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Genome-wide meta-analyses of restless 
legs syndrome yield insights into genetic 
architecture, disease biology and risk 
prediction

Restless legs syndrome (RLS) affects up to 10% of older adults. Their 
healthcare is impeded by delayed diagnosis and insufficient treatment. 
To advance disease prediction and find new entry points for therapy, we 
performed meta-analyses of genome-wide association studies in 116,647 
individuals with RLS (cases) and 1,546,466 controls of European ancestry. 
The pooled analysis increased the number of risk loci eightfold to 164, 
including three on chromosome X. Sex-specific meta-analyses revealed 
largely overlapping genetic predispositions of the sexes (rg = 0.96). Locus 
annotation prioritized druggable genes such as glutamate receptors 1 and 
4, and Mendelian randomization indicated RLS as a causal risk factor for 
diabetes. Machine learning approaches combining genetic and nongenetic 
information performed best in risk prediction (area under the curve 
(AUC) = 0.82–0.91). In summary, we identified targets for drug development 
and repurposing, prioritized potential causal relationships between RLS and 
relevant comorbidities and risk factors for follow-up and provided evidence 
that nonlinear interactions are likely relevant to RLS risk prediction.

RLS is a prevalent, but underdiagnosed, chronic sensorimotor disor-
der, affecting up to 10% of the elderly population in Europe and North 
America1,2. Previous genome-wide association studies (GWAS) have 
identified 22 risk loci3,4. However, objective biomarkers for prediction 
or diagnosis are not available yet. Severely impairing sleep, RLS has 
a profound impact on daily functioning, overall health and quality 
of life. Long-term treatment options are scarce and require frequent 
adjustment due to side effects2,5.

RLS is often comorbid with psychiatric disorders such as depres-
sion or anxiety as well as cardiovascular disorders, hypertension and 
metabolic conditions such as diabetes2,6. The extent to which these 
associations imply causal relations is unknown7. Epidemiological and 
clinical studies have consistently demonstrated the prevalence of RLS 
to be twice as high in women than in men8,9. The contribution of genetic 
factors to this difference has not been examined yet.

To address these shortcomings, we conducted a genome-wide 
association meta-analysis (GWAMA) of three independent GWAS. We 
integrated multiple layers of functional omics data to identify pathways 
and cell types relevant to RLS. Furthermore, our analyses included 
sex-stratified GWAS and a genetic investigation of the X chromosome. 
To facilitate translational research, we identified drug targets among 
candidate genes, used machine learning to enhance risk prediction and 
conducted extensive genetic correlation and Mendelian randomization 
(MR) analyses to identify risk factors.

Results
Pooled autosomal GWAS meta-analysis
We performed a meta-analysis of summary statistics from three GWAS 
for RLS, totaling 116,647 cases and 1,546,466 controls of European 
ancestry (Extended Data Fig. 1). The first GWAS (EU-RLS-GENE) was 
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continuous environmental factors, with the binary risk factor showing 
a slightly better fit (log10 (Bayes factor) of 11.43 compared to 9.11). In 
line with this, the G × E model showed a closer fit (P = 0.02, two- 
sample two-sided Z-test) to the h2male/h

2
female  ratio observed in the 

pooled GWAS than the model without the G × E interaction (Extended 
Data Fig. 4). Furthermore, the impact of a G × E interaction on RLS was 
higher in females than in males with a rG×E(female)/rG×E(male)  ratio of  
16.1 (95% CI = 7.09, 51.12).

X-chromosomal meta-analyses
We performed pooled as well as sex-specific X chromosome-wide  
association study (XWAS) meta-analyses using EU-RLS-GENE and 
23andMe data (Methods). Based on the pooled meta-analysis, 
SNP-based heritability h2pooled carried by the X chromosome was 0.0035  
(s.e. = 0.0010), with the sex-specific values again being lower in men 
(h2males = 0.0032, s.e. = 0.0018) than in women (h2females = 0.0047 , 
s.e. = 0.0012; Extended Data Fig. 5 and Supplementary Table 5), but 
this difference was not significant (P = 0.49). Genetic correlation 
between the two sexes was high (rg = 0.926, s.e. = 0.071, Pdifference = 0.29, 
one-sample two-sided Z-test). Our analyses identified three independ-
ent risk loci for RLS on the X chromosome in the pooled data and one 
in the male-only data (Supplementary Tables 1 and 3).

Replication of lead variants in additional datasets
We combined data from three additional cohorts to replicate the 
lead SNP associations of our meta-analyses (Methods): the discovery 
dataset of a previously published meta-analysis, a second research 
participant sample from 23andMe and a second set of blood donors 
from INTERVAL, totaling 29,028 cases and 398,815 controls. Despite 
the considerably smaller sample size, 71% of the lead SNPs from the 
pooled discovery meta-analysis were at least nominally significant in 
the replication dataset (P < 0.05) and there was a high positive correla-
tion between the effect size estimates of the discovery stage and the 
replication dataset (Pearson’s r = 0.94, P < 2.2 × 10−16; Extended Data 
Fig. 6a). The male- and female-specific analyses showed similar results 
(male, 67% of lead SNPs with P < 0.05, Pearson’s r = 0.97, P < 2.2 × 10−16; 
female, 70%, Pearson’s r = 0.92, P < 2.2 × 10−16; Extended Data Fig. 6b,c). A 
joint analysis of discovery and replication datasets revealed that all lead 
SNPs of the pooled, male-specific and female-specific meta-analyses 
reached Bonferroni-corrected significance (Supplementary Table 6).

Functional annotation and biological interpretation
We performed gene set and cell type enrichment analyses based on 
the pooled meta-analysis (Methods). We used DEPICT to perform gene 
set enrichment analyses across the genome-wide significant risk loci 
and detected 319 gene sets with a false discovery rate (FDR) < 0.05 
(Supplementary Table 7). These clustered in pathways, processes and 
structures related to neurodevelopment, neuron migration, axon guid-
ance, synapse formation and signal transduction between neurons 
(Fig. 1a). An additional gene set enrichment analysis using MAGMA 
prioritized nine biological processes related to neuron migration and 
synapse formation with an FDR <0.05 (Supplementary Table 8). This 
supported the results from DEPICT and emphasizes the key role of 
neurodevelopmental processes in RLS biology (Fig. 1b).

We performed enrichment analyses to identify tissue and cell 
types involved in RLS. We first examined body-wide human gene 
expression data. The default analysis in DEPICT identified 24 of 209 
tissue and cell types with significant enrichment (FDR < 0.05), 23 of 
which were central nervous system (CNS) tissues (Supplementary 
Table 9). Using GTEx version 8 as an independent validation dataset 
yielded highly comparable results (Supplementary Table 10). There-
fore, we focused on higher-resolution single-cell sequencing data-
sets of the nervous system in mice, available for developmental and 
postnatal stages (Methods). Only neurons and neuroblasts showed 
statistically significant enrichment, while glial and endothelial cells, 

conducted in affected individuals recruited by expert clinicians of 
the International EU-RLS-GENE consortium and ancestry-matched 
controls. The second GWAS (INTERVAL) was based on the INTER-
VAL study of blood donors in the United Kingdom, which used the 
Cambridge-Hopkins questionnaire to diagnose RLS. The third GWAS 
(23andMe) was conducted on the research participant base of 23andMe, 
identifying RLS by asking whether a diagnosis or treatment of RLS was 
received from a physician. Further details are provided in the Methods. 
Genetic correlations between the GWAS were strong but indicated 
some degree of heterogeneity, with pairwise genetic correlation (rg) 
ranging between 0.70 and 0.76 (Extended Data Fig. 2), possibly due 
to differences in phenotyping of RLS as well as in source populations 
targeted for recruitment. Therefore, we used a multivariate GWAMA 
approach (Methods). After quality control, 9,196,648 variants with 
minor allele frequency (MAF) ≥ 1% were available for meta-analysis. We 
identified 161 RLS risk loci (P < 5 × 10−8) on the autosomes, confirming 
all known loci and adding 139 new loci (Extended Data Fig. 3a). Condi-
tional analysis within each locus resulted in a total of 193 independent 
lead SNPs (Supplementary Table 1).

An LD score regression (LDSC) intercept of 1.072 (standard error 
(s.e.) = 0.013) with an inflation ratio of 0.064 (s.e. = 0.012) indicated 
that population stratification was negligible and that the inflation 
of the test statistics was driven by the polygenic architecture of RLS.

At the meta-analysis level, assuming a disease prevalence of 9%, the 
overall SNP-based heritability was estimated to be 0.20 (s.e. = 0.016) 
using LDSC (Methods). Because the meta-analysis included studies with 
different phenotyping methods, we also derived heritability estimates 
from the individual GWAS. LDSC-derived heritability in the most strin-
gently phenotyped study, EU-RLS-GENE, was higher (0.26, s.e. = 0.038) 
than that in INTERVAL (0.17, s.e. = 0.051, PEU-Interval = 0.073, two-sample 
two-sided Z-test) and 23andMe (0.14, s.e. = 0.011, PEU-23andMe = 0.0012, 
two-sample two-sided Z-test). While the LDSC model showed the 
best fit, this trend was consistent with other estimation methods  
(Supplementary Table 2a).

Sex-stratified autosomal GWAS and meta-analyses
To study sex-specific genetic effects, we conducted sex-stratified GWAS 
for the autosomes in each study and meta-analyzed the results 
(Extended Data Fig. 3b, representing 78,333 cases and 844,872 controls 
in women and 38,314 cases and 701,594 controls in men). Heritability 
was significantly higher for females in the meta-analysis (h2males = 0.13, 
s.e. = 0.012; h2females = 0.32, s.e. = 0.027; Pdifference = 1.9 × 10−8, two-sample 
two-sided Z-test). The INTERVAL study was too small for reliable appli-
cation of LDSC, but both other cohorts showed higher estimates for 
LDSC-derived heritability in females than in males (Pdifference = 0.07 in 
EU-RLS-GENE; Pdifference = 0.09 in 23andMe, two-sample two-sided Z-test; 
Supplementary Table 2b,c). Comparing the two sex-specific 
meta-analyses showed a high genetic correlation of 0.96 (s.e. = 0.018); 
however, the remaining small divergence was significant (P = 0.044, 
one-sample two-sided Z-test).

The sex-specific meta-analyses identified 58 independent lead 
SNPs in 50 risk loci in males and 155 SNPs in 130 loci in females (Sup-
plementary Tables 3 and 4). Of these loci, 23 (two in males, 21 in 
females) were not genome-wide significant in the pooled analysis. 
To prioritize loci with robust sex differences, we tested the lead 
SNPs of the pooled meta-analysis for heterogeneity of effect sizes 
between males and females. This was statistically significant for six 
loci (Extended Data Table 1).

To understand the discrepancy between the heritability estimates 
of the two sexes despite their high genetic correlation, we ran a simula-
tion study (Supplementary Note) modeling the impact of an environ-
mental risk factor and of its interaction with the genetic predisposition 
to RLS (G × E). The results obtained with the model including the G × E 
interaction recapitulated the situation observed in our real-world 
GWAS data very closely. This was the case for both binary and 
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for instance, did not (Fig. 2 and Supplementary Tables 11–14). We then 
dissected these cell types to identify specific anatomical regions and 
neurotransmitter classes (Fig. 2). We found cell types with statistically 
significant enrichment in all main compartments of the embryonic 
CNS: forebrain, midbrain, hindbrain and spinal cord. This was mir-
rored in the adult dataset, where cell types in the cerebrum, the cer-
ebellum and the brainstem were highlighted. In most regions, both 
excitatory and inhibitory neuron types showed statistically significant 
enrichment, with glutamatergic neurons in the spinal cord showing 
the strongest enrichment. Overall, developmental-stage data yielded 
more robust enrichment than adult-stage data. Analyses in human 
datasets confirmed the enrichment in neuronal cell types and the 
higher level of significance obtained in the developmental datasets 
(Fig. 2 and Supplementary Tables 15 and 16). Again, excitatory and 
inhibitory neurons showed the highest enrichment. An additional 
analysis of bulk human brain transcriptome data from BrainSpan 
indicated an enrichment in the prenatal stage, but not the postnatal 
stage, underscoring a role for neurodevelopment in susceptibility to 
RLS (Supplementary Table 17).

We used diverse functional genomic annotation and fine-mapping 
approaches to build a sum score for ranking candidate causal genes 
within risk loci (maximum score = 12, Methods). Six loci contained 
no gene with a score above 2, 69 loci contained genes reaching a 
score of up to 6, and 89 loci contained genes with a score ≥ 7 (Sup-
plementary Table 18). We focused further interpretation on the 
latter group. At 61 loci, there was a single independent lead SNP as 
well as a single top-scoring gene. These included six known loci, 

strengthening previous reports (MEIS1, PTPRD, SKOR1, NTNG1, CADM1 
and RANBP17)3,4,10–13. Because drug repurposing is one of the fastest 
options for translating GWAS findings into patient care, we mapped 
the top-scoring genes against the druggable genome and identified 13 
potential candidates targeted by existing compounds (Table 1). Among 
them, GRIA1 and GRIA4, which encode subunits of AMPA-type gluta-
mate ionotropic receptors, provided genetic evidence of a link between 
RLS and glutamate receptor function. Another interesting candidate is 
CCKBR, which encodes the predominant cholecystokinin receptor in 
the brain14,15. Our prioritization algorithm also listed SLC40A1, which 
had already been identified in the discovery stage of a previous study 
but had failed to replicate4. SLC40A1 encodes ferroportin 1, the only 
known transporter for iron export from cells, being relevant for iron 
replacement therapies16–18. To evaluate whether iron-related traits 
and RLS shared causal variants in SLC40A1, we performed additional 
colocalization analyses using recently published GWAS of peripheral 
iron measures as well as quantitative susceptibility mapping (QSM) 
and T2* magnetic resonance imaging data as readouts for brain iron 
levels19–21 (Supplementary Note). For the pallidum and the putamen, 
colocalization analysis pointed toward distinct causal variants (pos-
terior probability for H3 hypothesis of coloc absolute Bayes factor 
analysis (PP.H3.abf)pallidum ≥ 96.1% for QSM and PP.H3.abfputamen > 99% 
for T2*), whereas results were inconclusive for the caudate nucleus. 
In other subcortical brain regions, the results were not statistically 
significant. For peripheral iron measurements, we saw a probability 
of >99% for different causal variants for both ferritin and total iron 
binding capacity and RLS. In general, our analyses suggest that the RLS 
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Fig. 1 | Pathway enrichment analysis. a,b, Treemaps of significantly enriched 
(FDR < 0.05, one-sample one-sided Z-test (DEPICT) or one-sided t-test (MAGMA)) 
pathways. Respective GO terms were clustered based on their semantic similarity 
(method: Wang, GOSemSim as implemented in the rrvgo package version 1.2.0) 
using results from DEPICT (a) and results from MAGMA (b). Terms are presented 

in rectangles. Coloring indicates the membership of a term in a specific 
cluster. In addition, each cluster is visualized by thick border lines. The size of 
each rectangle corresponds to the significance of the enrichment. The most 
significantly enriched term in each cluster was selected as the representative 
term and is displayed in white font.
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association in the SLC40A1 locus is distinct from iron-related associa-
tions (Supplementary Table 19).

Genetic correlation and MR analysis
We performed a large-scale genetic correlation analysis followed 
by MR to discover potentially modifiable risk factors for RLS and to 
explore epidemiological or mechanistic overlaps with other diseases 
(Methods). Calculating genetic correlations with LDSC identified 1,054 
of 2,649 analyzed traits and diseases as significantly correlated with 
RLS (FDR < 0.05; Supplementary Table 20). To factor in the complex 
interrelations between these traits, we performed bi-serial genetic cor-
relation followed by weighted correlation network analysis of all 1,054 
traits. This clustering yielded 11 modules, which reflected independent 
higher-level trait categories linked to RLS (Methods and Fig. 3a). The 
genetic correlation results strongly converged on RLS being associated 
with lower general physical as well as mental health. They confirmed 
epidemiological associations with increased body weight, depression, 
hypertension, cardiovascular disease, diabetes and sleep disturbances 
(Fig. 3b). However, they also provided evidence for less well-described 
associations of RLS with lower educational attainment, higher risk of 
asthma and diseases of the digestive system. In line with the increased 
prevalence in females, we identified a cluster of female-specific traits 

such as age of first childbirth, hysterectomy, oophorectomy and exces-
sive menstruation (blue module, Fig. 3a,b and Supplementary Table 20).

We performed MR to infer potential causal relationships between 
RLS and representative traits from these clusters (Fig. 4 and Supple-
mentary Table 21). RLS as a common and complex disease is character-
ized by phenotypic heterogeneity and likely entails genetic pleiotropy, 
necessitating cautious interpretation of MR results. Therefore, we used 
the latent heritable confounder MR (LHC-MR) approach for the primary 
analysis, which is a robust method designed to account for pleiotropy 
and potential confounding (Methods). We confirmed known unidirec-
tional and bidirectional relations, for example, that the number of live 
births significantly increased the risk of RLS or that insomnia symptoms 
and RLS were bidirectionally linked8,9,22,23.

For other traits, LHC-MR indicated relationships being causal 
rather than due to confounding. In terms of unidirectional relation-
ships, RLS showed a significant effect (defined as PFDR < 0.05) on type 
2 diabetes with an effect estimate of aRLS→diabetes2 = 0.99 (s.e. = 0.06, 
PFDR = 1.5 × 10−68) and significant likelihood-ratio tests (LRTs) for effects 
being only causal (PLRT_causal_only = 8.5 × 10−28) and effects only of RLS on 
type 2 diabetes (PLRT_only_RLS→diabetes2 = 2.9 × 10−40). Unidirectional causal 
links to RLS with strong evidence were fresh fruit intake (decreased RLS 
risk with afruit→RLS = −0.33 ± 0.08, PFDR = 0.0002, PLRT_causal_only = 2.2 × 10−5, 
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PLRT_only_fruit→RLS = 2.3 × 10−5) and being tense or highly strung as  
well as having had a headache in the last month (elevated RLS risk  
with atense→RLS = 0.44 ± 0.06, PFDR = 8 × 10−12, PLRT_causal_only = 8.6 × 10−9,  
PLRT_only_tense→RLS = 4.2 × 10−8 and aheadache→RLS = 0.37 ± 0.08, PFDR = 2.9 × 10−5, 
PLRT_causal_only = 1.2 × 10−8, PLRT_only_headache→RLS = 6.9 × 10−7). Significant  
bidirectional relations with evidence of only causal effects were 
found for five traits (all with PLRT_causal_only < 0.05; Fig. 4 and Supple-
mentary Table 21): ease of getting up in the morning lowered RLS  
risk (aease→RLS = −0.3 ± 0.06) and vice versa (aRLS→ease = −0.09 ± 0.02).  
The frequency of tenseness or restlessness in the last 2 weeks as 

well as two traits reflecting lung function increased RLS risk and 
vice versa, with a stronger effect on RLS (atenseness→RLS = 0.62 ± 0.07, 
aRLS→tenseness = 0.11 ± 0.02, aCOPD-differential-diagnosis →RLS = 0.38 ± 0.06,  
aRLS→COPD-differential-diagnosis = 0.12 ± 0.03), while, for self-reported oste-
oarthritis, RLS had the stronger effect (aosteoarthritis→RLS = 0.46 ± 0.19,  
aRLS→osteoarthritis = 0.18 ± 0.04). We performed inverse-variance 
weighted (IVW)-MR analyses with Steiger filtering and MR-Egger 
intercept assessment as a secondary analysis. The results were con-
sistent for 14 traits, which included the unidirectional link between  
RLS and type 2 diabetes (Fig. 4 and Supplementary Table 22).

Table 1 | Drug repurposing options for top-scoring genes

GWAS locus lead SNP Prioritized gene (score) DrugBank-listed drugs or compounds Druggability tier

ID Position P value

rs10895816 11:105,285,122 1.16 × 10−25 GRIA4 (10) Talampanel, glutamic acid, CX-717

1

rs10839553 11:6,350,791 7.65 × 10−16 CCKBR (7) Pentagastrin, cholecystokinin

rs10038916 5:153,098,094 9.99 × 10−16 GRIA1 (9) Perampanel, lamotrigine, talampanel, glutamic acid, 
CX-717, CX516, tianeptine

rs306960 8:142,005,245 1.18 × 10−13 PTK2 (9) Fostamatinib, endostatin

rs12693542 2:190,445,848 1.35 × 10−13 SLC40A1 (9) Ferrous sulfate, tetraferric tricitrate decahydrate

rs824920 2:222,786,280 1.35 × 10−12 EPHA4 (7) Fostamatinib

rs714522 23:24,686,539 2.26 × 10−8 POLA1 (7) Fludarabine, clofarabine, cladribine, nelarabine

rs2067133 5:102,364,542 7.59 × 10−19 PAM (11) Copper, vitamin C

2rs17123518 20:31,248,265 1.88 × 10−11 DNMT3B (7) Decitabine

rs56350804 2:217,560 3.55 × 10−11 ACP1 (10) Adenine

rs72718216 14:69,455,773 3.23 × 10−34 ACTN1 (9) Copper, human calcitonin

3rs11142701 9:73,762,953 6.01 × 10−15 TRPM3 (11) Primidone

rs326779 11:29,617,859 3.81 × 10−11 KCNA4 (7) Dalfampridine

Genes are named according to Ensembl gene name nomenclature and are mapped to the druggability tiers as provided by Finan et al.33. For each gene, the corresponding risk locus 
is indicated with its respective lead SNP and the corresponding two-sided P value from the pooled N-weighted genome-wide association meta-analysis (N-GWAMA). Approved and 
investigational drugs and small compounds targeting the products of these genes were extracted from the DrugBank Online database (release 5.1.8, https://go.drugbank.com/). ID, dbSNP rsID; 
position, chromosome:position on GRCh37 (hg19); score, sum score of gene prioritization in risk loci.
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Considering the proposed involvement of brain iron homeosta-
sis in RLS24 and SLC40A1 as a candidate gene in our GWAMA, we also 
investigated peripheral and brain iron traits. Both genetic correla-
tion and MR analyses did not reveal strong effects (Supplementary 
Tables 21 and 23). Only white matter hyperintensity measured by T2* 
was significantly correlated with RLS in the full dataset (rg = 0.126, 
s.e. = 0.046, P = 0.0065, PFDR = 0.016, one-sample two-sided Z-test). 
LHC-MR revealed a significant effect of peripheral calculated transfer-
rin levels on RLS; however, this appears to be largely attributable to 
confounding factors (PLRT_latent_only = 0.005).

Development and validation of a risk prediction model
We assessed the predictive performance of basic linear models as well 
as that of models integrating interaction effects and time-dependent 

effects using genetic data and basic demographic variables such 
as age, sex and age of disease onset (Methods and Supplementary 
Note). We employed three classes of models, generalized linear mod-
els (GLMs) with or without interaction terms, random forest (RF) 
models and deep neural network (DNN) models, implemented as a 
binary or a time-to-event (survival) classifier. Genetic risk was calcu-
lated as a polygenic risk score (PRS) using individual dosages of 216 
genome-wide significant SNPs (PRS.lead), because this score showed 
better performance than a score using genome-wide data (LDpred2) 
with an area under the receiver operator characteristic curve (AUC) of  
AUCLDpred2 = 0.66 ± 0.019 compared to AUCPRS.lead = 0.73 ± 0.018 
(P = 0.0056, two-sample two-sided Z-test).

Overall, the machine learning survival classifier models con-
sidering nonlinear interactions and time-varying effects performed 
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best (Fig. 5). The random survival forest model (RSF-5yr; 5-year 
period) and the DNN survival model (DNNsurv-5yr) showed 
comparable performance: AUCRSF-5yr = 0.91 ± 0.008 compared 
to AUCDNNsurv-5yr = 0.90 ± 0.012 in the EU-RLS-GENE dataset and 
AUCRSF-5yr = 0.87 ± 0.005 compared to AUCDNNsurv-5yr = 0.86 ± 0.012 in 
the INTERVAL dataset. Additional performance metrics such as odds 
ratio (OR) and area under the precision–recall curve yielded the same 
trends (Supplementary Table 24).

We also evaluated the contribution of the interaction effects to 
the model performance either directly (GLMs) or indirectly by  
calculating the incremental gain in explained variance for the DNN  
and RF models (Nagelkerke’s pseudo-R2; Methods). For the GLM,  
we found a significant interaction between PRS and age (β = −0.47, 
s.e. = 0.08, P = 4.3 × 10−9, one-sample two-sided Z-test). The impact of 
the PRS was significantly lower in the 60+ age group (ORoverall = 5.05 
(4.69–5.45), OR60+ = 3.70 (3.27–4.19), Pdifference = 2.6 × 10−5, two-sample 
two-sided Z-test). We did not find a significant sex difference in  
overall PRS effects (ORmale = 4.70 (4.16–5.31), ORfemale = 5.28 (4.80–5.80), 
Pdifference = 0.141, two-sample two-sided Z-test), even though the effect 
of sex was highly significant (OR = 2.54 (2.33–2.78), P = 1.93 × 10−94, 
one-sample two-sided Z-test). In the best-performing RF and DNN 
binary classification models, pseudo-R2 was 0.329 (s.e. = 0.003)  
and 0.324 (s.e. = 0.005), almost 1.5 times higher than in the GLM 
(R2 = 0.221, s.e. = 0.003). The time-to-event classifier models showed 
a further increase in R2 by approximately 10% for both models 
(R2RSF-5yr = 0.363 , s.e. = 0.004; R2DNNsurv-5yr = 0.354 , s.e. = 0.005).  
Overall, nonlinear relationships and interactions accounted for  
39.1% (s.e. = 1.96%) of the explained variance.

Discussion
Performing the largest meta-analysis of RLS GWAS to date, we have 
increased the number of known risk loci eightfold. We included three 
cohorts, representative of commonly used strategies to assess behav-
ioral phenotypes, ranging from in-person interviews to a single online 
question. They also reflect the breadth of target populations for recruit-
ment into GWAS, including clinical cohorts as well as samples from the 
general population. Despite this heterogeneity, genetic correlations 

were strong between the cohorts, justifying their combination in a 
multivariate meta-analysis.

We investigated sex-specific genetic susceptibility in RLS. While 
the heritability was significantly higher in women, the genetic correla-
tion between the sexes was close to one. Results from our simulation 
study pointed to an unobserved environmental risk factor and cor-
responding gene–environment interactions driving the difference 
in heritability. Our analyses emphasize the importance of tracking 
environmental exposures in genetically susceptible individuals and 
may motivate re-interpretation of previous observations in RLS, for 
example, of parity potentially driving the higher prevalence observed 
in women8,9. In line with the high genetic correlation between the sexes, 
there were only six loci where risk variants showed significant sex  
differences in effect size. An additional two loci in males and 21 loci 
in females were genome-wide significant in only one sex but did not 
reach significance in the between-sex heterogeneity tests. With larger 
sample sizes, some of these may turn out to be true sex-specific asso-
ciation signals.

Our enrichment analyses corroborate results from earlier GWAS 
of RLS by prioritizing CNS tissues and primarily pathways linked to 
neurodevelopment and neurotransmission3. Interestingly, the enrich-
ment effects were consistently stronger in fetal and prenatal datasets. 
This suggests that development may represent a critical period in which 
genetic contributors to RLS susceptibility act on the activity, connectiv-
ity or composition of neurons in the CNS. Analyses in developmental 
mouse CNS single-cell data prioritized excitatory glutamatergic neu-
rons in the spinal cord, hindbrain, midbrain and forebrain but also 
γ-aminobutyric acid (GABA)ergic neurons in at least the midbrain and 
hindbrain. This diversity was reflected in the adult dataset, with again 
mostly excitatory neurons showing enrichment. Overall, the diversity 
of cell types and structures with significant enrichment corresponds 
to the complex phenotype of RLS, which includes sensory and motor 
symptoms as well as a circadian pattern. Unfortunately, the current 
scarcity of high-resolution data limits the ability of our study to validate 
these observations in humans. Tissue enrichment analysis depends on 
the methodology as well as on the composition of the datasets. Specifi-
cally, definite exclusion of cell types is difficult as they may not have 
been represented in the dataset. We tried to address these limitations 
by using two different enrichment methods as well as several datasets.

Interestingly, except for the prioritization of SLC40A1 (ferropor-
tin), we did not identify strong links between iron metabolism and 
genetic risk factors for RLS in our pathway and genetic correlation 
analyses. However, the T2* and QSM values we used as surrogates for 
brain iron content are differentially influenced by iron and myelin; 
therefore, future magnetic resonance imaging GWAS with higher 
anatomical resolution may allow better dissection of genetic effects 
involved in iron and myelin content25,26. Moreover, we cannot rule out 
an incomplete representation of brain or general iron homeostasis in 
the currently available pathway definitions.

Our study provides discoveries relevant for advancing clinical 
care in RLS. We identified several genes that are druggable and in some 
cases targets of known drugs. For example, the prioritization of two 
glutamate receptors suggests that the efficacy of anticonvulsants in 
RLS should be re-assessed. Small open trials have shown good response 
to glutamate receptor antagonists such as perampanel or lamotrigine 
in RLS27,28. The benefit of α2δ ligands such as pregabalin or gabapentin 
adds further evidence that anti-epileptic drugs could be an additional 
therapeutic option29. Investigation into a completely new line of treat-
ment is suggested by the prioritization of the cholecystokinin B recep-
tor, a neuropeptide receptor that has been linked to pain modulation 
and anxiety-related behavior15,30. Furthermore, our genetic correla-
tion and MR analyses identified relationships of potential medical 
relevance between RLS and several traits. In line with previous reports, 
the strongest genetic correlations with RLS were observed for insomnia 
symptoms and for depression22,23. MR analysis showed bidirectional 
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effects, with the full model (causal as well as confounding effects) 
performing best. Probably, both pleiotropic genetic effects as well as 
the presence of RLS cases in the depression and insomnia cases and 
vice versa are involved. Disentangling the contributions of shared 
genetics and of case misclassification to this relationship will require 
large datasets with high-quality phenotyping of both insomnia and RLS. 
We saw a robust and significant unidirectional relationship of RLS with 
type 2 diabetes, with consistent results between LHC-MR and standard 
IVW-MR. The causal-only-effect model performed best in LHC-MR, sug-
gesting that this link from RLS to diabetes is unlikely due to a heritable 
confounder. Thus far, cross-sectional and clinical studies have yielded 
inconsistent results regarding the causal relationship between RLS 
and type 2 diabetes31. Our MR analyses support a causal effect of RLS 
increasing the risk of type 2 diabetes. We found likely causal, albeit bidi-
rectional relationships between RLS and osteoarthritis and between 
RLS and diseases of the respiratory system. Clinical or epidemiological 
studies on RLS in these disorders are limited or even non-existent at 
present; therefore, patients could benefit from increased awareness 
and research activities. The beneficial effect of modifiable behaviors 
on reducing the risk of RLS is underscored by findings that a healthy 
lifestyle, for example, fresh fruit consumption, is linked to lower RLS 
risk. Due to the inherent limitations of MR analysis, these results should 
not be overinterpreted. Even though the LHC-MR approach seems 
robust across a range of scenarios with different violations of the MR 
assumptions, it has its own drawbacks32. Therefore, we advise leverag-
ing our findings to inform future clinical and epidemiological research 
aimed at gathering further evidence to support causality.

Predicting the likelihood of developing RLS is crucial for targeted 
disease-prevention strategies. We compared traditional PRSs to more 
advanced machine learning approaches integrating interaction and 
nonlinear effects. The latter showed superior performance compared 
to simple PRS-only or PRS-plus-linear interactions models. In our 
simulation study with only limited phenotypic data, the RF and DNN 
approaches provided comparable results. Enhanced phenotypic data 
may amplify the effectiveness of DNNs for predictive purposes. Two 
aspects limited our options for risk prediction. First, the definitive 
RLS cases (diagnosed by face-to-face interviews) with individual-level 
data required for developing the models had no detailed clinical data. 
Second, they were part of a case–control cohort and therefore do not 
reflect the general population structure, which necessitated creating 
a simulated dataset from the original data. Nevertheless, we were 
able to achieve an AUC of up to 91% for the 5-year prediction window 
with the machine learning approaches and validated our results in 
the INTERVAL study, where the performance was comparable with an 
AUC of up to 87%.

Collectively, our study marks a substantial advance in deciphering 
the genetic basis of RLS and paves the way for improving treatment and 
prevention strategies. We acknowledge two important limitations. 
First, biobank-scale longitudinal datasets with detailed medical and 
lifestyle information and high-quality RLS phenotyping are lacking. 
This type of data is needed to dissect the relationships discovered 
by genetic correlation and MR analyses as well as to study the roles 
of age, sex and other environmental effects and their interactions 
in shaping the risk and course of disease. Second, large-scale GWAS 
for RLS are currently limited to populations of European ancestry. 
An extension to non-European populations is imperative to improve 
genetic fine-mapping at shared loci and to adapt disease concepts to 
these populations with respect to non-shared genetics.
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Methods
Ethics statement
All studies were approved by the respective local ethical committees, 
and all participants provided informed consent. The EU-RLS-GENE 
study was approved by an institutional review board at the University 
Hospital of the Technical University of Munich (2488/09). The INTER-
VAL dataset was approved by the National Research Ethics Service  
Committee East of England—Cambridge East (REC 11/EE/0538). Par-
ticipants of 23andMe provided informed consent under a protocol 
approved by the external AAHRPP-accredited IRB, Ethical and Inde-
pendent (E&I) Review Services. As of 2022, E&I Review Services is 
part of Salus IRB (https://www.versiticlinicaltrials.org/salusirb). The 
deCODE dataset was approved by the National Bioethics Committee of  
Iceland. The Danish Blood Donor Study (DBDS) dataset was approved 
by the Scientific Ethical Committee of Central Denmark (M-20090237) 
and by the Danish Data Protection agency (30-0444). GWAS stud-
ies in the DBDS were approved by the National Ethical Committee  
(NVK-1700407). The Emory dataset was approved by an institutional 
review board at Emory University, Atlanta, GA, USA (HIC ID 133-98).

GWAS phenotyping and genotyping
Some of the samples were included already in our previous GWAS 
meta-analysis3. The reported sample numbers are the final sample 
numbers after quality control. Additional details are provided in the 
Supplementary Note.

Discovery meta-analysis. International EU-RLS-GENE consortium 
(7,248 cases (2,479 males and 4,769 females) and 19,802 controls (10,422 
males and 9,380 females)). RLS cases were recruited in specialized out-
patient clinics for movement disorders and in sleep clinics in European 
countries (Austria, Czech Republic, Estonia, Finland, France, Germany 
and Greece), Canada (Quebec) and the USA. RLS was diagnosed in a 
face-to-face interview by an expert neurologist or sleep specialist based 
on IRLSSG diagnostic criteria1. Controls were either population-based 
unscreened controls (Austria, Estonia, Finland, France, Germany) or 
healthy individuals recruited in hospitals (Canada, Czech Republic, 
Greece, USA). A total of 6,228 cases and 10,992 ancestry-matched  
controls had been genotyped on the Axiom array and were the study 
sample used in our previous meta-analysis. For the current study, 
1,020 cases and 8,810 ancestry-matched controls were added who 
were genotyped on the Infinium Global Screening Array-24 version 
1.0. Genotype calling was performed in GenomeStudio 2.0 according 
to the GenomeStudio Framework User Guide, and identical quality- 
control criteria were used for both datasets. Imputation was performed 
on the UK10K haplotype and 1000 Genomes Phase 3 reference panel 
using the EAGLE2 (version 2.0.5) and PBWT (version 3.1) imputation 
tools as implemented in the Sanger imputation server. Imputed SNPs 
with pHWE ≤ 1 × 10−5 or an INFO score < 0.5 were filtered out.

INTERVAL study (3,491 cases (1,291 males and 2,200 females) and 23,741 
controls (12,511 males and 11,230 females)). The INTERVAL study 
includes whole-blood donors recruited in England between 2012 and 
2014. The Cambridge-Hopkins Restless Legs questionnaire was used 
to define RLS cases, and probable and definite cases were combined to 
form a binary phenotype as described previously3. A detailed descrip-
tion of Axiom ‘Biobank’ array genotyping and the imputation proce-
dure plus related quality control in the INTERVAL trial can be found 
elsewhere34. Briefly, imputation was performed using a joint UK10K 
and 1,000 Genomes Phase 3 (May 2013 release) reference panel via 
the Sanger imputation server, and variants with MAF ≥ 0.1% and INFO 
score ≥ 0.4 were retained for analysis.

Research participant cohort for 23andMe (105,908 cases (34,544 males 
and 71,364 females) and 1,502,923 controls (678,661 males and 824,262 
females)). This study includes research participants of 23andMe who 

agreed to participate in research studies. The RLS phenotype was 
defined by self-reported responses to survey questions that assessed 
whether someone had ever been diagnosed with RLS or had ever 
received treatment for RLS as described previously3. Participants 
were genotyped on one of five platforms, all using Illumina arrays with 
added custom content (HumanHap550+ BeadChip, OmniExpress+ 
BeadChip, Infinium Global Screening Array). Participant genotype 
data were imputed in a two-step procedure using a reference panel 
created by combining the May 2015 release of the 1000 Genomes Phase 
3 haplotypes with the UK10K imputation reference panel. Pre-phasing 
was carried out using either the internally developed tool Finch, which 
implements the Beagle algorithm, or EAGLE2. Imputation was per-
formed with Minimac3.

Replication meta-analysis. Research participant cohort for 23andMe 
(19,214 cases and 347,000 controls). This cohort includes only individu-
als who had not been part of the 23andMe GWAS used in the discovery 
meta-analysis. Cases and controls were defined as described above.

INTERVAL replication cohort (1,591 cases and 10,000 controls). Individu-
als in this cohort do not overlap with samples included in the INTERVAL 
GWAS used in the discovery meta-analysis. RLS status was assessed with 
a single question on having received a diagnosis of RLS.

For 23andMe and INTERVAL, genotyping and imputation was car-
ried out as described for the discovery stage.

deCODE–DBDS–Emory cohort (8,223 cases and 41,815 controls). This 
dataset included the DBDS, a cohort from deCODE Genetics, Iceland, 
the Emory Hospital Atlanta, USA and the Donor InSight-III study. Phe-
notyping and genotyping procedures have been described in detail 
previously4.

SNP-based association analysis
Discovery-stage GWAS of autosomes. EU-RLS-GENE GWAS. First, the 
Axiom- and the GSA-genotyped datasets were analyzed separately 
using SNPTEST version 2.5.4 with genotype dosages and assuming an 
additive model. Age, sex and the first ten PCs from the MDS analysis 
in PLINK were included as covariates. These summary statistics of the 
two datasets were then combined by fixed-effect inverse-variance 
meta-analysis (STERR scheme) using METAL (release 2011-03-25)35. 
One round of genomic control was performed in each dataset before 
meta-analysis.

INTERVAL GWAS. Assuming an additive genetic model, genotype dos-
ages were analyzed in SAIGE (0.35.8.8) using a linear mixed model to 
account for cryptic relatedness and saddle point approximation to 
account for case–control imbalance36. Age, sex and the first ten PCs of 
ancestry were included as potential genomic confounders. The analysis 
was restricted to genetic variants with MAF ≥ 0.001, INFO ≥ 0.4 and a 
minor allele count of 10.

The 23andMe GWAS. Association analysis was conducted by logistic 
regression (LRT) assuming additive allelic effects and imputed dosages. 
Age, sex, genotyping platform and the first ten PCs were included as 
covariates.

In all individual GWAS, sex-specific analyses were performed using 
the same pipelines as those for the pooled analyses minus adjustment 
for sex as a covariate.

Discovery-stage meta-analysis for autosomes. We applied the same 
methods for both the pooled and the sex-specific GWAS. The three inde-
pendent datasets were combined in a multivariate GWAS meta-analysis 
using the N-weighted-GWAMA R function (version 1.2.6)37. To assess 
the possibility of heterogeneity of SNP effects between the studies, 
Cochran’s Q-test was applied as described in METAL.
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Discovery-stage meta-analysis for chromosome X. Data for the X 
chromosome were available in two of the discovery-stage datasets: 
EU-RLS-GENE and 23andMe.

EU-RLS-GENE XWAS. For the pooled association analysis, male  
genotypes were coded as 0/2 (assuming no dosage compensation 
in males). All other methods were identical to those of the autoso-
mal analyses. In sex-stratified analyses, males were coded as 0/1 and  
females as 0/1/2.

The 23andMe XWAS. In both pooled and sex-stratified analyses, males 
were coded as 0/2 and females as 0/1/2.

Pooled and sex-specific meta-analyses were performed using the 
N-GWAMA R function as in the autosomal analysis. Because N-GWAMA 
operates with Z scores, the type of male allele coding did not affect 
the results.

Sex-specific meta-analysis association analysis. We performed 
sex-specific (male-only and female-only) meta-analyses of the cor-
responding GWAS using the N-GWAMA approach as described above. 
The results were used to estimate sex-specific heritability and genetic 
correlation between the sexes.

To detect sex-specific effects, we tested all independent (r2 < 0.2) 
genome-wide significant SNPs of the pooled and sex-specific 
meta-analyses for heterogeneity of effect sizes between the two sexes 
using Cochran’s Q-test (one-sided) and a Bonferroni-corrected signifi-
cance threshold of Padj ≤ 0.05/221.

Replication-stage association analysis. For 23andMe and INTERVAL, 
quality control and statistical analysis were performed as described 
for the discovery stage. Statistical analysis for the DBDS, deCODE–
Emory and Donor Insight studies has been described previously4. 
Meta-analysis was performed using Han and Eskin’s random-effects 
model in METASOFT (RE2, METASOFT version 2.0.1)38.

Identification of risk loci and independent lead SNPs. To define 
independent risk loci, we first used the ‘--clump’ command in PLINK 
(version 1.90b6.7)39 to collapse multiple genome-wide significant 
association signals based on linkage disequilibrium (LD) and dis-
tance (clump-r2 > 0.05, clump-kb < 500 kb clump-p1 < 5 × 10−8, 
clump-p2p-value < 10−5). We then performed conditional analyses 
to identify secondary independent signals in risk loci using GCTA 
(version 1.93.0beta) with the ‘-cojo-slct’ option, the P-value threshold 
for genome-wide significance set at 5 × 10−8, the distance window set 
at 10 Mb and the colinearity cutoff set at 0.9 (ref. 40). LD was derived 
from EU-RLS-GENE genotype data. Independent genome-wide sig-
nificant signals were merged into one genomic risk locus if either 
their LD block distance was <500 kb or their clumped regions  
were overlapping.

Heritability analyses
Heritability is reported on the liability scale unless otherwise indicated. 
Prevalence estimates were derived from the population cohorts INTER-
VAL and 23andMe themselves. For the EU-RLS-GENE case–control 
dataset and for the meta-analysis, prevalence estimates were derived 
from previous publications on European ancestries.

We estimated SNP-based heritability under several different herit-
ability models. LDSC (version 1.0.1) was used with standard settings, 
invoking a model where SNPs with different MAFs are expected to 
contribute equally to heritability41. LDAK (version 5.0) was used with 
standard settings to implement the LDAK model, where SNP contri-
butions depend on LD structure and MAF as well as the BLD-LDAK 
and BLD-LDAK+Alpha models, which incorporate additional 
annotation-based features42. All analyses were based on summary 
statistics and filtering according to LDSC default settings, that is, 

HapMap3 non-HLA SNPs with MAF > 0.01 and INFO ≥ 0.9. The Akaike 
information criterion of each of these models was reported for model 
comparison. Further details are provided in the Supplementary Note.

For X chromosome heritability estimation, we followed the 
approach described by Lee et al. and used the summary statistics of 
the N-GWAMA meta-analysis43. For sex k, the SNP heritability h2k   
relates to the expected χ2 statistics as 𝔼𝔼𝔼χ2k) ≈ 1 + Nkh2k/Meff, where Nk is 
the GWAS sample size, and Meff is the effective number of loci within 
the examined genomic region (assumed to be the same in males and 
females). For calculation of the (sex-specific) relative heritability con-
tribution of the X chromosome, χ2 statistic-based h2 was also calculated 
for the autosomes.

Genetic correlation analysis
For autosomal data, genetic correlations were calculated using  
LDSC (version 1.0.1) using the same SNP filtering criteria and the  
two-step estimation option as in the heritability estimation. Because 
the LDSC framework is not applicable for chromosome X, the genetic 

correlation coefficient ̂rg was estimated as ̂rg =
ẐmZf

√( χ̂2f− 1)( χ̂
2
m− 1)

, where Z 

and χ2 are the Z scores and mean χ2 estimates from the female (f) and 
male (m)-specific studies.

In addition to between-study and between-sex genetic correla-
tions, we performed a large-scale genetic correlation screen for RLS 
(represented by the pooled autosomal meta-analysis data) and other 
traits using LDSC as described above. Sources and filtering criteria 
for summary statistics included in this screen are provided in the Sup-
plementary Note.

Traits significantly correlated with RLS (FDR < 0.05, one-sample 
two-sided Z-test) were taken forward to a bi-serial genetic correlation 
analysis. Here, we computed the pairwise ̂rg between all traits.

An unsigned weighted correlation matrix was built using the  
pairwise ̂rg  and used as input for a weighted correlation matrix  
analysis to perform hierarchical clustering and to detect modules  
with the WGCNA package (version 1.69)44. The following settings  
were applied in WGCNA: softPower, 6; network type, ‘unsigned’;  
TOMDenom, ‘min’; Dynamic-cutree, method = ‘hybrid’; deepSplit, 2; 
minModuleSize, 30; pamStage, TRUE; pamRespectsDendro, FALSE; 
useMedoids, FALSE. The defining trait categories in each module  
were determined by consensus through independent review of  
the within-module cluster structure by visual inspection of network 
plots at two sites (Helmholtz and Cambridge).

Mendelian randomization
To select traits for MR, we defined two to eight clusters in a module 
based on its complexity. In each cluster, the traits were ranked accord-
ing to the significance of their correlation with RLS, and we selected 
the most significantly correlated medical conditions or potentially 
modifiable lifestyle factors. We supplemented this list with traits for 
which an association with RLS has been described in the literature.

Using R version 4.0.4, we filtered GWAS datasets to uncorrelated 
SNPs (r2 < 0.01 in the European 1000 Genomes Phase 3 data), aligned 
them to GRCh37 and mapped them to dbSNP 153 with the gwasvcf pack-
age (version 0.1.0). We harmonized effect alleles across studies using 
the TwoSampleMR package (version 0.5.6)45. Palindromic variants with 
ambiguous allele frequencies and those with unresolved strand issues 
were excluded from analysis.

To avoid violations of the classical MR assumptions when studying 
correlated and likely pleiotropic traits, we used a robust method for 
bidirectional MR, LHC-MR (version 0.0.0.9000)32. Traits with low herit-
ability (h2 < 2.5%, Ph2 > 0.05) were excluded from the analysis. Signifi-
cance of directionality and confounding effect were tested by 
comparing the goodness of fit of six degenerate LHC-MR models (only 
latent effect, only causal effect, only causal effect to RLS, only causal 
effect from RLS, no causal effect to RLS and no causal effect from RLS) 
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to the full model. We supplemented these analyses with those based 
on the IVW and MR-Egger methods.

Gene prioritization in risk loci
All analyses were performed on the N-GWAMA results of the pooled 
meta-analysis. We applied several complementary approaches to 
prioritize candidate genes in the genome-wide significant risk loci. 
These included the gene-prioritization pipeline of DEPICT (version 
1.rel194), three prioritization workflows (positional, eQTL-based and 
topology-based mapping) provided on the FUMA platform (https://
fuma.ctglab.nl/, version 1.3.6a), a gene-level GWAS using MAGMA ver-
sion 1.08, a transcriptome-wide association study using S-PrediXcan 
and S-MultiXcan (MetaXcan package version 0.7.4), a colocalization 
analysis with eCAVIAR (version 2.2) and statistical fine-mapping with 
CAVIARBF (version 0.2.1)46–52. In the DEPICT, FUMA eQTL-based map-
ping, MAGMA and transcriptome-wide association study analyses, 
a gene was considered prioritized if it had an FDR < 0.05; in FUMA 
topology-based mapping, if it had an FDR < 1 × 10−5; and in eCAVIAR, if 
it had a colocalization posterior probability > 0.1. In FUMA positional 
mapping, a gene was considered prioritized if genome-wide signifi-
cant SNPs physically mapped to it. In statistical fine-mapping, a gene 
was considered prioritized if an SNP in the 95% credible set of the  
risk locus could be linked to it by either eQTL, chromatin interaction  
or positional mapping. In addition, we checked whether a gene con-
tained genome-wide significant coding variants (the gene was consid-
ered prioritized if it did) and whether a gene mapped to a gene set that 
was significant in our enrichment analyses (the gene was considered 
prioritized if it did). We combined the results of all approaches per gene 
in a prioritization score by summing up the individual results, counting 
‘not prioritized’ as 0 and ‘prioritized’ as 1. Further details are provided 
in the Supplementary Note.

Enrichment analyses
Gene set and pathway enrichment analyses. DEPICT. We ran DEPICT 
to detect enrichment of gene sets across risk loci as well as to identify 
tissue and cell types where expression is enriched for genes across risk 
loci. We set the significance thresholds for lead SNPs at 1 × 10−5 and at 
5 × 10−4 for null GWAS; all other settings were the same as those used 
for gene prioritization (see above). DEPICT was run with all built-in 
datasets. eQTL mapping and functional prioritization were evaluated 
in DEPICT’s built-in eQTL and reconstituted gene sets.

Excluding 12 SNPs not reaching genome-wide significance in the 
joint analysis of discovery and validation did not change the main 
results (Supplementary Table 25).

MAGMA. MAGMA (version 1.08) was used to perform gene set enrich-
ment testing for pathway identification. MAGMA conducts competi-
tive gene set tests with correction for gene size, variant density and 
LD structure. A total of 7,522 gene sets representing the GO biological 
process ontology (MSigDB version 7.1, C5 collection, GO:BP subset) 
were tested for association. We adopted a significance threshold of 
FDR < 0.05 (one-sided t-test).

Tissue and cell type enrichment analyses. Using the settings 
described above, we tested enrichment of RLS heritability with DEPICT 
across 209 different tissue types covered in the built-in dataset. For an 
independent validation on the tissue level as well as for the analyses on 
the cell type level, we mainly used the CELLEX and CELLECT tools53. 
CELLECT provides two different gene-prioritization approaches for 
heritability enrichment testing, S-LDSC and MAGMA covariate analy-
sis54,55. For compatibility of the results, the summary statistics of the 
pooled N-GWAMA analysis were filtered using settings identical to 
those in our LDSC heritability analyses. Following the recommenda-
tions by Timshel et al.53, we applied a ‘tiered’ approach by starting with 
body-wide datasets and then focusing on CNS-centric datasets. We used 

CELLECT software (version 1.3.0) with default settings but updated to 
MAGMA version 1.08 to test enrichment of RLS heritability in cell type- 
or tissue-specific genes for datasets with publicly available RNA-seq 
data. These analyses require a measure of expression specificity for 
each gene in a cell or tissue type. We either used CELLEX (version 1.2.1) 
to compute expression specificity or relied on precomputed CELLEX 
expression specificity scores. Human adult datasets without publicly 
available raw RNA-seq data were analyzed using MAGMA_Celltyping 
(version 2.0.0) in top10 mode. The list of input datasets is provided 
in the Supplementary Note, and results of our evaluation of both 
approaches showing high correlation are presented in Supplementary 
Fig. 1 and Supplementary Table 26.

Risk prediction
We applied three types of models for genetic risk evaluation and RLS 
risk prediction: GLM with and without interaction terms, RF models 
and DNN models. These were implemented as binary classifiers as well 
as time-to-event classifiers.

Training of the models and evaluation by tenfold cross-validation 
were based on the EU-RLS-GENE Axiom subset. Therefore, we first 
conducted a meta-analysis excluding this dataset to generate unbiased 
summary statistics to be used in all models. Because GWAS have an 
ascertainment bias, we constructed a simulation cohort dataset by 
resampling of the EU-RLS-GENE Axiom subset based on the year of birth 
of the sampled individuals, their ages at onset and the demographic 
composition of the German population (Supplementary Note). We 
calculated the PRS using dosages of 216 independent lead SNPs of our 
discovery meta-analyses.

For a baseline comparison of the predictive power of this score 
to a PRS based on genome-wide data, we calculated a genome-wide 
PRS using the LDpred2-auto option of LDpred2 (R package bigsnpr 
version 1.12.2)56. Variants and the LD reference panel were based on 
the HapMap3 EUR dataset, and window size for calculating SNP cor-
relation was set to 3 cM.

Binary classification models were evaluated by Nagelkerke’s 
pseudo-R2, receiver operator characteristic AUC and precision–
recall AUC. A 5-year binary classifier was constructed for each of the 
time-to-event models by predicting the label until the next 5 years and 
evaluated by the metrics for binary classification.

To evaluate the contribution of the interaction effects to model 
performance, we estimated the effect sizes of interaction terms such 
as PRS × age by logistic regression:

P𝔼RLS = 1|PRS, sex, age,PC)

= 1
1 + e−(β0+β1PRS+β2sex+β3age+β4PRS×sex+β5PRS×age+β6sex×age+β7PRS×sex×age+γγγ⋅PC)

,

where age is the dummy variable of age in bins of 20 years, PC indicates 
the first ten PCs from the MDS analysis in PLINK, γ is a vector of effect 
sizes of PCs and the PRS = Σjwjgj, where wj and gj are the per-allele effect 
size and dosage of the j-th SNP, respectively.

For the DNN and RF models, we used these logistic regression 
estimates as the baseline and then further estimated the interaction 
effect sizes indirectly by calculating the incremental gain in explained 
variance (Nagelkerke’s pseudo-R2) from model0 to model1 as:

R2 = (1 − (L (model0) /L𝔼model1))
2
N ) (1 − L𝔼model0)

2
N )

−1
,

where L is the likelihood function for a logistic regression model with 
the first ten PCs included as covariates.

Binary classification models, GLMs and RF and DNN mod-
els were built, optimized and trained by H2O AutoML (version 
3.36.0.2) in R (version 4.0.2)57. Time-to-event models were imple-
mented with randomForestSRC (version 3.0.1) in R (version 4.0.2) 
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and PyTorch58 (pycox version 0.2.1 and PyTorch version 1.6.0). 
Cross-validation-based Nagelkerke’s pseudo-R2 was calculated in 
R version 4.0.2.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Summary statistics of the meta-analysis are publicly available for the top 
10,000 SNPs at Zenodo (https://doi.org/10.5281/zenodo.10804907)59. 
Summary statistics of the discovery-stage International EU-RLS-GENE 
consortium GWAS and the INTERVAL GWAS are available at the GWAS 
Catalog (https://www.ebi.ac.uk/gwas/) under accession codes 
GCST90399568, GCST90399569, GCST90399570, GCST90399571, 
GCST90399572 and GCST90399573. The full GWAS summary statistics 
for the 23andMe discovery dataset have been made available through 
23andMe to qualified researchers under an agreement with 23andMe 
that protects the privacy of the 23andMe participants. Datasets have 
been made available at no cost for academic use. Please visit https://
research.23andme.com/collaborate/#dataset-access/ for more infor-
mation and to apply to access the data. Additional data used for tissue 
and cell type enrichment analysis are available here: developmental 
(http://mousebrain.org/development/downloads.html) and adult 
single-cell RNA-seq datasets (http://mousebrain.org/adult/downloads.
html) from the Mouse Brain Atlas (http://mousebrain.org/), the Human 
Gene Expression During Development dataset from the BBI-Allen Single 
Cell atlases (https://descartes.brotmanbaty.org/), the BrainSpan Devel-
opmental Transcriptome RNA-seq dataset from the BrainSpan Atlas 
of the Developing Human Brain (https://www.brainspan.org/static/
home), the V8 RNA-seq dataset (GTEx_Analysis_2017-06-05_v8_RNASe-
QCv1.1.9_gene_reads.gct.gz) from GTEx (https://gtexportal.org/home/
datasets) and the human C8 collection from MSigDb version 7.4 (http://
software.broadinstitute.org/gsea/msigdb/), with legacy versions avail-
able at https://www.gsea-msigdb.org/gsea/downloads_archive.jsp 
after creating a user account with GSEA–MSigDB. Summary statistics 
of GWAS for genetic correlation and MR analyses are available at the 
University of Bristol Integrative Epidemiology Unit OpenGWAS server 
(https://gwas.mrcieu.ac.uk) and the GWAS Atlas (https://atlas.ctglab.
nl/). Additional GWAS summary statistics for iron-related traits are 
available at https://www.fmrib.ox.ac.uk/ukbiobank/gwas_resources/
index.html, https://open.win.ox.ac.uk/ukbiobank/big40/BIGv2/ and 
https://www.decode.com/summarydata/. A complete list of sources 
used for annotation with FUMA is available at https://fuma.ctglab.
nl/links and https://fuma.ctglab.nl/tutorial. Auxiliary files for use 
with MAGMA are available at https://ctg.cncr.nl/software/magma. 
Additional files for use with LDSC and LDAK are available at https://
alkesgroup.broadinstitute.org/LDSCORE/. Information about drug 
targets is available at the free-to-access database DrugBank Online 
(https://go.drugbank.com/).

Code availability
We provide information on publicly available software and settings in 
the Methods and the Supplementary Note. For custom data analysis, 
we describe the theoretical background as well as the models used in 
detail in the Supplementary Note. Custom code scripts are available on 
Zenodo (https://doi.org/10.5281/zenodo.10804907)59. Publicly availa-
ble software used in this study includes PLINK (version 1.90b6.7, https://
www.cog-genomics.org/plink/1.9/), SNPTEST (version 2.5.4, https://
www.chg.ox.ac.uk/~gav/snptest/), SAIGE (0.35.8.8, https://github.
com/saigegit/SAIGE), N-GWAMA (version 1.2.6, https://github.com/
baselmans/multivariate_GWAMA), METAL (release 2011-03-25, https://
csg.sph.umich.edu/abecasis/metal/index.html), METASOFT (version 
2.0.1, https://web.cs.ucla.edu/~eeskin/), GCTA (version 1.93.0beta, 
https://yanglab.westlake.edu.cn/software/gcta/#Overview), LDSC 

(version 1.0.1, https://github.com/bulik/ldsc), LDAK (version 5.0, 
https://dougspeed.com/ldak/), LHC-MR (version 0.0.0.9000, https://
github.com/LizaDarrous/lhcMR), DEPICT (version 1 rel194, https://
github.com/perslab/depict), FUMA (version 1.3.6a, https://fuma.
ctglab.nl/), MAGMA (version 1.08, https://cncr.nl/research/magma/), 
MetaXcan (version 0.7.4, https://github.com/hakyimlab/MetaXcan), 
eCAVIAR (version 2.2, https://github.com/fhormoz/caviar), CAVIARBF 
(version 0.2.1, https://bitbucket.org/Wenan/caviarbf/src/master/), 
CELLECT (version 1.3.0) and CELLEX (version 1.2.1) (https://github.
com/perslab/CELLECT), MAGMA_Celltyping (version 2.0.0, https://
github.com/neurogenomics/MAGMA_Celltyping), pycox (version 0.2.1, 
https://github.com/havakv/pycox), PyTorch (version 1.6.0, https://
github.com/pytorch/pytorch), H2O AutoML (version 3.36.0.2, https://
docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html), the Sanger 
imputation server (https://imputation.sanger.ac.uk/), EAGLE2 (ver-
sion 2.0.5, https://alkesgroup.broadinstitute.org/Eagle/), PBWT (ver-
sion 3.1, https://github.com/richarddurbin/pbwt), Minimac3 (https://
genome.sph.umich.edu/wiki/Minimac3), R (version 4.0.4 and version 
4.0.2, https://cran.r-project.org/), the rrvgo package (version 1.2.0, 
https://bioconductor.org/packages/release/bioc/html/rrvgo.html), 
the WGCNA package (version 1.69, https://cran.r-project.org/web/
packages/WGCNA/index.html), the TwoSampleMR package (version 
0.5.6, https://mrcieu.github.io/TwoSampleMR/index.html), the coloc 
package (version 5.1.0, https://chr1swallace.github.io/coloc/), the 
BayesianTools package (version 0.0.10, https://github.com/florianhar-
tig/BayesianTools), the bigsnpr package (version 1.12.2), implements 
LDpred2 (https://privefl.github.io/bigsnpr/), the gwasvcf package 
(version 0.1.0, https://github.com/MRCIEU/gwasvcf) and the random-
ForestSRC package (version 3.0.1, https://www.randomforestsrc.org/).
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Extended Data Fig. 1 | General study workflow. Overview of the main analytical steps conducted in the study. While sex-specific GWAS meta-analysis results were 
used to dissect similarities and differences between both sexes, the pooled meta-analysis results were used for further functional interpretation.
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stage input GWAS were calculated using LDSC on the summary statistics.
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Extended Data Fig. 3 | Manhattan and Miami plots of discovery stage meta-
analyses. a, Results of the pooled discovery meta-analysis. b, Results of the sex-
specific discovery meta-analyses. Female-only results are depicted in red in the 
upper section of the Miami plot, male-only results are depicted in blue in lower 

section of the Miami plot. The x-axis shows chromosome and base pair positions 
of the tested variants. The y-axis shows significance as −log10 of the two-sided 
nominal P-values of the N-GWAMA analyses. Red horizontal dashed lines indicate 
the Bonferroni-adjusted significant threshold of P < 5 × 10−8.

http://www.nature.com/naturegenetics


Nature Genetics

Article https://doi.org/10.1038/s41588-024-01763-1

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

liability risk

de
ns

ity

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

0.
00

0.
05

0.
10

0.
15

Var(τE)

Va
r(G

xE
)

0.0

0.1

0.2

0.3

0.4

0.5

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

Var(τE)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
h2τβa b c

Extended Data Fig. 4 | Simulation study assessing sex-specific heritability 
and genetic correlation divergence. Simulation of environmental effect that 
reconciles sex-difference in heritability with the similarity of the SNP effect sizes. 
a, Frequency density distributions of the liabilities for different models. Blue line, 
base model, φ = Xβ+ ε, as assumed to be present in males with h2 = 0.1395, X and 
β as determined by GWAS, ε ∼ N(0, 1), and a disease threshold in keeping with the 
male RLS prevalence of 0.06 (shaded area under the curve). Black line, model 
with non-interacting binary environmental effect, φ = Xβ+ τE+ ε, with  
X,β, ε and threshold as in the base model plus an additional binary effect 
E ∼ Bernoulli(p = 0.21), representing childlessness with a weight vector τ such 
that that prevalence is 0.13 as in females. Red line, analogous G×E model, 

φ = Xβ+ Xη ∘ E+ ε, but where the environmental effect now interacts  
with the genetic effects and the corresponding weight vector η is chosen in 
accordance with the female prevalence. b, c, Optimization of the model 
φ = Xβ+ Xη ∘ E+ τE+ ε with X,β, E, ε and threshold as above, where the 
additional degree of freedom is covered by also considering the mean effect size 
ratio rb observed in the GWAS. Heatmap and contour plot for logistic regression-
based liability scaled LDSC h2 (b) and effect size ratio rb (c) as functions of Var(τE) 
and Var(Xη ∘ E). Optimal values for Var(τE) and Var(Xη ∘ E), that is, for τ and η, 
respectively, comply with female prevalence, female heritability, and observed 
effect size ratio as well. The optimal τ turns out to be close to zero so that the 
environmental factor acts mostly via genetic interaction.
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Extended Data Fig. 6 | Replication of lead SNPs in independent validation 
samples. Association results of replication stage. The effect size (beta) of the 
replication analysis is plotted against the effect size (beta) of the discovery  
stage for genome-wide significant lead SNPs. The color-coding and symbol shape 
indicate the strength of the association signal in the replication stage meta-
analysis (nominal two-sided P value of random-effects meta-analysis).  

Blue square, Bonferroni-corrected significance; green circle, nominal 
significance; grey triangle, not significant. a, Pooled meta-analysis with 
Bonferroni threshold set at 0.000255, correcting for 196 lead SNPs. b, Male-
specific meta-analysis with Bonferroni threshold set at 0.00082, correcting for 
61 lead SNPs. c, Female-specific meta-analysis with Bonferroni threshold set at 
0.000318, correcting for 157 lead SNPs.
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Extended Data Table 1 | Lead SNPs with significant heterogeneity of effect sizes between sexes

Locus Lead SNP Phet Betamale (se) P-valuemale Betafemale (se) P-valuefemale

2:189979936-190692798 rs12693542 0.0002 -0.015 (0.009) 0.0873 -0.056 (0.007) 1.1 x 10-17

3:130247739-131344457 rs9859139 8.6 x 10-5 0.06 (0.008) 4.9 x 10-13 0.1 (0.006) 3.0 x 10-60

3:169636938-170166274 rs9856511 9.6 x 10-5 -0.027 (0.008) 3.1 x 10-8 -0.010 (0.008) 0.202

14:21616150-21629436 rs10498276 2.6 x 10-5 0.054 (0.01) 9.9 x 10-8 0.111 (0.009) 1.3 x 10-36

15:67253093-68711447 rs868036 3.4 x 10-6 0.145 (0.009) 2.0 x 10-56 0.196 (0.006) 6.7 x 10-211

16:51886056-53340523 rs3104769 1.7 x 10-8 -0.151 (0.009) 9.9 x 10-71 -0.21 (0.006) 9.1 x 10-275

Locus, chromosomal position of risk locus (chr:start-end, hg19); lead SNP, N-GWAMA lead SNP for locus from pooled meta-analysis; Phet, nominal one-sided P value of Cochran’s Q test for 
heterogeneity; Betamale and P-valuemale, effect size estimate and nominal two-sided P value of male-only meta-analysis; Betafemale and P-valuefemale, effect size estimate and nominal two-sided  
P value of female-only meta-analysis.
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23andMe participants. Datasets will be made available at no cost for academic use. Please visit https://research.23andme.com/collaborate/#dataset-access/ for 
more information and to apply to access the data.  
Additional data used for tissue and cell-type enrichment analysis are available here: developmental (http://mousebrain.org/development/downloads.html) and 
adult single cell RNAseq datasets (http://mousebrain.org/adult/downloads.html) from the Mouse Brain Atlas (http://mousebrain.org/), the Human Gene Expression 
During Development dataset from the BBI-Allen Single Cell atlases (https://descartes.brotmanbaty.org/), the BrainSpan Developmental Transcriptome RNA-Seq 
dataset from the BrainSpan Atlas of the Developing Human Brain (https://www.brainspan.org/static/home), the V8 RNA-Seq dataset 
(GTEx_Analysis_2017-06-05_v8_RNASeQCv1.1.9_gene_reads.gct.gz) from GTEx (https://gtexportal.org/home/datasets), and the human C8 collection from MSigDb 
v7.4 (http://software.broadinstitute.org/gsea/msigdb/, with the legacy versions available at https://www.gsea-msigdb.org/gsea/downloads_archive.jsp after 
creating a user account with GSEA/MSigDB). 
Summary statistics of GWAS for genetic correlation and MR analyses are available at the University of Bristol Integrative Epidemiology Unit OpenGWAS server 
https://gwas.mrcieu.ac.uk) and GWAS atlas (https://atlas.ctglab.nl/). Additional GWAS summary statistics for iron-related traits are available at https://
www.fmrib.ox.ac.uk/ukbiobank/gwas_resources/index.html, https://open.win.ox.ac.uk/ukbiobank/big40/BIGv2/, and https://www.decode.com/summarydata/. 
A complete list of sources used for annotation with FUMA is available at https://fuma.ctglab.nl/links and https://fuma.ctglab.nl/tutorial. Auxiliary files for use with 
MAGMA are available at https://ctg.cncr.nl/software/magma. Additional files for use with LDSC and LDAK are available at https://alkesgroup.broadinstitute.org/
LDSCORE/. 
Information about drug targets is available at the free-to-access database DrugBank Online (https://go.drugbank.com/). 

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender The study included both female and male individuals. A pooled analysis of all individuals was performed as well as analyses 
stratified by sex. Sex was determined by self-reporting and by genotyping. During genotyping data quality control, individuals 
with non-matching genotype-determined sex and self-reported sex were excluded and were not included in any further 
analyses. Sample sizes for the sex-specific discovery analyses were 78,333 cases and 844,872 controls in women and 38,314 
cases and 701,594 controls in men. 

Population characteristics The discovery dataset for the pooled analysis included 116,647 cases and 1,546,466 controls. 78,333 cases and 844,872 
controls were women and 38,314 cases and 701,594 controls were men. 
All individuals were of European ancestry, determined by running PCA or MDS analysis on the genetic data. Individuals of 
non-European ancestry were excluded to avoid spurious associations due to population stratification. 
Age and sex were used as covariates. A total of 9,196,648 common variants with minor allele frequency (MAF) ≥ 1% were 
available for statistical analysis in the discovery stage data. 
The case phenotype "restless legs syndrome" (RLS) was determined by either clinical face-to-face interviews or using 
validated questionnaires for RLS cases, implementing the IRLSSG diagnostic criteria for RLS. In the 23andMe dataset, RLS 
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cases were defined by asking a single question to customers about having received an RLS diagnosis or therapy.

Recruitment Participants were recruited 
1) in a clinical setting: Cases were recruited in specialized outpatient clinics for movement disorders and in sleep clinics by 
conducting face-to-face diagnostic interviews to assess the IRLSSG diagnostic criteria for RLS 
2) in cohorts of whole blood donors by self-report based on validated questionnaires for RLS (Cambridge-Hopkins Restless 
Legs Questionnaire) 
3) in a direct-to-consumer genetic testing company customer database by self-report based on survey questions which 
assessed whether someone has ever been diagnosed with RLS or has ever received treatment for RLS. 
Genetic correlations between the three GWAS with different case recruitment strategies were strong but indicated some 
degree of heterogeneity, therefore, a multivariate genome-wide-association meta-analysis approach was used (N-GWAMA). 
 
 
 

Ethics oversight All studies were approved by the respective local ethical committees and all participants provided informed consent. The EU-
RLS-GENE study was approved by an institutional review board at the University Hospital of the Technical University Munich 
(2488/09). The INTERVAL dataset was approved by the National Research Ethics Service Committee East of England - 
Cambridge East (REC: 11/EE/0538). 23andMe Participants provided informed consent under a protocol approved by the 
external AAHRPP-accredited IRB, Ethical & Independent (E&I) Review Services. As of 2022, E&I Review Services is part of Salus 
IRB (https://www.versiticlinicaltrials.org/salusirb). The deCODE dataset was approved by the National Bioethics Committee of 
Iceland. The DBDS dataset was approved by The Scientific Ethical Committee of Central Denmark (M-20090237) and by the 
Danish Data Protection agency (30-0444). GWAS studies in DBDS were approved by the National Ethical Committee 
(NVK-1700407). The Emory dataset was approved by an institutional review board at Emory University, Atlanta, Georgia, US 
(HIC ID 133-98). 

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No sample-size calculation was performed. Restless legs syndrome is a polygenic trait for which heritability is not yet fully explained. 
Therefore, we collected all available (at the time of initiating the study) GWAS datasets for this phenotype into a discovery dataset. This 
dataset is about 8 times larger than the datasets used in previous GWAS on RLS, therefore could be expected to provide a reasonable increase 
in study power. 

Data exclusions Phenotypic data: only RLS patients fullfilling the diagnostic criteria based on either a face-to-face interview, validated questionnaires, or a 
single question about RLS diagnosis/treatment were included in the study. 
Genetic data: Standard SNP and sample GWAS quality control procedures were applied to exclude low quality data.

Replication Data for all independent lead SNPs of the discovery stage was obtained in independent replication dataset consisting of 29,028 RLS cases and 
398,815 controls. 71% of the lead SNPs from the pooled discovery meta-analysis were nominally significant in the replication (p < 0.05) and 
there was a high positive correlation between the effect size estimates of the discovery stage and the replication dataset. A joint analysis of 
discovery and replication datasets revealed that all lead SNPs of the discovery pooled and sex-specific meta-analyses reached Bonferroni-
corrected significance.

Randomization GWAS are observational genetic studies and not randomized experiments. For a GWAS, individuals are assigned to either the case group 
(indiviuals affected by RLS) or the control group (unaffected individuals).

Blinding Meta-analysis of GWAS and functional GWAS interpretation do not require blinding because GWAS are observational genetic studies and not 
randomized experiments.  

Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Briefly describe the study type including whether data are quantitative, qualitative, or mixed-methods (e.g. qualitative cross-sectional, 
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Study description quantitative experimental, mixed-methods case study). 

Research sample State the research sample (e.g. Harvard university undergraduates, villagers in rural India) and provide relevant demographic 
information (e.g. age, sex) and indicate whether the sample is representative. Provide a rationale for the study sample chosen. For 
studies involving existing datasets, please describe the dataset and source.

Sampling strategy Describe the sampling procedure (e.g. random, snowball, stratified, convenience). Describe the statistical methods that were used to 
predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a 
rationale for why these sample sizes are sufficient. For qualitative data, please indicate whether data saturation was considered, and 
what criteria were used to decide that no further sampling was needed.

Data collection Provide details about the data collection procedure, including the instruments or devices used to record the data (e.g. pen and paper, 
computer, eye tracker, video or audio equipment) whether anyone was present besides the participant(s) and the researcher, and 
whether the researcher was blind to experimental condition and/or the study hypothesis during data collection.

Timing Indicate the start and stop dates of data collection. If there is a gap between collection periods, state the dates for each sample 
cohort.

Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, provide the exact number of exclusions and the 
rationale behind them, indicating whether exclusion criteria were pre-established.

Non-participation State how many participants dropped out/declined participation and the reason(s) given OR provide response rate OR state that no 
participants dropped out/declined participation.

Randomization If participants were not allocated into experimental groups, state so OR describe how participants were allocated to groups, and if 
allocation was not random, describe how covariates were controlled.

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Briefly describe the study. For quantitative data include treatment factors and interactions, design structure (e.g. factorial, nested, 
hierarchical), nature and number of experimental units and replicates.

Research sample Describe the research sample (e.g. a group of tagged Passer domesticus, all Stenocereus thurberi within Organ Pipe Cactus National 
Monument), and provide a rationale for the sample choice. When relevant, describe the organism taxa, source, sex, age range and 
any manipulations. State what population the sample is meant to represent when applicable. For studies involving existing datasets, 
describe the data and its source.

Sampling strategy Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample-size 
calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Data collection Describe the data collection procedure, including who recorded the data and how.

Timing and spatial scale Indicate the start and stop dates of data collection, noting the frequency and periodicity of sampling and providing a rationale for 
these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which 
the data are taken

Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them, 
indicating whether exclusion criteria were pre-established.

Reproducibility Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to 
repeat the experiment failed OR state that all attempts to repeat the experiment were successful.

Randomization Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were 
controlled. If this is not relevant to your study, explain why.

Blinding Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why 
blinding was not relevant to your study.

Did the study involve field work? Yes No

Field work, collection and transport

Field conditions Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).

Location State the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water depth).
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Access & import/export Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and in 

compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing authority, 
the date of issue, and any identifying information).

Disturbance Describe any disturbance caused by the study and how it was minimized.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used Describe all antibodies used in the study; as applicable, provide supplier name, catalog number, clone name, and lot number.

Validation Describe the validation of each primary antibody for the species and application, noting any validation statements on the 
manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.

Eukaryotic cell lines
Policy information about cell lines and Sex and Gender in Research

Cell line source(s) State the source of each cell line used and the sex of all primary cell lines and cells derived from human participants or 
vertebrate models.

Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.

Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for 
mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines
(See ICLAC register)

Name any commonly misidentified cell lines used in the study and provide a rationale for their use.

Palaeontology and Archaeology

Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the 
issuing authority, the date of issue, and any identifying information). Permits should encompass collection and, where applicable, 
export.

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where 
they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are 
provided.

Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance 
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Animals and other research organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 
Research

Laboratory animals For laboratory animals, report species, strain and age OR state that the study did not involve laboratory animals.

Wild animals Provide details on animals observed in or captured in the field; report species and age where possible. Describe how animals were 
caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if released, 
say where and when) OR state that the study did not involve wild animals.

Reporting on sex Indicate if findings apply to only one sex; describe whether sex was considered in study design, methods used for assigning sex. 
Provide data disaggregated for sex where this information has been collected in the source data as appropriate; provide overall 
numbers in this Reporting Summary. Please state if this information has not been collected.  Report sex-based analyses where 
performed, justify reasons for lack of sex-based analysis.

Field-collected samples For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature, 
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance 
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data
Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.

Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.

Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.

Outcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.

Dual use research of concern
Policy information about dual use research of concern

Hazards
Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented 
in the manuscript, pose a threat to:

No Yes
Public health

National security

Crops and/or livestock

Ecosystems

Any other significant area
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Experiments of concern

Does the work involve any of these experiments of concern:

No Yes
Demonstrate how to render a vaccine ineffective

Confer resistance to therapeutically useful antibiotics or antiviral agents

Enhance the virulence of a pathogen or render a nonpathogen virulent

Increase transmissibility of a pathogen

Alter the host range of a pathogen

Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin

Any other potentially harmful combination of experiments and agents

ChIP-seq

Data deposition
Confirm that both raw and final processed data have been deposited in a public database such as GEO.

Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links 
May remain private before publication.

For "Initial submission" or "Revised version" documents, provide reviewer access links.  For your "Final submission" document, 
provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.

Genome browser session 
(e.g. UCSC)

Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to 
enable peer review.  Write "no longer applicable" for "Final submission" documents.

Methodology

Replicates Describe the experimental replicates, specifying number, type and replicate agreement.

Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and 
whether they were paired- or single-end.

Antibodies Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and lot 
number.

Peak calling parameters Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files 
used.

Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.

Software Describe the software used to collect and analyze the ChIP-seq data. For custom code that has been deposited into a community 
repository, provide accession details.

Flow Cytometry

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument Identify the instrument used for data collection, specifying make and model number.
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Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a 

community repository, provide accession details.

Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the 
samples and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell 
population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type Indicate task or resting state; event-related or block design.

Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial 
or block (if trials are blocked) and interval between trials.

Behavioral performance measures State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used 
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across 
subjects).

Acquisition

Imaging type(s) Specify: functional, structural, diffusion, perfusion.

Field strength Specify in Tesla

Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size, 
slice thickness, orientation and TE/TR/flip angle.

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI Used Not used

Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction, 
segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for 
transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g. 
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and 
physiological signals (heart rate, respiration).

Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and 
second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether 
ANOVA or factorial designs were used.

Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference
(See Eklund et al. 2016)

Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).
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Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation, 
mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph, 
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency, 
etc.).

Multivariate modeling and predictive analysis Specify independent variables, features extraction and dimension reduction, model, training and evaluation 
metrics.
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