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Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting the brain and spinal cord motor neurons. 
On 25 April 2023, the drug tofersen, an antisense oligonucleotide, received the US Food and Drug Administration approval 
for treating ALS in adults carrying mutations of the SOD1 gene. We aimed at assessing whether cerebrospinal fluid con-
centrations of selenium, an element of both toxicological and nutritional interest possibly involved in disease etiology and 
progression, are modified by tofersen administration. We determined concentrations of selenium species by anion exchange 
chromatography hyphenated to inductively coupled plasma-dynamic reaction cell-mass spectrometry and overall selenium 
by using inductively coupled plasma sector-field mass spectrometry, at baseline and 6 months after active tofersen treat-
ment in ten Italian ALS patients carrying the SOD1 gene mutation. Concentrations of total selenium and many selenium 
species substantially increased after the intervention, particularly of inorganic (tetravalent and hexavalent) selenium and of 
the organic species selenomethionine and a compound co-eluting with the selenocystine standard. Overall, these findings 
suggest that tofersen treatment markedly alters selenium status and probably the redox status within the central nervous 
system, possibly due to a direct effect on neurons and/or the blood–brain barrier. Further studies are required to investigate 
the biological and clinical relevance of these findings and how they might relate to the pharmacological effects of the drug 
and to disease progression.
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Introduction

Amyotrophic lateral sclerosis (ALS) is a generally fatal 
neurodegenerative disorder affecting cortical and spinal 
motor neurons. The familial form is diagnosed in about 
5–10% of patients, while most are diagnosed with the 
sporadic form [1]. Approximately 2.5% of ALS cases [2] 
are caused by mutations in the gene encoding the pro-
tein copper/zinc superoxide dismutase 1 (SOD1) [3]. 
Although the precise mechanisms by which mutations in 
the SOD1 gene lead to motor neuron degeneration are not 
fully understood, a toxic gain-of-function is probable fol-
lowing such mutations in SOD1 [4, 5]. Along with other 
gene mutations, this could interact with yet unidentified 
environmental and lifestyle factors, potentially triggering 
ALS in individuals carrying gene mutations [1]. Unfor-
tunately, very little evidence is available regarding these 
risk factors, which may include environmental chemicals 
such as pesticides, solvents, heavy metals, and the metal-
loid selenium [1, 6].

Recently, tofersen has emerged as a tentative treatment 
for ALS linked to SOD1 mutations [7–10]. The drug, an 
intrathecally administered antisense oligonucleotide, is 
designed to degrade superoxide dismutase type-1 enzyme 
mRNA, thus reducing the synthesis and production of the 
protein [11, 12]. The SOD1 protein possesses antioxidant 
properties but is also supposed to undergo a toxic gain-
of-function in mutation carriers [1, 13, 14]. Based on 
the results from randomized controlled trials conducted 
in both the USA and Europe [15, 16], on 25 April 2023, 
tofersen received approval from the US Food and Drug 
Administration for treating ALS in adults carrying the 
SOD1 mutation. The Marketing Authorization Applica-
tion is currently under review by the European Medical 
Agency, but some European countries have started admin-
istering the drug under an early access program (EAP).

The initial results of such treatment have not yet con-
firmed its effectiveness on the primary outcome, although 
there has been an indication of favorable effects on sec-
ondary endpoints [17]. A more thorough assessment of 
the drug efficacy and safety has yet to come, following the 
results from ongoing trials [7, 18]. However, the net effect 
of this drug on the central nervous system (CNS) and more 
specifically on motor neurons, including their redox status, 
is still unclear and is under active investigation.

Among the factors strongly influencing the redox equi-
librium of biological systems including the CNS is the 
metalloid selenium in its different chemical forms and 
bound to different selenoenzymes. Selenium and seleno-
proteins are characterized by complex and even opposite 
activities in biological systems, depending on the chemi-
cal form, the amount of exposure, and the effect under 

investigation. For instance, selenium species have been 
associated to both antioxidant and pro-oxidant properties, 
and more generally with beneficial and adverse effects that 
are currently under active investigation and only partially 
elucidated [19–25].

Selenium administration may stimulate selenoenzyme 
synthesis by increasing its availability or alternatively by 
inducing oxidative stress and the consequent compensa-
tory response of antioxidant enzyme synthesis [20, 22, 26]. 
Excess selenium exposure has been involved in ALS eti-
ology by epidemiologic and toxicologic studies [27–32], 
including one case–control study performed in carriers of 
ALS-related gene mutations [33], though reports about ALS 
epidemiology in seleniferous areas are unfortunately still 
missing. Selenium and potentially toxic selenoproteins have 
also been involved in the etiology of other neurodegenerative 
diseases by recent human studies [34–37], further support-
ing the dual, opposite biological effects of this element, also 
depending on its dose and the chemical form [38–40] and 
with adverse effects occurring at unexpectedly low exposure 
levels [41–43].

In this study, we assess the possibility that an ongoing 
EAP with tofersen, carried out in Italian centers on ALS 
patients carrying the SOD1 mutation, could alter the con-
centration of selenium species in the CNS.

Methods

Study Design and Population

We recruited ten adult patients affected by ALS from three 
major specialized Italian MND centers (Modena, Naples, 
and Padua), meeting all of the following four criteria: 
age ≥ 18 years, ALS diagnosis as established by Gold-Coast 
criteria, being a carrier of SOD1 mutations (established by 
PCR or NGS according to the local procedure for genetic 
testing), and participation in a Global EAP for tofersen 
administration, with availability of CSF samples follow-
ing standard procedures for intrathecal drug administration. 
Fifty percent of these patients reported a family history of 
the condition, and distribution of the mutations across the 
exons was as follows: 50% were located in exon 5, 20% in 
exon 1, 20% in exon 4, and 10% in exon 2. Specifically, two 
patients carried the E134del mutation, two had the I150T 
mutation, and the remaining mutations identified in the study 
participants were A5V, A96T, G11E, D91A, L145F, and 
E41G (Supplemental Table S1). EAP tofersen intervention 
in patients with SOD 1-ALS was approved for ten patients 
followed in the ALS Centers of Modena (Comitato Etico 
Area Vasta Emilia Nord, file numbers: 229/2021, 230/2021, 
231/2021, 232/2021, and 205/2022), Padua and Naples, (file 
numbers: 0032241/i date: 11 Nov 2021; 0032238/i date: 11 
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Nov 2021; 0032228/i date: 11 Nov 2021) to record efficacy 
and safety from the patients enrolled in the trial. Overall, 
100 mg of the drug were administered via intrathecal (IT) 
injection by LP with a loading period consisting of 3 doses 
14 days apart from one another, and maintenance doses 
every 28 days thereafter. End of treatment has not been 
planned so far.

During scheduled visits, patients underwent clinical 
examination including assessment of ALSFRS-R score, 
FVC, ALSAQ-40 questionnaire, laboratory safety assess-
ments, and CSF analysis with determination of proteins, 
glucose, cell count, and biomarkers. We also collected 
demographic and clinical variables, including sex; age 
at onset; diagnostic latency; family history for ALS and/
or FTD; site of onset (bulbar, upper limb or lower limb, 
respiratory); phenotype (classic, bulbar, upper motor neu-
ron predominant, flail arm, flail leg, and respiratory ALS); 
anthropometric measures such as weight, height, and body 
mass index (BMI) at diagnosis; and clinical data such as 
time to gastrostomy, non-invasive, or invasive ventilation. 
During the study period, the participants did not receive any 
dietary supplements containing selenium, while all of them 
received the drug riluzole.

Sample Collection and Analytical Determinations

For each patient, we collected two CSF samples, one right 
before starting tofersen treatment and the second after 
6 months of tofersen administration. Each sample was col-
lected in the morning in fasting subjects undergoing lumbar 
puncture according to standard clinical and operating pro-
cedures. Each sample was received and handled by the UNI-
MORE Neuroimmunology Laboratory within 30 min from 
the collection and was centrifuged at 1300 × g for 10 min at 
controlled room temperature. After centrifugation, samples 
were stored in polypropylene sterile tubes at − 80 °C await-
ing testing. Once we collected all samples, they were then 
transported deep-frozen in dry ice by air courier to the Ana-
lytical BioGeoChemistry laboratory in Germany.

We determined neurofilament light chain (NfL) concen-
trations in the CSF using automated next-generation ELISA 
(Ella Simple Plex assay technology, BioTechne, ProteinSim-
ple), as previously described [44]. In this setting, samples 
run through a channel composed of three glass nano reac-
tors (GNRs) coated with a capture antibody. Samples were 
automatically read in triplicate and loaded into the cartridge 
with a 1:2 dilution, evaluating intra-assay and inter-assay 
variability [45].

For selenium speciation analysis, we used the hyphenated 
system from Perkin Elmer (Rodgau, Germany) comprising 
a NexSAR gradient HPLC pump, auto-sampler, and Nex-
ION 300 D ICP-DRC-MS, completely controlled through 
the Clarity software, and the anion exchange-separation 

column for species separation (AG-11 + AS-11 from Thermo 
Dionex, Idstein, Germany). The sample volume amounted to 
50 µL. The chromatography settings were as follows: Eluent 
A, 10 mM Tris-HAc and 5% MeOH, pH 8.0; and eluent B, 
50 mM Na2CO3, 20 mM NH4Ac, 5% MeOH, pH 8.0. The 
gradient elution expressed as a percent was as follows: elu-
ent A, 0–2 min, 100–80%; 2–8 min, 80–45%; 8–10.5 min, 
45–0%; 10.5–14 min, 0%; and 14–16 min, 100%. The flow 
rate was 0.80 mL/min. The experimental settings for ICP-
DRC-MS were as follows: radio frequency power, 1250 W; 
plasma gas flow, 15 L Ar/min; auxiliary gas flow, 1.05 L 
Ar/min; nebulizer gas flow, 0.92 L Ar/min, daily optimized; 
dwell time, 300 ms; ions monitored, 77Se, 78Se, and 80Se; 
DRC reaction gas, CH4 reaction at 0.58 mL/min; and DRC 
rejection parameter q, 0.6. We determined the concentra-
tions of the following selenium species: selenite (Se-(IV)), 
selenate (Se-(VI)), selenomethionine-bound selenium (Se-
Met), selenocystine-bound selenium (Se-Cys2), thioredoxin 
reductase-bound selenium (Se-TXNRD), glutathione-per-
oxidase-bound selenium (Se-GPX), selenoprotein P-bound 
selenium (Se-SELENOP), and human serum albumin-bound 
selenium (Se-HSA). Since SELENOP is not commercially 
available, we purified SELENOP from human serum apply-
ing a method based on references [46, 47], further modified 
and detailed in [48], using a Heparin-affinity column (Amer-
sham, GE Healthcare Europe GmbH, Munich, Germany). 
SELENOP was collected under UV 280 nm monitoring 
from respective peak fraction. The SELENOP fraction was 
preconcentrated by freeze drying, re-dissolved in 1 mL of 
10 mM Tris–HCl buffer, pH 7.2, and Se was determined by 
ICP-DRC-MS. For verification, an aliquot was subject to a 
mass-calibrated SEC column. The observed single Se and 
UV peak corresponded to the elution volume calculated for 
60 kDa, which fits to literature data [49]. The remaining 
part of the SELENOP fraction was aliquoted for single-use 
standard fractions, which were shock-frozen in N2liq and 
stored deep-frozen until use. Properly stored SELENOP 
laboratory-made standards resulted in a single peak signal 
when analyzed by SAX-ICP-DRC-MS. Human serum albu-
min (HSA) was prepared at a concentration of 1000 mg/L. 
Preparation of Se-HSA was done by mixing 10 mg Se/L sel-
enite to this HSA-stock solution and incubation for at least 
14 days. Peak assignment for Se-HSA in CSF samples was 
done both, with Se-HSA and HSA monitoring selenium and 
UV peaks. Data files from selenium chromatograms were 
processed with the Clarity software for peak area integra-
tion. A typical Se-chromatogram is shown in the supple-
mentary data (Supplemental Figure S1). We measured total 
serum selenium concentration in 1:3 diluted (Eluent A) CSF 
samples through inductively coupled plasma sector-field 
mass spectrometry (ICP-sf-MS). The experimental settings 
for ICP-sf-MS (ELEMENT II, Thermo Scientific, Bremen, 
Germany) were as follows: radio frequency power, 1260 W; 
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plasma gas flow, 16 L Ar/min; auxiliary gas flow, 0.85 L Ar/
min; nebulizer gas flow, 1.085 L Ar/min, daily optimized; 
dwell time, 300 ms; and ions monitored, 77Se and 78Se, using 
high-resolution mode. Five-point calibration curves from 0 
to 5000 ng/L were linear with r2 for both Se isotopes being 
0.9998.

Analytical Quality Control for Selenium Speciation 
Analysis

We checked total selenium determination by analysis of 
a urine control material from Recipe, Munich, Germany 
(CSF control material was not available, but urine—like 
CSF—shows high salt but low protein concentration). We 
determined 22.1 ± 2.8 µg/L (target value 23 µg/L). Regu-
larly, defined amounts of single selenium species standards 
were injected to the SAX-ICP-DRC-MS system, and peak 
selenium concentrations were quantified and related to the 
injected selenium amounts (= 100%) for recovery calcula-
tion. CSF samples were treated analogously. Recoveries for 
selenium standards ranged from 89 to 102%, whereas for 
CSF samples 97 ± 6% were found. Further, mass balances 
between the sum of quantified selenium species and total 
selenium determination were calculated, ranging between 
91 and 103% for the entire CSF samples.

Data Analysis

We computed descriptive statistics (median, 25th–75th per-
centiles, i.e., interquartile range) for all variables. We also 
estimated through linear regression analysis the relation 
between changes of selenium compounds and changes of 

ALS Functional Rating Scale (FRS), ALS Functional Rating 
Scale-Revised (Delta FS), and Forced Vital Capacity (FVC) 
overt time following tofersen treatment.

Results

Table 1 summarizes the characteristics of the ten ALS 
patients carrying SOD1 gene mutations in the study popu-
lation, clinical features, and CSF concentrations of sele-
nium species and overall selenium. The study participants 
included five males and five females, with spinal onset, clas-
sic or flail phenotypes, a median age of 58.6 years at base-
line, and a median disease duration from first symptoms to 
diagnosis of 50 months. Among the various chemical forms 
of the element, organic Se-SELENOP was the compound 
with the highest concentration, followed by another organic 
form, co-eluting with Se-Cys2, and by inorganic tetravalent 
selenium, selenite. Baseline selenium compound concen-
trations according to exon location of the SOD1 mutation 
and family history of the disease are listed in Supplemental 
Table S2, with little indication of major differences in sele-
nium species according to these genetic factors.

Following tofersen treatment, there was a notable increase 
in CSF concentrations of various selenium chemical forms, 
encompassing overall selenium, the sum of organic, and 
the sum of inorganic chemical entities (Figs. 1 and 2). This 
increase was observed across almost all selenium species, 
except for the organic compound Se-GPX, whose concen-
trations remained substantially unchanged. The most sub-
stantial changes were observed for Se-TXNRD and Se-HSA, 
both exhibiting median concentrations approximately four 

Table 1   Median (50th) and interquartile range (IQR) of age (in years), neurofilaments (in pg/mL), and selenium concentrations (in µg/L) in cer-
ebrospinal fluid in the study population according to sex (T0 = baseline; T6 = 6 months after treatment with tofersen)

Note: Se-Cys2, compound co-eluting with the selenocystine standard; Se-GPX, glutathione-peroxidase-bound selenium; Se-HSA, human serum 
albumin-bound selenium; Se-Met, selenomethionine-bound selenium; Se-SELENOP, selenoprotein P-bound selenium; Se-TXNRD, thioredoxin 
reductase-bound selenium; Se(IV), selenite; Se(VI), selenate

Sex-specific baseline values T0 T6 Change (%)

Males (n = 5) Females (n = 5) N 50th (IQR) N 50th (IQR)

Age 63.1 (54.5–65.1) 55.4 (50.7–61.9) -
Neurofilaments 4483 (4435–12,058) 2035 (1788–3055) 10 4013 (2035–4843) 10 3280.5 (1172–4461)  − 18.3
Se-Total 2.04 (1.34–2.21) 1.48 (1.10–2.21) 10 1.49 (1.10–20.9) 10 2.21 (1.48–2.85) 48.3
Se-SELENOP 0.85 (0.80–1.05) 0.56 (0.53–1.02) 10 0.82 (0.53–1.05) 10 1.04 (0.83–1.36) 26.8
Se-Met 0.12 (0.12–0.14) 0.07 (0.00–0.08) 10 0.10 (0.07–0.12) 10 0.17 (0.07–0.23) 70.0
Se-Cys2 0.41 (0.17–0.43) 0.10 (0.01–0.12) 10 0.14 (0.10–0.41) 10 0.26 (0.06–0.40) 85.7
Se-GPX 0.07 (0.02–0.15) 0.04 (0.04–0.14) 10 0.06 (0.02–0.15) 10 0.08 (0.03–0.11) 33.3
Se-TXNRD 0.05 (0.004–0.09) 0.004 (0.004–0.02) 10 0.01 (0.01–0.07) 10 0.04 (0.01–0.10) 300.0
Se-(IV) 0.16 (0.10–0.16) 0.09 (0.07–0.13) 10 0.12 (0.09–0.16) 10 0.19 (0.15–0.27) 58.3
Se-(VI) 0.12 (0.07–0.15) 0.06 (0.05–0.06) 10 0.07 (0.06–0.15) 10 0.13 (0.07–0.23) 85.7
Se-HSA 0.03 (0.004–0.12) 0.004 (0.004–0.004) 10 0.004 (0.004–0.12) 10 0.04 (0.02–0.08) 900.0
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times higher after the 6-month treatment period compared 
with baseline. A post-treatment increase in selenium species 
concentrations also clearly emerged for the Se-compound 
appearing at a retention time of Se-Cys2 and hexavalent 
inorganic selenium, selenate, whose median values were 
approximately twice as high compared with baseline con-
centrations. Conversely, the most abundant selenium spe-
cies, Se-SELENOP, and another organic selenium form, Se-
GPX, were those showing the lowest increases over time, 
slightly less, and more than 30%, respectively. Median CSF 
neurofilament concentration decreased by nearly 20% after 
tofersen administration, from 4013 to 3281 pg/mL, while 
corresponding mean concentrations decreased from 4947 
to 3677 pg/mL (− 26%).

In linear regression analysis, changes in selenium com-
pounds after tofersen treatment were generally negatively 
associated with changes in clinical parameters, particu-
larly the ALS Functional Rating Scale and the Forced Vital 
Capacity, with some inconsistencies between the species and 

between the clinical endpoints (Supplemental Table S3 and 
Figures S2-S4).

Discussion

In this study, we aimed at assessing if a 6-month adminis-
tration of tofersen, a specific drug for the treatment of ALS 
associated with SOD1 gene mutations, could modify the dis-
tribution of the metalloid selenium in the CNS, and more 
specifically in CSF. We pursued this objective in light of the 
key role of selenium, and particularly some chemical forms 
of this element in the CNS. These include its specific motor 
neuron toxicity as well as its pro-oxidant, antioxidant, and 
neurotoxic properties, also related to the different activities 
of selenocompounds on redox status and more generally in 
biological systems [20–22, 24, 36, 50–52]. Though in famil-
ial ALS gene mutations are known to be the key drivers 
of the disease, even in such cases, there is epidemiologic 

Fig. 1   Boxplots of median concentrations in cerebrospinal fluid (in 
µg/L) of total selenium (Se) along with sum of organic and inorganic 
Se before and 6 months after treatment with tofersen. Notes: Se-Cys2, 
compound co-eluting with the selenocystine standard; Se-GPX, glu-

tathione-peroxidase-bound selenium; Se-HSA, human serum albu-
min-bound selenium; Se-Met, selenomethionine-bound selenium; Se-
SELENOP, selenoprotein P-bound selenium; Se-TXNRD, thioredoxin 
reductase-bound selenium; Se(IV), selenite; Se(VI), selenate
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evidence that lifestyle and environmental risk factors are 
likely interacting with the genetic background [53–55].

Overall, we found that tofersen administration increased 
selenium levels in our study population, with a rather uneven 
pattern across the chemical forms of this metalloid. The most 
abundant selenium species, both at baseline and after drug 
administration, was as expected selenoprotein P, a selenium-
transporter enzyme. Such an increase substantially drives the 
increase for overall selenium. Both beneficial and adverse 
properties have been attributed to selenoprotein P in the 
CNS and more generally in the body [36, 56–58]. Another 
relevant finding of the present study is a major increase in 
a selenium species of controversial chemical composition 
and function, Se-HSA, after tofersen administration [59]. 
In addition, selenium was also found to be bound to thiore-
doxin reductase, a cytosolic and mitochondrial antioxidant 
enzyme with a key role in redox reactions [60, 61] that has 
been shown to have an unexpectedly high CSF/serum ratio 
alongside Se-GPX, possibly indicative of either production 
in the brain or facilitated diffusion mechanism [62]. We also 
observed that tofersen induced a considerable increase in the 
CSF of three major neurotoxic selenium species, the organic 
form selenomethionine-bound selenium, and two inorganic 
selenium forms, selenite and selenate [29, 63–66]. These two 

species, in particular, have been associated with an excess 
ALS risk in epidemiologic studies with a case–control [28, 
33] or cohort design [67]. Such an association is also sup-
ported by strong biological plausibility specifically referred 
to these species, whose neurotoxicity appears to be higher 
than the organic forms [30, 68–71]. In particular, in neu-
ronal cells, inorganic selenium species are known to actively 
generate free radicals, alter the cytoskeleton by inducing 
microtubule defects, affect neurite length, and induce pro-
teomic changes [25, 29, 32, 64, 72, 73]. Interestingly, sele-
nium administration to human neuron cells also appears to 
interact with wild-type SOD1 expression by decreasing it 
and changing its localization from cytosol to mitochondria, 
in the perinuclear region [69]. Since no reference levels of 
CSF selenium species are available, we could not compare 
our results with such levels, though we generally found com-
parable results with other speciation studies in sporadic and 
familial ALS patients and in control subjects [28, 33].

In our study, there was a relevant decrease in the CSF 
concentrations of light chain neurofilaments following the 
drug treatment, confirming its biological activity. This 
decrease was less pronounced than that observed in the 
VALOR trial conducted in the USA [17] and within an 
Expanded Access Program in Germany [74, 75]. This may 

Fig. 2   Boxplots of median organic and inorganic (Se) compound 
concentrations in cerebrospinal fluid (in µg/L) before and 6  months 
after tofersen treatment. Notes: Se-Cys2, compound co-eluting with 
the selenocystine standard; Se-GPX, glutathione-peroxidase-bound 

selenium; Se-HSA, human serum albumin-bound selenium; Se-Met, 
selenomethionine-bound selenium; Se-SELENOP, selenoprotein 
P-bound selenium; Se-TXNRD, thioredoxin reductase-bound sele-
nium; Se(IV), selenite; Se(VI), selenate
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be due to the different matrix (CSF in our study as opposed 
to serum/plasma in the other studies), as well as some het-
erogeneity of study participants.

Our study has a few relevant limitations. First, the number 
of participants was not large enough to allow for a good pre-
cision in the effect estimates, as indicated by some statistical 
instability in the estimates. Secondly, we acknowledge that 
biochemical findings detected in the CSF cannot be easily 
correlated to changes occurring in the motor neurons. There-
fore, the higher CSF contents of neurotoxic selenium species 
induced by tofersen treatment may reflect a decrease in such 
species within the motor neurons. This may be a reaction to 
lumbar puncture repetition, or a phenomenon related to dis-
ease progression itself, something that we could not entirely 
rule out due to the unavailability of a control population and 
the unfeasibility of CSF monitoring over time. However, 
we consider this scenario as very unlikely, given the large 
changes we detected in CSF selenium concentrations in a 
relatively short period of time, and more importantly, circu-
lating selenium levels have been shown to inversely correlate 
with ALS progression, since serum selenium decreases with 
increasing disability according to a disease severity scale 
[76].

The changes we observed might also be accounted for as 
an effect of treatment-induced changes in the blood–brain 
barrier or in the redox status of the neuronal cells, in line 
with other recently reported effects [77, 78], thus inducing 
a compensatory, beneficial response against free radicals, 
including an upregulation of selenium-containing antioxi-
dant enzymes. However, tofersen treatment also induced an 
increase in “non-physiological” selenium species devoid of 
antioxidant properties and potentially neurotoxic, such as 
inorganic (tetravalent and hexavalent) selenium and sele-
nomethionine. The possibility that tofersen treatment could 
have enhanced selenium absorption into the brain, with 
beneficial or toxicological implications, or have altered its 
metabolism and excretion must also be considered. Finally, 
our results apply to carriers of SOD1 gene mutations, but 
such mutations encompass a group of mutations with some 
heterogeneity [79], and it is possible that the effects of tofer-
sen on CSF selenium levels preferentially occur in some of 
these different mutations of the same gene, suggesting the 
need of further research in larger series of patients. However, 
when we analyzed results according to specific characteris-
tics of the SOD1 mutation in study participants, we found 
little evidence of an effect of such genetic heterogeneity.

Selenium has already been acknowledged as a neurotoxic 
metalloid also involving motor function [80]. The possibility 
that it may be involved in ALS etiology was originally raised 
based on a cluster observed in a seleniferous area of South 
Dakota [27], followed by results from a natural experiment 
in Northern Italy [67]. Such observations have been further 
supported by a few case–control studies using CNS-based 

biomarkers [28, 31], including the only investigation so far 
to have been carried out in ALS-related gene mutation car-
riers [33]. In addition, biological plausibility for a role of 
selenium in ALS etiology, and particularly of its neurotoxic 
forms, has been provided by in vitro experiments [29, 30], 
along with the specific motor neuron toxicity of these sele-
nium species in swine [70, 81, 82]. Overall, the results from 
the present study indicate that tofersen administration influ-
ences the CNS distribution of selenium species including the 
neurotoxic ones, a finding that could be related to disease 
etiology and progression.
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