoparasite - 0.23

Tremella mycoparasite - -0.18 -0.22 0.26

Porosphaerella foliar endophyte litter saprotroph foliar endophyte 0.19

Pezizella root endophyte - root endophyte 0.25

Pezoloma root endophyte soil saprotroph root endophyte 0.21

Colpoma plant pathogen litter saprotroph 0.21

Ilyonectria plant pathogen - 0.19 0.19 0.28 -0.19

Only genera accounting for more than 1% of all reads in two or more samples were included. The numbers in the table show the 
Pearson correlation coefficient
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widespread in diverse ecosystems worldwide (Albu-
rae et al. 2020). However, they do not produce recog-
nizable mycorrhizal structures and show saprotrophic 
potential in the decomposition of organic compounds 
(Rosling et al. 2011), and information on this class of 
fungi is still very limited and the mode of nutrition 
remains uncertain. Oidiodendron is another taxon 
with an ambiguous lifestyle. The nutritional mode of 
Oidiodendron is unclear and could be either sapro-
trophic or symbiotrophic, as it is isolated from decay-
ing plant material (Calduch et al. 2004) and in ericoid 
species, improves nitrogen uptake and plant growth 
(Wei et al. 2016). Considering the proximity of niches 
such as roots and the surrounding rhizosphere soil, 
factors promoting the direction of evolution along the 
soil saprotrophy-mycorrhizal continuum mainly con-
cern soil fungi (Selosse et  al. 2018), which we also 
observed in the most common taxa of fungi classi-
fied as saprotrophs and root-associated (Achaeorhi-
zomyces, Mortierella, Umbelopsis) or root endohytes 
(Oidiodendron). An ambiguous nutritional mode 
and being considered symbiotic or saprobic may 
also depend on the nutritional conditions of the host 
environment (Fernando and Currah 1996). However, 
fungi with an ambiguous lifestyles represent less than 
3% of the sequences in our studies.

Mixture vs. pure tree zone in response to rewatering

In the three different root zones, soil fungal commu-
nities responded differently to rewatering. In the Mix 
root zone, we found less fluctuation in the abundances 
of fungal functional groups (SAPf vs ECMf) in rewa-
tered compared to control plots throughout the time 
course, compared to the monospecific, spruce and 
beech, root zones, and we hypothesized that a positive 
effect of the Mix root zone would manifest in a faster 
resemblance to controls. There was also less fluctua-
tion in soil fungal communities after rewatering in 
mixed compared to monospecific root zones, suggest-
ing a higher resistance to drought and rewatering in 
the Mix zone. This is in line with a microcosm exper-
iment, where tree mixtures (with presumed higher 
niche complementarity in the soil compared to mono-
cultures) not only alleviated drought stress perceived 
by soil fungal communities but also reduced com-
munity fluctuations after rewatering (Gillespie et  al. 
2020). In fact, higher overstory tree species diversity 
(up to three species) is more likely to promote soil 

microbial diversity through indirect interactions with 
plant characteristics that alter soil characteristics, 
such as litter, than through tree species diversity per 
se (Thoms et  al. 2010). However, in addition to the 
physicochemical properties of leaf litter from differ-
ent plant species that lead to significant differences 
in microbial community composition (i.e., conifer 
litter is typically more recalcitrant than broadleaf lit-
ter (Setiawan et al. 2016)), root traits, including root 
biomass and necromass, are also important (Thoms 
et  al. 2010). Similar to our study, trends of differ-
entiation of the soil fungal community in beech and 
spruce monocultures and mixed stands were found by 
Likulunga et al. (2021) and explained by soil condi-
tions and the relative abundance of conifers. When 
growing in mixture, beech may be able to locate more 
fine roots deeper than spruce (Leuschner et al. 2004). 
Thus, spruce roots may have been the main factor 
shaping the soil fungal communities in the Mix zone, 
being located in the upper soil layer (Zwetsloot and 
Bauerle 2021). The effects of rewatering include a 
flush of nutrients and should lead to a rapid reaction 
of soil SAPf communities (Manrubia et  al. 2019). 
We expected a faster change in SAPf diversity in the 
mixed zone due to a more heterogeneous soil environ-
ment compared to the monospecific zone (H2), which 
was not the case in the first three months. Whether 
this positive effect will be effective in the longer term 
requires further study. Griffiths and Philippot (2013) 
reported that faster regeneration is associated with 
higher physiological activity of certain taxa or higher 
microbial diversity and that resistant or faster regen-
erating taxa are more likely to occur in more diverse 
communities. However, in our study, this was not the 
case, and we did not observe a higher diversity of the 
soil fungal community in the mixture in comparison 
to the monoculture.

Functional response of the soil fungal community

In support of our third hypothesis, the structure 
of SAPf communities in our study correlated with 
soil enzyme activities. Due to the high functional 
redundancy of microbiota, the structure of micro-
bial communities modified by abiotic agents can 
still function like control communities, allowing 
the buffering of the changes that occur (Allison 
and Martiny 2008). In our study, however, the cor-
relation of the enzyme profile, especially in the 
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rewatered variant associated with altered SAPf, 
persisted beyond the three months of the experi-
ment. This indicates that three months was too short 
a period to restore the whole soil‒plant system, 
including the functioning of the fungal communi-
ties, to the conditions before the drought period. 
Responsiveness of fungal taxa to the root zone and 
drought legacy was associated with the highest 
diversity of SAPf in the spruce root zone, but the 
abundance of the most common taxa did not respond 
to rewatering in contrast to the beech and Mix root 
zones. In all (spruce, beech and mixed between spe-
cies) root zones, the most abundant genera were 
mostly positively associated with hydrolytic enzyme 
activities (xyl, gls, glr, cbh) and negatively associ-
ated with oxidative enzyme activities (i.e., laccase). 
These enzymes (xyl, gls, glr, cbh) were also more 
active in rewatered samples in the Mix and beech 
root zones than in control. In the beech root zone, 
enzymes associated with simple carbon source use 
responded fast and later on were replaced by those 
with more recalcitrant substrates. These enzymatic 
changes were associated with faster changes in lit-
ter saprotrophs in the beech zone. In contrast, the 
dynamics of SAPf were not as pronounced in the 
spruce zone with phenol-rich leaf litter, suggest-
ing that litter degraders within SAPf taxa had the 
ability to degrade recalcitrant materials such as 
lignin and cellulose (Tunlid et  al. 2016). Surpris-
ingly, we found no association between the domi-
nant SAPf genera and laccase activity, although 
other genera, even those of ECMf, were positively 
associated with the activity of this enzyme. An ear-
lier study by Nickel et  al. (2018) at the same site 
showed a decrease in ECMf-associated laccase 
activity on roots under prolonged (3 years) drought. 
Russulales, a ubiquitous order of ECMf (Looney 
et  al. 2018), are particularly common in temperate 
beech stands (Pena et al. 2017) but less common in 
spruce forests (Asplund et  al. 2019). In this study, 
the most abundant ECMf genus was Russula (more 
abundant in the beech and Mix root zones), which 
was positively associated with laccase activity in all 
root zones. Russulales appear to be specialized for 
acquiring ammonium (Nygren et  al. 2008) and are 
known to have retained lignolytic enzymes (Looney 
et al. 2018). This suggests that ECMf with the capa-
bility to mineralize nitrogen from phenol-protein 

complexes (Pellitier and Zak 2018) may be favored 
under drought conditions.

Although ECMf in our study were associated with 
changes in soil enzyme activities, more genera of 
SAPf were involved, and dynamics in the composi-
tion of SAPf were correlated more strongly with the 
enzyme profile in the rewatering, as shown by the 
Mantel test. ECMf and SAPf have overlapping fun-
damental niches (Fernandez and Kennedy 2016), but 
ECMf may limit the realized niche of saprotrophs and 
suppress their decomposer activity (Fernandez and 
Kennedy 2016). Our findings of a stronger positive 
effect of SAPf on enzyme activity in the rewatered 
plots indicate that in our experimental setup during 
the rewatering decomposition process is not slowed 
down by ECMf competition.

Our study of soil fungal communities was based 
on DNA analysis, which represents a total microbial 
community pool including living, dead and rest-
ing microorganisms (Lennon and Jones 2011). In 
a simultaneous study performed on roots, we found 
good agreement between RNA- and DNA-based fun-
gal communities in the rewatering phase (Danzberger 
et  al. 2023). This indicates that the lack of strong 
dynamics in our study does not reflect a methodo-
logical bias toward resting stages or DNA from dead 
fungi, although a certain share cannot entirely be 
ruled out.

Conclusion

This study highlighted that a previous drought regime 
over 5 years in a beech/spruce forest had an important 
structuring influence on soil fungal communities dur-
ing the first three months after rewatering. The close 
relationship between the SAPf and the rapidly chang-
ing soil conditions was emphasized by the faster and 
stronger response of the SAPf compared to the ECMf 
communities. The correlation between changes in 
SAPf community structure and soil enzyme activities 
in rewatered plots also supports this conclusion. SAPf 
community structure may be shaped more by the 
type of leaf litter accessible after water contact with 
the substrate than by the abiotic soil condition itself, 
since SAPf community structure was more related 
to the dynamics of nitrogen levels than to soil water 
content and different SAPf community responses 
in beech vs. spruce monoculture. SAPf community 
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structure varied less in the mixed tree area, suggest-
ing a buffering mixture effect.

Our findings underline that a short period of res-
toration of water conditions may not allow the soil 
ecosystem to recover from drought. Long-term effects 
on soil fungal communities and their functions need 
to be addressed in future studies to improve our abil-
ity to predict the impacts of extreme precipitation 
changes on European forest soils.
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