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Abstract
The magnitude of a finite metric space has recently emerged as a novel invariant
quantity, allowing to measure the effective size of a metric space. Despite encouraging
first results demonstrating the descriptive abilities of the magnitude, such as being
able to detect the boundary of a metric space, the potential use cases of magnitude
remain under-explored. In this work, we investigate the properties of the magnitude
on images, an important data modality in many machine learning applications. By
endowing each individual image with its own metric space, we are able to define
the concept of magnitude on images and analyse the individual contribution of each
pixelwith themagnitude vector. In particular, we theoretically show that the previously
known properties of boundary detection translate to edge detection abilities in images.
Furthermore, we demonstrate practical use cases of magnitude for machine learning
applications and propose a novel magnitude model that consists of a computationally
efficient magnitude computation and a learnable metric. By doing so, we address one
computational hurdle that used to make magnitude impractical for many applications
and open the way for the adoption of magnitude in machine learning research.

Keywords Metric space magnitude · Edge detection · Computer vision · Metric
learning

1 Introduction

The topology community has recently invested much effort in studying a newly intro-
duced quantity called magnitude (Leinster 2013). While it originates from category
theory, where it can be seen as a generalisation of the Euler characteristic to metric
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spaces, the magnitude of a metric space is most intuitively understood as an attempt to
measure the effective size of ametric space (Solow and Polasky 1994). As a descriptive
scalar, this quantity extends the set of other well known descriptors such as the rank,
diameter or dimension. However, unlike those descriptors, the properties and potential
use cases of magnitude are still under-explored. Because the metric space structure of
datasets is a natural object of study when it comes to the understanding of fundamental
machine learning concepts such as regularization, magnitude appears like a promising
and powerful concept in machine learning: next to its abilities to describe the metric
space of whole datasets, the magnitude can also be studied at the sample level, by
considering each sample as its own metric space. Following this line of thought, mag-
nitude vectors were introduced as a way to characterise the contribution of each data
sample to the overall magnitude of the dataset, such that the sum of the elements of
the magnitude vector amounts to the magnitude. This allowed to assess the individual
contribution of each data point and their relative connectivity in the whole dataset.
Indeed, magnitude vectors have been shown to detect boundaries of metric spaces,
with boundary points exhibiting larger contributions to the magnitude (Bunch et al.
2021).

Building upon these recent advances, we study the concept of magnitude of images,
an important data modality for a plethora of machine learning applications. We endow
each image with its own metric space and explore the properties of the magnitude and
the magnitude vector for different choices of metric space structure. We extend the
concept of a boundary of a metric space to images and show that it corresponds to edge
detection abilities. We thus investigate the potential of magnitude for edge detection
architectures and propose a new magnitude model. This model consists of a learnable
metric on images followed by an efficient approximation of themagnitude on the learnt
metric space. Our experiments show that this architecture is on par with existing edge
detection approaches and thus represents a first promising use-case for magnitude
in machine learning applications. What is more, we compare the magnitude model
and the Sobel filter edge detectors from a topological perspective and find that both
filters radically differ, with themagnitudemodel displayingmore cycles and connected
components. This points towards a potential complementarity of both approaches. Our
contributions can be summarised as follows:

• We formalise the notion ofmagnitude vectors for images and investigate the impact
of the choice of different metrics on the images. We further derive analytic forms
for the magnitude vector of special cases of images.

• Based on this formalism, we provide a theoretical framework to understand the
edge detection capabilities ofmagnitude vectors and link it to the previously known
interpretation of boundary of a metric space. This framework provides a first
basis for theoretically motivating the usage of magnitude in machine learning
applications.

• Wepropose newefficient approximations for the computation ofmagnitude vectors
on images, therefore facilitating the usage of magnitude in applications.

• We introduce a novel magnitude model that consists of the combination of a
learnable metric on images and an computationally efficient approximation of
the magnitude vector of the image with the resulting metric space. We evaluate the
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ability of this model to perform edge detection images and show that it compares
favourably with existing edge detection implementations. We also evaluate the
topological properties of the detected edges and find them substantially different
to comparable methods, suggesting a complementarity of the magnitude model
with previous works.

This paper is organised as follows. In Sect. 2 we provide a theoretical framework
for the behaviour of the magnitude measure on images. In Sect. 3, we consider the
practicalities of computing the magnitude vector of images and provide a speedup
algorithm. In Sect. 4 we evaluate the approximation methods described in this paper
and perform experiments on the edge detection capabilities of the magnitude vector.
Our results are summarised in Sect. 5.

2 Theorectical results

We start by introducing the essential notions of the theory of magnitude, magnitude
measures, and magnitude vectors. We proceed by laying out how an image can be
viewed as a compact metric space and derive explicit formulae for the magnitude
measure on the space of one-dimensional images. We further show how the magni-
tude measure for two-dimensional images can be approximated by one-dimensional
images.

2.1 Mathematical background

We start by formally introducing the notion of finite and compact metric spaces. In
our setting, a metric space is an ordered pair (B, d), where B is a finite or compact set
and d is a metric on B. If B is finite, we denote the cardinality of B by |B|. In many
applications, the set B is a set of vectors B ⊂ R

n and the metric considered is the �p
norm. In order to define the magnitude of such a space we first define the similarity
matrix of a metric space.

Definition 2.1 Given a finitemetric space (B, d), its similaritymatrix is ζB with entries
ζB(i, j) = e−d(Bi ,Bj ) for Bi , Bj ∈ B.

We are now in a position to define the magnitude vector and the magnitude of a
finite vector space.

Definition 2.2 Consider a finite metric space (B, d) of cardinality |B| = n. Denote
its similarity matrix by ζB ; if ζB is invertible, denote its inverse by ζ−1

B . The mag-
nitude vector (also known as the weighting vector) of element Bi is given by wi =∑n

j=1 ζ−1
B (i, j). Moreover, the magnitude of (B, d), magB , is

∑n
i, j=1 ζ−1

B (i, j) =
∑n

i=1 wi .

Not every finite metric space has a magnitude. In particular, the magnitude is not
defined when the similarity matrix is not invertible; the magnitude therefore charac-
terises the structure of a metric space to some extent. For compact metric spaces an
analogous notion exists.
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Definition 2.3 (Willerton 2014) Consider a metric space X = (B, d) with a compact
set B and a metric d. A finite, signed Borel measure ν is called a magnitude mea-
sure (also known as a weight measure) on X if the following relation holds for all
y ∈ X :

∫

x∈X
e−d(x, y)dν(x) = 1

Furthermore, the magnitude of X is given by

magX =
∫

x∈X
dν(x).

We see that the compactmetric space and the finitemetric space cases are analogous
where sums are replaced by integrals and weight vectors are replaced by magnitude
measures.

2.2 An image as a compact metric space

What is an image? Different fields have produced distinct definitions. In computer
science, and computer vision, an image is typically conceptualised as an array of
pixels, where each pixel consists of a number of channels (usually 1 or 3), therefore
corresponding to a tensor. In this work, we propose an alternative conception and
consider a digital image as a set of points in some ambient space, as formalised below.

Definition 2.4 (Digital Image) A digital image is a set of points ∈ R
2+n of the form

{(i, j, c(i, j)
1 , . . . , c(i, j)

n )T }, with i, j ∈ N such that 0 < i < w, 0 < j < h for some
integers w, h.

In the days of analogue photography, however, this definition was not so clear
cut. There, an image was just a projection of three-dimensional space onto a two-
dimensional object. We start with this more analogue definition of an image and
define it as a surface in some ambient space. For grey-scale images this would be
a two-dimensional surface in three-dimensional space. Note that this surface is not
infinite as it is bounded by the edges of the image. With this definition, we can view
an image with n colour channels as a compact metric space X of dimension 2 in
some n + 2 dimensional ambient space. Each point on this image is given by x =
(x1, x2, c1, . . . , cn)T = (x1, x2, c)T ∈ X . We also define n maps from the coordinates
(x1, x2)T to the channels ci , given by ci = �i (x1, x2), and denote the vector of nmaps
as � and the vector of channels as c. We now define the domain of an image.

Definition 2.5 (Domain) The domain D ⊆ R
2 of an image is the region 0 ≤ x1 ≤ w,

0 ≤ x2 ≤ h, wherew, h ∈ Ndenote thewidth and the height of the image, respectively.
A point in the domain is denoted by x ∈ D.

Note that the domain contains all its boundary points. We can now define an ana-
logue image.
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Definition 2.6 (Analogue Image) An analogue image is a continuous map on a domain
D, i.e. � : D → R

n so that �(x1, x2) = �(x) = c, where c denotes the vector of
channels. Hence, � maps an image coordinate to its channel (colour) information.

In between the digital and the analogue image, there exists a third way of describing
images, which we call digitised images. In a digitised image, we still have pixels,
however, these have a finite area in R

2, i.e. each pixel has an area �x1�x2 with a
constant channel value c. Therefore, we do not consider continuous surfaces but step
functions.

Remark 2.7 It has been pointed out that step functionsmay not be an appropriatemodel
for images (Malik and Jitendra 1992). However, for simplicity, we still consider step
function images.

Definition 2.8 (Digitised Image) A digitised image is a step function on a domain
D, i.e. �s : D → R

n so that �s(x1, x2) = �s(x) = c, with c denoting the vector
of-channels. Again, �s maps an image coordinate to its channel (colour) information.

Note that digitised images are technically not compact metric spaces, however, as
we will show, we can rephrase the problem to alleviate this issue.

Remark 2.9 (Notation)As introduced above,wedenote a vector in thedomain as x with
elements xi . In contrast, we use bold font to denote vectors on the image consisting
of a point on the domain and all its pixel brightnesses. That is, x = (x,�(x))T .

2.3 Themagnitude of images

The most straightforward approach to define the magnitude of an image is to choose a
metric d and calculate the magnitude vector directly on the set of points defined by a
digital image as defined in Definition 2.4 using Definition 2.2. However, this approach
is unsatisfactory for both computational and theoretical reasons:

(i) Computationally, this requires the inversion of a (#pixels×#pixels)-matrix or
solving a linear system, for which the computational cost grows cubically with
the number of pixels.

(ii) Theoretically, this makes the tracing of how the individual pixel weights are
formed very challenging. Indeed, the magnitude computation is global and all
pixels can potentially contribute to the magnitude weight of each pixel.

To address the above limitations, we propose an alternative approach based on con-
tinuous images, i.e. an approach that addresses both analogue and digitised images.
We then show experimentally that this new alternative accurately recovers the digital
scenario, however, with some numerical aberrations. For each pair of points in the
image domain D, x, x ′ ∈ [0, w] × [0, h], we can express the corresponding points
on the image (the R2+n ambient space) by x = (x,�(x))T and x′ = (x ′,�(x ′))T ,
or x = (x,�s(x))T and x′ = (x ′,�s(x ′))T , respectively for digitised images. By
choosing a metric d for the set of tuples X = {x = (x,�(x)) : x ∈ D}, we can view
each (analogue or digital) image as a compact metric space X = (X, d). A natural
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starting point for our derivations is the definition of the magnitude measure ν that
satisfies

∫

x∈X
e−d(x, y)dν(x) = 1 (1)

for all y ∈ X . Substituting with the definition of x, we obtain an explicit integral
equation for the magnitude measure of an analogue image, i.e.

∫

x∈X
e−d((x,�(x))T ,(x ′,�(x ′))T )dν((x,�(x))T ) = 1 (2)

for all x ′ ∈ D. Unfortunately, Eq. (2) is in general analytically intractable. However,
for specific cases, we can obtain an explicit computation, as we venture to show in
this work.

Remark 2.10 Note that by using themap�, we can rephrase the problem of integration
over a (possibly non-compact) space inR2+n into an integration over a bounded plane
inR2 (i.e. a bounded subset of dimension 2, which is always compact) and a modified
metric, resulting in a substantial computational simplification.

2.3.1 1D images

One-dimensional images are images with a one-dimensional domain D = [0, w]. The
simplest such image is a constant line segment. We start by restating the magnitude
measure of a line segment as proven in Willerton (2014).

Theorem 2.11 (Willerton 2014, Theorem 2) Let μ be the Lebesgue measure of a line
segment L [a,b], [a, b], and let δa and δb be the Dirac measures at the respective end
points. Then the magnitude measure ν on L [a,b] is given by ν = 1

2 (μ+δa +δb). Hence
the magnitude is simply

magL[a,b] = 1 + a − b

2
.

Proof The proof follows from direct integration. �	
Equipped with the results on a line segment, we may now focus on describing

the meaning of the metric d((x,�(x))T , (x ′,�(x ′))T ). Recall that the domains we
are interested in for 1D images are always line segments (corresponding to a single
row of pixels). However, using brightness and colour channels of the images needs a
modification of the typicalmetrics defined on D.We thus turn to the question of exactly
how this metric is modified. Depending on the dimension of the input domain, we can
specify how two measure the distance between two points. For a one-dimensional
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domain, we have

d((x1,�(x1))
T , (x ′

1,�(x ′
1))

T ) =
∣
∣
∣
∣
∣

∫ x ′
1

x1

√

1 +
(
d�(y)
dy

)2
dy

∣
∣
∣
∣
∣

for �2, (3a)

d((x1,�(x1))
T , (x ′

1,�(x ′
1))

T ) = |x1 − x ′
1| +

∣
∣
∣
∣
∣

∫ x ′
1

x1

∣
∣
∣
d�(y)
dy

∣
∣
∣ dy

∣
∣
∣
∣
∣

for �1. (3b)

In the case of digitised images, we encounter discontinuous step functions. In this
case, the curve length is the usual distance on a plane plus the absolute height of the
steps between two points as can be seen from direct integration of Eqs. (3a) and (3b).

Example 2.12 Consider the �1 metric, on an analogue image on a domain D = [0, w].
We can derive the magnitude measure of

(i) the constant image �(x1) = const.,
(ii) the single channel (n = 1) line image �(x1) = αx1 + const, where α ∈ R.

Note that the constant image is a special case of the line imagewithα = 0. Substituting
the line image into Eq. (3b), we obtain

d((x1,�(x1))
T , (x ′

1,�(x ′
1))

T ) = |x1 − x ′
1| + |α||x1 − x ′

1|.

Therefore, Eq. (2) becomes

∫ w

0
e−(|α|+1)|x1−x ′

1|dν(x1) = 1,

for all x ′
1 ∈ [0, w]. Using Theorem 2.11, we conclude that the magnitude measure for

constant or line images is given by ν(X) = 1
2 (|α| + 1)(μ + δ0 + δw), where μ refers

to the Lebesgue measure of the interval [0, w].
For more complex analogue images, or metrics other than �1, finding a magnitude

measure becomes analytically intractable. Therefore, we turn our focus to digitised
images. We begin by considering a one-dimensional image, D = [0, w], with a single
channel and two pixels. Note, that this scenario corresponds to the usual step function
where the step is located at w/2.

Lemma 2.13 Let �s(x1) = γ H(x1 −w/2)+ c, where H(·) is the Heaviside function
with convention H(0) = 0, constantsw, c ∈ R+, and γ ∈ R. The magnitude measure
of the metric space defined by �s(x1) in the domain D = [0, w] with �1 metric is
given by

ν(x1) = 1

2

(
μ + δ0 + δw + (1 − e−|γ |)δw/2

)
.

123



M. F. Adamer et al.

Proof Let x ′
1 ∈ D be a point in the domain. Calculating the curve length from Eq. (3b)

and substituting the magnitude measure into Eq. (1), we obtain

I =
∫ w

0
e−|x1−x ′

1|−|γ ||H(x1−w/2)−H(x ′
1−w/2)| d

[
1

2

(
μ + δ0 + δw + (1 − e−|γ |)δw/2

)]

︸ ︷︷ ︸
dν(x1)

.

We now distinguish two cases, x ′
1 ≤ w/2 and x ′

1 > w/2.

Case 1 (x ′
1 ≤ w/2): The integral simplifies to

∫ w

0
e−|x1−x ′

1|−|γ |H(x1−w/2)dν(x1).

We now split the interval [0, w] into three parts, [0, x ′
1), [x ′

1, w/2], (w/2, w] and
compute the three integrals I + I1 + I2 + I3. From the first interval, we obtain I1 = 1

2 .

The second interval gives I2 = 1
2 (1−e−|γ |−(w/2−x ′

1)), and the third interval integrates

to I3 = 1
2e

−|γ |−(w/2−x ′
1). We then have I1 + I2 + I3 = I = 1.

Case 2 (x ′
1 > w/2): The integral simplifies to

∫ w

0
e−|x1−x ′

1|−|γ |(1−H(x1−w/2))dν(x1).

Again,we divide the domain into three parts, [0, w/2), [w/2, x ′
1], (x ′

1, w] and compute
the integrals I1, I2, I3. This gives I1 = 1

2e
−|γ |e(w/2−x ′

1), I2 = 1
2 (1 − e−|γ |e(w/2−x ′

1)),
and I3 = 1

2 . We also obtain I1 + I2 + I3 = I = 1. �	
We note that a similar result can be obtained following Leinster and Meckes (2017,

Sect. 4.2), but provide the proof above to remain self-contained.

Remark 2.14 (Reflection property) Note that the second case is also covered by reflect-
ing the function about the y-axis and integrating from w to 0, i.e. (1) let z = −x , (2)
let

∫ −w

0 → − ∫ 0
−w

and (3) shift z → z + w. This leaves the integral I invariant and
we refer to this property as the reflection property.

We can extend Lemma 2.13 to many pixels in a one-dimensional digitised image
via induction.

Theorem 2.15 Let �s(x1) = ∑m−1
i=1 γi H(x1 − (i/m)w) + c, where H(·) is the Heav-

iside function with convention H(0) = 0, w, c ∈ R+, and γi ∈ R. The magnitude
measure of the metric space induced by �s(x1) in the domain D = [0, w] with �1
metric is given by

ν(x1) = 1

2

(

μ + δ0 + δw +
m−1∑

i=1

(
1 − e−|γi |

)
δ(i/m)w

)

.
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Proof The proof follows the proof of Lemma 2.13. We first consider three pixels with
the curve length metric of Eqs. (3a) and (3b),

I =
∫ w

0
e−|x1−x ′

1|−|γ1(H(x1−w/3)−H(x ′
1−w/3)|+|γ2(H(x1−2w/3)−H(x ′

1−2w/3))|

× d

[
1

2

(
μ + δ0 + δw + (1 − e−|γ1|)δw/3

)
+ (1 − e−|γ2|)δ2w/3

]

︸ ︷︷ ︸
dν(x1)

.

Now, we consider three cases x ′
1 ≤ w/3, w/3 < x ′

1 ≤ 2w/3, and 2w/3 < x ′
1 ≤ w.

Case1 (x ′
1 ≤ w/3):Wesplit the domain into four parts, [0, x ′

1), [x ′
1, w/3], (w/3, 2w/3],

and (2w/3, w] and compute the four resulting integrals I1, I2, I3, and I4. By direct
integration, the integrals evaluate to I1 = 1

2 , I2 = 1
2 (1 − e−|γ1|−(w/3−x ′

1)), I3 =
1
2 (e

−|γ1|−(w/3−x ′
1) − e−|γ1|−|γ2|−(2w/3−x ′

1)), and I4 = 1
2e

−|γ1|−|γ2|−(2w/3−x ′
1). Sum-

ming the integrals, we obtain I1 + I2 + I3 + I4 = I = 1.

Case 2 (w/3 < x ′
1 ≤ 2w/3):We divide the domain into the parts, [0, w/3), [w/3, x ′

1],
(x ′

1, 2w/3), and [2w/3, w] and compute the four resulting integrals I1, I2, I3, and
I4. These evaluate to I1 = 1

2e
−|γ1|−(x ′

1−w/3), I2 = 1
2 (1 − e−|γ1|−(x ′

1−w/3)), I3 =
1
2 (1 − e−(2w/3−x ′

1)), and I4 = 1
2e

−(2w/3−x ′
1). Summing the integrals, we obtain I1 +

I2 + I3 + I4 = I = 1.

Case 3 (x ′
1 > 2w/3): Similarly, we consider the integrals on [0, w/3), [w/3, 2w/3),

[2w/3, x ′
1), and [x ′

1, w]. The four integrals evaluate to

I1 = 1
2e

−|γ1|−|γ2|−(x ′
1−w/3),

I2 = 1
2 (e

−(x ′
1−2w/3)−|γ2| − e−|γ1|−|γ2|−(x ′

1−w/3)),

I3 = 1
2 (1 − e−(x ′

1−2w/3)−|γ2|),

and

I4 = 1
2 .

Again, we obtain I1 + I2 + I3 + I4 = I = 1. The generalisation to m step functions
follows by induction. �	

Remark 2.16 (Boundary effects) Note that Theorem 2.15 implies that for any image
with �1 metric there are always “boundary effects” meaning that irrespective of the
actual value of the image, the largest values always occur at the domain boundary. In
practical computer vision applications this is not an issue, as we can use the common
technique of padding the image for magnitude calculations and cropping the boundary
afterwards.
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Fig. 1 An illustration of the
magnitude calculation of a
two-channel, two-pixel,
one-dimensional image. The
height of each pixel, i.e. its
brightness, is illustrated by a
hatched curve. The solid lines
represent the step functions, the
dashed blue line is the numerical
magnitude and the dotted orange
line represents the theoretical
magnitude

Corollary 2.17 (Multi-channel 1D-images) Theorem 2.15 can be applied to multi-
channel one-dimensional images,

�(x1) =
⎛

⎜
⎝

�s,1(x1)
...

�s,n(x1)

⎞

⎟
⎠ =

⎛

⎜
⎝

∑m−1
i=1 γi,1H(x1 − (i/m)w) + c1

...
∑m−1

i=1 γi,nH(x1 − (i/m)w) + cn

⎞

⎟
⎠ ,

with a magnitude measure

ν(x1) = 1

2

(

μ + δ0 + δw +
m−1∑

i=1

(
1 − e−∑n

j=1 |γi, j |
)

δ(i/m)w

)

.

An illustration of the results of this section are provided in Fig. 1. To obtain the
numerical magnitude we treated the step function as a one-dimensional digital image
and proceeded via matrix inversion. The theoretical magnitude is calculated from
Corollary 2.17. It can be seen that our results are generally in good agreement with
numerical calculations. There are, however, some minor differences in the numerical
results and our theoretically obtained magnitude measure. We attribute this to two fac-
tors, namely numerical inaccuracies in the matrix inversion and discretisation effects.
Discretisation effects occur due to the fact that we consider a finite set of points and,
therefore, any infinite step necessarily needs to be approximated via a steep, but finite
step.

Remark 2.18 Note that one-dimensional images can also be viewed as time series,
although, the magnitude measure ignores the arrow of time.

Remark 2.19 Instead of step functions, we could have chosen a piece-wise linear
interpolation between the pixels to create a continuous surface. The proofs for this
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construction (e.g. a piece-wise linear continuous curve in one-dimension) are analo-
gous to the step function case. In fact, the �2 curve-length is also tractable. However,
piece-wise linear functions are not good models for images.

2.3.2 2D images

Equipped with exact calculations of the magnitude measure of digitised images in one
dimension, we now aim to generalise these results to two-dimensional images. We
first extend Theorem 2.11 to a bounded plane with �0 (Hamming) and �1 (Manhattan)
metrics analogously.

Theorem 2.20 Let μ be the Lebesgue measure on the real line and ν(L [a,b]) be the
magnitude measure on a line segment L [a,b]. Then a magnitude measure on a bounded
Plane P[a,b]×[c,d] is given by

(i) for �0: ν(x) = μ
(b−a)(d−c) ,

(ii) for �1: ν(x) = ν(L [a,b])ν(L [c,d]).

Proof Note that in both cases we can find a magnitude measure ν(x) such that the
integral can be expressed as

∫

x∈[a,b]
e−d(x1,x ′

1)dν(x1)
∫

x2∈[c,d]
e−d(x2,x ′

2)dν(x2) = 1, (
)

for x ∈ P[a,b]×[c,d]. For the Hamming metric we note that it is only 
= 0 on a set of
Lebesguemeasure 0, namely x1 = x ′

1 or x2 = x ′
2 respectively. Therefore, the integrand

equals 1 and we can express the magnitude measure as ν(x1) = μ(x1)/(a − b) and
ν(x2) = μ(x2)/(c − d). Substituting into equation 
, we obtain

1

(b − a)(d − c)

∫

x∈[a,b]
dμ(x1)

∫

y∈[c,d]
dμ(x2) = 1,

which completes the proof. In the case of the Manhattan metric, we note that each
integral equals the integral over a real line with magnitude measure ν(L [a,b]) and
ν(L [c,d]) respectively. �	

A more general result of Theorem 2.20 has also been obtained in Leinster and
Meckes (2017, Proposition 3.7). We illustrate the ramifications of Theorem 2.20 by
generalising Example 2.12 to two-dimensional domains.

Remark 2.21 Interestingly, it seems that the Hamming distance does not suffer from
boundary effects, however, due to the nature of this distance one also reduces the
information carried by the metric. Furthermore, the Hamming distance is not robust
to noise, i.e. small perturbations in the pixel values may have large effects on the pixel
distance.

Example 2.22 Consider the �1 metric, on an analogue image on a domain D = [0, w]×
[0, h]. We can derive the magnitude measure of
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Fig. 2 Two 1D images. The brightness channel is constant across at least one of the dimensions

(i) the constant image in Fig. 2a with �(x) = const.,
(ii) the single channel (n = 1) line image in Fig. 2b with �(x) = αx1 + const,

where α ∈ R.

Note that the constant image is a special case of the line imagewithα = 0. Substituting
the line image into Eq. (3b), we obtain

d((x,�(x))T , (x ′,�(x ′))T ) = |x − x ′| + |α||x1 − x ′
1|.

Therefore, Eq. (2) becomes

∫

x∈D
e−(|α|+1)|x1−x ′

1|−|x2−x ′
2|dν(x) = 1,

for all x ′ ∈ D. Using Theorem 2.20, we conclude that the magnitude measure for
constant or line images is given by ν(X) = (|α| + 1)ν(D). Note that these results
generalise straightforwardly to multi-channel images by letting, for example, �(x) =
(�1(x), . . . , �n(x))T = (α1x1, . . . , αnxn)T .

The obvious difficulty to obtain results for more general images is that the geodesic
distance is not as straightforward to calculate. In fact, for general images, this is
analytically intractable. A simplifying assumption we can make is to consider a rank-
1 approximation of an image. In this case, the image is outer product of two one-
dimensional (digitised) images. Therefore, we can use Theorems 2.20 and 2.15 to
derive the magnitude measure.

Corollary 2.23 Consider twoone-dimensional images, I1 = (x1,�s(x1))T , on domain
D1 = [0, w] and �s(x1) = ∑m−1

i=1 γ
(1)
i H(x1 − (i/m)w) + c(1) and I2 =
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(x2,�s(x2))T , on domain D2 = [0, h] and �s(x2) = ∑m−1
i=1 γ

(2)
i H(x2 − (i/m)h) +

c(2). Let I be the rank−1 two-dimensional image formed by I = I1 ⊗ I2. Then

ν(x) = ν(1)(x1)ν
(2)(x2),

where ν(i)(xi ) is the one-dimensional magnitude measure of the image Ii .

Proof This follows from Theorems 2.20(ii) and 2.15. �	
Again, the above corollary can be straightforwardly generalised to colour images

using Corollary 2.17. We note that the rank-1 approximation constitutes too coarse of
a simplification for virtually any image; we therefore consider another approximation,
which we call the independence approximation. In the independence approximation
we treat each pixel in a digitised image as if it were a pixel in a rank-1 image. That is,
for a given location (x ′′

1 , x ′′
2 ) ∈ R

2, we apply corollary 2.23 to obtain a local magnitude
measure of the pixel

ν(x)|(x ′′
1 ,x ′′

2 ) = ν(1)(x1)|x ′′
2

ν(2)(x2)|x ′′
1
.

Therefore, we only consider the step functions at the edges of each pixel to obtain
a weight for the pixel. Even though, this is not a global magnitude measure, it is a
reasonable approximation in practice (see Sect. 4.2) and, since it only relies on local
pixel information, is computationally very efficient.

2.4 Interpretation of themagnitudemeasure

In the previous sectionswecalculated explicitmagnitudemeasures for digitised images
with �1 metric. In this section,we interpret themeaning of thesemeasures in the context
of computer vision. First, we observe that the magnitude measure is at least approxi-
mately a local property, that is, it only depends on the immediate neighbourhood of the
point x in a domain D. This holds exactly for one-dimensional images and we show,
based on one-dimensional considerations, that this also holds at least approximately
for two-dimensional images; we hope to inspire further work in this direction. These
results can be used in constructing efficient algorithms when applying our results from
digitised images to digital images. In Fig. 1 we empirically show that the values of the
magnitude measure calculated from our formulae (based on compact metric spaces)
are reproduced in the numerical calculations on finite metric spaces modulo some
numerical “discretisation effects.”

Next, we investigate a potential interpretation for the value of the magnitude mea-
sure of a digitised image. Note that in the absence of any steps, it is just a constant equal
to half the Lebesgue measure (ignoring boundary effects). Analogously, in numerical
experiments the constant is determined by the grid spacing. The magnitude measure
has a value larger than this constant only when steps are present, in other words, when
the pixel brightness changes. In computer vision a “rapid change in pixel brightness”
is usually referred to as an edge in an image and algorithms whose aim is to find
edges in images are called “edge detectors”. Therefore, we argue that computing the
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magnitude measure (or vector) of an image performs an edge detection task as it is
large in the presence of an edge.

To determine how large a step needs to be in order to count as an “edge”, we recall
the definition of an exponential probability distribution. Let Z ∈ [0,∞) be a random
variable and λ > 0. The exponential distribution is given by a probability density
function (PDF)

pZ (z; λ) = λe−λz, (4)

with cumulative density function (CDF)

P(z ≤ Z; λ) = 1 − e−λz . (5)

If we let λ = 1 and x = |γi |, then we notice that the prefactor to the singular part of
the magnitude measure at the step locus has the form of the CDF of an exponential
distribution. In the case of two-dimensional images, we conjecture that a multivariate
exponential distribution of the from p(z) ∼ e− f (z), where f (·) is any continuous
function, needs to be considered. Both approximations we introduced in Sect. 2.3.2
can be considered as a probabilistic independence assumption, i.e. p(z) = p(z1)p(z2).
Using this interpretation, we can consider any threshold for edges as the probability
of a step being smaller than the threshold and in Sect. 4.3, we implement a magnitude-
based edge detector. This application immediately leads to our main machine learning
task of this paper.

Question: Given that the �1 magnitude vector has edge detection capabilities, can
we learn a metric which improves the edge detection of the magnitude vector?

To answer this question, we first need to investigate efficient ways of calculating
the magnitude vector of an image.

3 Speedup algorithms and learnable metrics

In this section, we introduce two important tools in order to makemagnitude computa-
tions more accessible and applicable. The first is an algorithm to speed up magnitude
vector calculations based on the reasoning of the previous sections. The second is
a neural network architecture which serves as a few-shot deep-learning-based edge
detector.

3.1 Efficient approximations of themagnitude vector of images

Although already mentioned, we briefly reiterate that a major speedup (at the cost
of accuracy) follows directly from Corollary 2.23. One can use Fourier filters, which
have efficient implementations in every major programming language, to calculate the
step heights in the x1- and x2-directions and transform it to the approximate magnitude
measure.
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The second potential speedup is described in Algorithm 1 and also uses the locality
property of the magnitude measure. In particular, it is a divide-and-conquer algorithm,
where the image is first split into several overlapping patches (to account for boundary
effects). Then the magnitude vector is calculated via matrix inversion or by solving a
linear system, the appropriate boundaries are removed and the resulting patches are
stitched together again. Therefore, the run time is linear in the number of patches and
cubic in the number of pixels in a patch, since matrix inversion is O(n3) for a matrix
of size n. We give an intuition for the correctness of this algorithm by by referring to
the results of Sect. 2.3:

1. We zero-pad the images to eventually crop boundary effects as seen in Theo-
rem 2.15.

2. The image is divided into patches as wee have seen that the magnitude vector is
most strongly influenced by the local step functions (2.15).

3. The magnitude vector for each patch is calculated according to Definition 2.2.
4. We reshape the magnitude vector into 2D and crop boundary effects at the patch

level.
5. The image is stitched together and boundary effects are removed.

With this theoretical intuition for the correctness of this algorithm, we provide
further empirical evidence and runtime comparisons in Sect. 4.2.

Algorithm 1: Heuristic speedup
Input: A digital image (img) tensor (c × h × w), a metric d, a patch size (h p, wp), an overlap δ

Output: A magnitude vector as an (h × w) tensor.
/* First split the image into n overlapping patches */

1 zeroPad(img): (c × h × w) → (c × h + δ × w + δ)

2 patch_array = patchImg(img): (c × h + δ × w + δ) → (n × c × h p + δ × wp + δ)

/* Find magnitude vector of each patch */
3 mag_patches = []
4 for patch in patch_array do
5 zeta = getSimilarityMatrix(patch)
6 zeta_inverse = invert(zeta)
7 mag_vec = sumCols(zeta_inverse)
8 mag_patch = reshapeAndCropBoundary(mag_vec)
9 append mag_patch to mag_patches

/* Now stitch the patches */
10 out = stitchPatches(mag_patches)
11 return out

3.2 A pullbackmetric for edge detection

We now return to the machine learning question posed at the end of Sect. 2. Can we
learn a metric to improve the edge detection of the magnitude vector? This task can
be loosely placed in the subfield of machine learning called metric learning (Kaya and
Bilge 2019). Traditionally, metric learning is a supervised learning technique which
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tries to find a metric which minimises the distance between to related points (i.e.
points that are in the same class) and maximises the distance between points which
are unrelated (i.e. are in a different class). Many techniques for metric learning have
been developed including triplet losses (Ge 2018) and triplet networks (Hoffer and
Ailon 2015).

In the case of optimising the magnitude vector one can think of the label as a
one-channel (grey scale or binary) image which labels the ground truth we are trying
to approximate, e.g. a manually annotated edge map in an edge detection dataset.
Although this ground truth image is a per-pixel labelling it is not straightforward to
use it as a label for a point in the input metric space (recall, that the similarity matrix
has to be inverted and summed). Therefore, “classical” metric learning techniques
cannot be applied and an alternative route needs to be taken. First, we formulate the
learning task. Given a set B, we want to find a metric d such that

ζ−1
B 1 = y, (6)

where y is the ground truth label and ζB is the similarity matrix of Definition 2.2. Note
that finding functions which are guaranteed to be metrics (in particular, ones that fulfil
the triangle inequality) is a highly non-trivial task. Before considering this issue, we
proceed by defining a loss function. One possible loss function for this learning task
is the �2 loss or mean squared error (MSE) loss,

L = (ζ−1
B 1 − y)2. (7)

Notice that calculating theMSE loss involves a matrix inversion whose computational
cost is typically prohibitive for large images.1 A straightforward application of Algo-
rithm 1 is also not possible as we have no theoretical guarantees that the learnt metric
has the same locality properties as the �1 metric. Therefore, we need to restrict the
function classes which we approximate. A possible solution presents itself in the form
of a pullback metric.

Definition 3.1 (Pullback metric) Let X and Y be two metric spaces and f : X → Y
be an injective function. Let d be a metric on Y , then the pullback metric is a metric
on X given by

( f ∗d)(x(1), x(2)) = d( f (x(1)), f (x(2))),

for x(1), x(2) ∈ X .

Suppose we let Y be the original image metric space and d is the �1 metric. Then,
we can immediately apply Algorithm 1 to make the loss computations tractable. The
machine learning task also reduces to finding an injective function f : Y → X , which
is usually referred to as an embedding. Observing that a function f : X → Y is injec-
tive if there exists a function g : Y → X such that for all x ∈ X g( f (x)) = x,

1 Matrix inversion is computationally equivalent to matrix multiplication, having a worst-case complexity
ofO(nω) for an n × n matrix, where ω < 2.373 (Alman and Williams 2021).
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we can parameterise the function f by an autoencoder neural network, i.e. a neural
network that strives to learn a simplified version of an input data set that contains all
characteristic features. This is achieved by first encoding the input data to a different
space, and subsequently decoding it. By comparing the obtained reconstruction with
the original input, one can assess the quality of the autoencoder. Fundamentally, there
are two different autoencoder architectures, compressive autoencoders which approx-
imate a function R

n → R
m where m < n, and expansive autoencoders for which

m ≥ n. Most autoencoders studied in the literature are compressive autoencoders
due to their favourable theoretical properties and their ability to perform non-linear
dimensionality reduction. One well-known disadvantage of expansive autoencoders
is the fact that without further constraints they merely learn to repeat the input data by
outputting the identity function, i.e. f (x) = g(x) = x, for all x ∈ X . Furthermore, in
most machine learning applications one would like to reduce the dimensionality of the
data, not expand it. In the case of metric learning in the magnitude setting, however,
both properties of expansive autoencoders are favourable as:

(i) The input dimensionality of the model is already low: n + 2, where n is the
number of channels (usually 1 or 3).

(ii) If the �1 metric in the input space is the best metric, then we want our model to
be able to learn the identity mapping.

(iii) the MSE loss of Eq. (7) is a natural regularizer for the latent space of the autoen-
coder.

Taking these benefits into account, we design a magnitude edge-detector with an
expansive autoencoder in the next section.

4 Experiments

In this sectionweperformexperiments to validate our theoretical claims and investigate
the power of the magnitude measure as an edge detector.

4.1 Datasets

For our experimentswe used theBIPEDdataset version 2 (Poma et al. 2020). BIPEDv2
is a newbenchmark dataset specifically designed for edge detection. BIPEDv2 consists
of 250 real-world images and annotated ground truths. The dataset is split into a
training dataset of 200 annotated images and a test dataset of 50 annotated images.
The resolution of the images is 1280× 720, resulting in almost one million pixels per
image. The ground truth annotations have been generated by computer vision experts
and moderated by an administrator. The viability of the ground truths have also been
confirmed using machine learning methods.

4.2 Accuracy of different magnitude approximations

The first set of experiments we performed were to empirically validate and investigate
the various approximate methods for calculating themagnitude vector of images intro-
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Fig. 3 Benchmark experiments performed on the 50 test imaged of BIPEDv2. We test the computational
speedup as well as the the approximation quality of Algorithm 1 and the rank-1 and local approximations
outlined in Sect. 2.3.2

duced in the paper. All of our calculations are performed on the test set of BIPEDv2.
order to generate a ground truth magnitude, we rescale the original image to a resolu-
tion of 200×200. This resulted in needing to invert a 40, 000×40, 000-matrix, which
is feasible on current machines. We then tested our three approximations, namely

1. the rank-1 approximation,
2. the independence approximation,
3. and the patched Algorithm 1.

To evaluate the performance, we first min-max scale the ground truth and the approx-
imated images such that the magnitude values are between zero and one. Then we
calculate three performancemetrics, namely themaximumabsolute deviation between
the ground truth and the approximatedmagnitude vector (�∞ distance), the normalised
Frobenius norm given by

error =
∑

i (ground truth − magnitude vectorapprox)
2

∑
i (ground truth)2

, (8)

and the correlation between the two images. The results are presented in Fig. 3
As expected, the rank-1 approximation is by far the worst with a low average corre-

lation between the ground truth and the approximated magnitude. A strong correlation
is present in the local approximation, however, the maximum deviation and Frobenius
norm are still large compared to the patched approximations. The patched algorithm
generally provides a good approximation to the ground truth with correlation values
close to one, and comparatively small absolute deviation and Frobenius norm. The
number of patches seems to have only a minor effect on the approximation accuracy,
which is expected from the theoretical intuition behind Algorithm 1. The computation
time is drastically decreased by Algorithm 1, with a smallest average computation
time with patches of 25× 25 pixels, resulting in 64 patches in total, were considered.
We attribute the increase in computation time for smaller patches to the computational
overhead involved in processing a larger total number of patches.
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4.3 Learning themagnitudemetric

Finally, we evaluate the capabilities of the magnitude vector as an edge detector.
We compare our results against standard edge detection baselines such as the Sobel
filter, the Canny edge detector, the “vanilla magnitude,” the current state of the art
deep learning models DexiNed (Poma et al. 2020) and the context-aware tracing
strategy (CATS) (Huan et al. 2021).

Baselines: The Sobel edge detector (Sobel and Feldman 2015) is a classical method
used in computer vision. It relies on two convolution filters, the Sobel operators, to
extract the gradients in the horizontal and vertical direction from the image. The edge
maps, which correspond to an edge probability, are calculated by taking the absolute
value of the gradient at each pixel. The first step to compute the Sobel edge map is
to calculate a grey-scale image from the colour image using the formula (Saravanan
2010)

cgrey = 0.2989cred + 0.5870cgreen + 0.1140cblue. (9)

Then, we apply a Gaussian blur to the image and, finally, we use the Sobel operators
with a given filter size. As a postprocessing step we, again, use min-max scaling.
The Gaussian and Sobel filter sizes are hyperparameters which can, in principle, be
optimised. However, in our experiments we use a Gaussian filter size of 5 and a Sobel
filter size of 3. The Canny edge detector (Canny 1986) builds on the Sobel filters and
combines the gradient evaluation with a non-maximum suppression step, where the
edge maps are sharpened, and a double-thresholding procedure to extract the edges.
Unlike all the other methods considered here, the output of the Canny detector is a
binary image, where pixel values of one correspond to edges and zeros correspond to
non-edges. The thresholds and Sobel filter sizes are again hyperparameters, which we
optimise by requiring that themisclassification rate on the training set isminimised, i.e.
the overlap of ones and zeros between the ground truth edge annotation and the Canny
output is maximised. The “vanilla magnitude” is simply the magnitude-transformed
test image. Since an exact transformation is infeasible, we use Algorithm 1 to speed up
the magnitude calculation. We use a Gaussian blur with filter size 5 as a preprocessing
and min-max scaling as a postprocessing step to obtain an edge probability map.

Both of the above algorithms are pixel-level methods that only use pixel intensities
and their neighbours. Recently, deep learning methods for edge detection have also
been developed. Most noteworthy are the Dexined (Poma et al. 2020) and the CATS
(Huan et al. 2021) algorithms. Both rely on training a convolutional neural network in
a supervised fashion, where the input is the image and the label is the edge map. What
is special about these methods is that they can leverage information from the deeper
layers in the neural network to obtain a better representation of the image. Since the
magnitude vector calculation is also a pixel-level method we naturally expect the deep
learning methods to outperform our approach.

Data preparation: since learning the magnitude vector on the full image is infeasible
due to the prohibitive matrix inversion which needs to be performed, we leverage our
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Fig. 4 A graphical overview of the magnitude edge detector. During training, we train the autoencoder
(optionally the feature extractor) as presented in a and during inference, we use the image transformer of b

proposed Algorithm 1. We first create patches from a given image and only learn the
edge map on each patch of the image. Then, during testing, we transform each patch
with the learned model and stitch the transformed patches together. We evaluate two
scenarios:

1. a random scenario, where we sample a random patch from each training image
and,

2. a single-shot scenario, where we use all patches from one training image only as
a training set.

In each scenario, we set aside 20% of the training patches as a validation set.
Our model: a graphical illustration of our edge detection model can be found

in Fig. 4. Essentially, it consists of two parts, a trained model to find a good pixel
embedding and an image transformer for inference. In the training step, we sample a
patch from an image (with overlap to account for boundary effects) and reshape it such
that we obtain a training batch of shape (#pixels × #features). The features used are
always the channel brightnesses (= 3 values: red, green, and blue) and the positional
encoding as in Definition 2.4. Additionally, we can create more features by using
a “feature extractor” or backbone. In the forward step we feed this batch through
the autoencdoer, as outlined in Sect. 3.2, and use the latent space representation to
calculate the magnitude vector of the image patch. The image transformer transforms
a full high-resolution image to a full-resolution magnitude vector using the generated
latent-space representation of the image and Algorithm 1. As postprocessing step we
perform min-max scaling of the absolute values of the magnitude vector elements.
The absolute value is taken, since numerical instabilities in the matrix inversion can
lead to negative magnitude vector values.
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Loss function: as outlined in Sect. 3.2 the loss function for our model is composed
of the autoencoder loss and the magnitude loss discussed in Sect. 3.2 as a regulariser
for the autoencoder. In particular, for each patch we use the loss

L = LAE + λLmag. (10)

Here

LAE = 1

n

n∑

i=1

(x1 − x̂i )2

is the autoencoder loss between a point x in the digital image and the reconstructed
point x̂ and n is the number of pixels in the patch. The term Lmag is the loss between the
magnitude-transformed patch and the ground truth edge map. Empirically we found,
that the loss function

Lmag = 1

|Np|
∑

i∈Np

(yi − ŷi )
2 + 1

|Nn|
∑

i∈Nn

|yi − ŷi |

is beneficial. The values y ∈ [0, 1] is a pixel in the ground-truth edge map and ŷ ∈ R

is a magnitude-transformed pixel and Np are the pixels for which y = 1, whereas Nn

are pixels for which y = 0. The distinction between edges (y = 1) and non-edges
(y = 0) is necessary, since in each patch there are usually many more non-edges than
edges and not discriminating between the two classes in the loss function results in
inferior performance (Poma et al. 2020).

During validation we use a modified magnitude loss, namely

Lmag = 1

|Np|
∑

i∈Np

|yi − ŷi | + 1

|Nn|
∑

i∈Nn

|yi − ŷi |

to obtain a more fine-grained distinction between the models.

Hyperparameters: naturally, there are many hyperparameters in our model that can
be tuned such as the architecture of the autoencoder and the feature extractor, the
patch size, the learning rate, the regularisation strength λ. In our experiments we use a
learning rate of 0.001, a patch size of 40×40 and an overlap of 2. The basemetric is the
�1 metric as described in Sect. 3.2. We set the regularisation strength (λ)) to one, since
the autoencoder loss always approaches 0 and after a few epochs only the magnitude
loss will be optimised. It is also not necessary to use weight decay or dropout. We do
employ early stopping, however, we use model checkpointing which selects the model
with the smallest validation loss for inference. We trained the model for 100 epochs in
the random scenario and for 50 epochs in the single-shot scenario. We study several
different autoencoder architectures and also include a convolutional feature extractor.
No additional hyperparameter tuning (for instance in terms of depth or embedding
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dimension) has been performed due to the difficulty of rigorous evaluation of model
performance on the entire image. In particular, we propose three architectures:

• Model I consists of a linear autoencoder with one layer transforming the initial 5
features to 10 features in the latent space. No feature extractor is used.

• Model II consists of a non-linear autoencoder with layer sizes 10, 20 and 40 and
a rectified linear unit (ReLU) activation function. Again, no feature extractor is
used.

• Model III consists of a convolutional feature extractor with a single convolution
layer with filter size 3 transforming the 3-channel input patch to a 15-channel
output. The resulting 20 features are transformed using a linear autoencoder with
one layer into a 40 dimensional latent space.

Evaluation: to rigorously evaluate our model performance, there are, in principle,
two strategies; an indirect method, were the edge detection is evaluated via some
downstream computer vision task, or a direct strategy, where the computed edge maps
are compared directly to the ground truth annotation. We adopt the latter strategy
in order to gain insight into the main advantages and disadvantages of the magnitude
approach. To this end,we use four evaluationmetrics commonly used in edge detection
tasks (Poma et al. 2020), namely:

1. theOptimalDataset Scale (ODS),where one threshold separating edges/non-edges
is calculated for the entire dataset.

2. The Optimal Image Scale (OIS), where one threshold is calculated per image.
3. The Average Precision (AP).
4. The average recall at 50% precision (R50).

In order to calculate these measures, we use standard postprocessing tasks such as
non-maximal suppression (NMS) and morphological thinning of the edge maps.

Topological properties of magnitude images: prior to performing a formalised
investigation of the magnitude edge maps, we aim to quantify their structural—i.e.
topological—properties. To this end, we leverage recent advances in computational
topology and calculate the persistent homology of the edge images that we obtain via
the Sobel edge detector or our magnitude-basedmethod. As shown byHu et al. (2019),
topological features are suitable to evaluate segmentations, for instance. Treating each
image as a cubical complex Rieck et al. (2020a), we extract topological features in
dimension 0 (connected components) and dimension 1 (cycles) of the resulting edge
images; we summarise all features using the norm of their corresponding Betti curve
(Rieck et al. 2020b), i.e. a simplified description of their topological complexity. As
Fig. 6 shows, the magnitude and Sobel edge images are structurally substantially dif-
ferent (in terms of topological summary statistics). Specifically, we see that magnitude
exhibits a larger degree of computational complexity in terms of both connected com-
ponents and cycles, thus underscoring the fact that Sobel edge images and magnitude
edge images indeed capture qualitatively different structures.

Results: the numerical results are presented in Table 1with example edgemaps given
in Fig. 5. As can be seen, the best magnitude model (Model I) is on par with the Sobel
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Fig. 5 Example edge maps taken from the test set of BIPEDv2. We see that the ground truth annotation
of the images not always exact and, therefore, any pixel-level evaluation should be taken with care. We
compare the Sobel filter output, our best-performing magnitude model and the local approximation of the
vanilla magnitude. The colours have been inverted for better visibility

Fig. 6 Topological complexity
in terms of the norm of Betti
curves for magnitude (red) and
Sobel edge images (blue)
(colour figure online)
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edge detector, potentially performing only slightly worse. This is surprising as, unlike
the Sobel method, the magnitude is not a purpose-built edge detector. The Canny edge
detector also did not perform well according to our evaluation metrics. However, this
can be explained by the fact the Canny edge detector does not provide a probabilistic
edge map; rather it outputs a binary image with an already-implied hard decision
boundary between edges and non-edges. Models II and III performed worst among all
magnitude-based models. This could be attributed to the limited number of training
examples used. The vanilla magnitude performed surprisingly well, although slightly
worse than the optimised magnitude models. There seemed to be very little difference
between the random and single-shot scenarios hinting at the fact that single images
provides enough diversity to obtain a good latent space embedding. As expected, all
pixel-level methods performed worse than the modern convolutional neural networks.
This can be explained by the fact that more global information is available to these
models. One noteworthy aspect is that the current model embeds single pixels into
a latent space, therefore fine-tuning the distance between the pixels, but not taking
into account more global information. This could be optimised in future versions of
the magnitude edge detector. We also reiterate that no rigorous optimisation of the
autoencoder or feature-extractor architecture was performed. The results provide a
clear indication that careful optimisation of these parameters can lead to substantial
performance increases (or decreases).

Qualitatively, the Sobel and magnitude edge maps are very similar, however, the
magnitude edge maps are usually slightly darker. This could also be attributed to our
postprocessing steps, in particular, taking the absolute value of the magnitude vector
elements before min-max scaling. Some details are lost in the local approximation,
however, strong edges are still present.

5 Conclusion

In this paper, we introduced the magnitude vector of images. We started by outlining
three different theoretical models for images and explained how they relate to each
other. We then proceeded to show how the magnitude measure could be obtained for
each of these image models and proved some foundational results.

The main theoretical contribution of this paper consists of explicitly deriving the
magnitudemeasures for one-dimensional digitised imageswith �1 metric. Specifically,
we showed that themagnitudemeasure ismostly constant throughout the image, except
at the step locations of step functions, where it is singular (with a measure correspond-
ing to the CDF of an exponential distribution). This allowed to theoretically motivate
the ability of the magnitude measure to perform edge detection. We also considered
two-dimensional images. However, due to the analytical intractability, approximation
strategies were introduced. Based on these analytical results, we developed a patched
speedup algorithm, which makes the magnitude vector calculation of high-resolution
images feasible.We also considered refinements to themetric by introducing the notion
of a pullback metric.

We performed a number of experiments validating our theoretical results, in partic-
ular, we empirically showed the validity of the patched magnitude calculation. In the
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final part of this paper, we presented results on the edge-detection capabilities of the
magnitude vector with and without trained latent-space embeddings. The results of the
experiments are promising and we found that the magnitude edge detector is approx-
imately on par with the popular Sobel method, while still exhibiting substantially
different topological, i.e. connectivity, properties.

These proof-of-principle experimental results open up a number of avenues
for future research, both theoretically as well as experimentally. Major theoretical
advances could consist of finding better approximations for the magnitude calculation
in order to circumvent the matrix inversion step. Future experimental research could
be directed towards finding better feature extractors or alternative metric learning
procedures. In particular, it would be beneficial to be able to harness non-local pixel
information.
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Kaya, M., Bilge, H.Ş: Deep metric learning: a survey. Symmetry 11(9), 1066 (2019)
Leinster, T., Meckes, M.W.: The magnitude of a metric space: from category theory to geometric measure

theory. In: Gigli, N. (ed.) Measure Theory in Non-Smooth Spaces, pp. 156–193. De Gruyter Open
Poland (2017)

Leinster, T.: The magnitude of metric spaces. Doc. Math. 18, 857–905 (2013). https://doi.org/10.4171/DM/
415

Malik, J., Perona, P.: Finding boundaries in images. In: Neural Networks for Perception, pp. 315–344.
Elsevier (1992)

Poma, X.S., Riba, E., Sappa, A.: Dense extreme inception network: towards a robust CNN model for edge
detection. In: Proceedings of the IEEE/CVFWinter Conference on Applications of Computer Vision,
pp. 1923–1932 (2020)

Rieck, B., Sadlo, F., Leitte, H.: Topological machine learning with persistence indicator functions. In:
Carr, H., Fujishiro, I., Sadlo, F., Takahashi, S. (eds.) Topological Methods in Data Analysis and
Visualization V, pp. 87–101. Springer, Cham (2020). ISBN 978-3-030-43036-8. https://doi.org/10.
1007/978-3-030-43036-8_6

Rieck, B., Yates, T., Bock, C., Borgwardt, K., Wolf, G., Turk-Browne, N., Krishnaswamy, S.: Uncovering
the topology of time-varying fMRI data using cubical persistence. Adv. Neural Inf. Process. Syst. 33,
6900–6912 (2020)

Saravanan, C.: Color image to grayscale image conversion. Sec. Int. Confer. Comput. Eng. Appl. 2, 196–199
(2010). https://doi.org/10.1109/ICCEA.2010.192

Sobel, I., Feldman, G.: An Isotropic 3x3 Image Gradient Operator (2015). https://doi.org/10.13140/RG.2.
1.1912.4965

Solow, A.R., Polasky, S.: Measuring biological diversity. Environ. Ecol. Stat. 1(2), 95–103 (1994). https://
doi.org/10.1007/BF02426650

Willerton, S.: On the magnitude of spheres, surfaces and other homogeneous spaces. Geom. Dedic. 168(1),
291–310 (2014)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.4171/DM/415
https://doi.org/10.4171/DM/415
https://doi.org/10.1007/978-3-030-43036-8_6
https://doi.org/10.1007/978-3-030-43036-8_6
https://doi.org/10.1109/ICCEA.2010.192
https://doi.org/10.13140/RG.2.1.1912.4965
https://doi.org/10.13140/RG.2.1.1912.4965
https://doi.org/10.1007/BF02426650
https://doi.org/10.1007/BF02426650

	The magnitude vector of images
	Abstract
	1 Introduction
	2 Theorectical results
	2.1 Mathematical background
	2.2 An image as a compact metric space
	2.3 The magnitude of images
	2.3.1 1D images
	2.3.2 2D images

	2.4 Interpretation of the magnitude measure

	3 Speedup algorithms and learnable metrics
	3.1 Efficient approximations of the magnitude vector of images
	3.2 A pullback metric for edge detection

	4 Experiments
	4.1 Datasets
	4.2 Accuracy of different magnitude approximations
	4.3 Learning the magnitude metric

	5 Conclusion
	Acknowledgements
	References


