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SUMMARY
Infrared spectroscopy is a powerful technique for probing the molecular profiles of complex biofluids, of-
fering a promising avenue for high-throughput in vitro diagnostics. While several studies showcased its po-
tential in detecting health conditions, a large-scale analysis of a naturally heterogeneous potential patient
population has not been attempted. Using a population-based cohort, here we analyze 5,184 blood plasma
samples from 3,169 individuals using Fourier transform infrared (FTIR) spectroscopy. Applying a multi-task
classification to distinguish between dyslipidemia, hypertension, prediabetes, type 2 diabetes, and healthy
states, we find that the approach can accurately single out healthy individuals and characterize chronic
multimorbid states. We further identify the capacity to forecast the development of metabolic syndrome
years in advance of onset. Dataset-independent testing confirms the robustness of infrared signatures
against variations in sample handling, storage time, and measurement regimes. This study provides the
framework that establishes infrared molecular fingerprinting as an efficient modality for populational health
diagnostics.
INTRODUCTION

The pursuit of molecular gateways that describe the composition

of chemically complex media in a minimally invasive, cost-effec-

tive, andhigh-throughputmanner is a long-standing challenge.1,2

As physiological phenotypes often manifest in the molecular

profiles of systemic biofluids (e.g., blood), gateways to quantita-

tively profile their compositions are invaluable for detecting and

characterizing changing health states.3,4

As minimally invasive screening and risk assessment tools,

blood-based laboratory test panels are often employed in clin-

ical diagnostics.5,6 Despite their foundational role in modern

medicine, the process of measuring several biomarkers can

be time-consuming and resource-intensive.7 Furthermore, bio-

markers were developed in candidate approaches—requiring

decades of research to link any given molecule to a physiolog-

ical state.

‘‘Shotgun’’ approaches that simultaneouslyprobeanensemble

of molecules, requiring no a priori information, thus carry the
Cell Reports Medicine 5, 101625,
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potential to forge the future of efficient clinical testing.8–10 Untar-

getedmass spectrometry andnuclearmagnetic resonance spec-

troscopy are two highly promising technologies that may fulfill

this role. Still, concerns relating to lowmeasurement throughput,

run-to-run andbetween-lab variability, and involvedexperimental

handling have hindered their applications in high-throughput

health diagnostics beyond clinical studies.8–11

Infrared (IR) spectroscopy is a powerful top-down approach

that enables the label-free profiling of a given sample by interro-

gatingmolecular fragments (i.e., functional groups) andmeasuring

their resonant vibrational response to IR excitation.12–14 This

technique can employ various light sources, including globars,15

few-cycle laser-based excitation,16,17 and discrete wavelength

sources such as quantum cascade lasers.18,19 In broadband IR

absorption spectroscopy, absorption occurs when the IR source

emits frequencies that alignwith the vibrational frequencyof amo-

lecular fragment.When analyzing complex samples, the presence

of similar chemical bonds and functional groups in different bio-

molecules leads to overlapping spectral response signals that
July 16, 2024 ª 2024 The Authors. Published by Elsevier Inc. 1
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Figure 1. Proposed IR molecular finger-

printing strategy to aid clinical phenotyping

and decision-making

(A) Blood samples are drawn, and blood plasma is

prepared from individuals with unknown health

states, or phenotypes.

(B) Collected plasma samples are measured using

an automated FTIR spectrometer.

(C) Preprocessed absorption spectra of liquid

blood plasma are captured. The inset depicts

a close-up of the spectra in a truncated spectral

region.

(D) Machine learning methods are applied to

decode the measured spectra into numerical vec-

tors, modeling diverse biological outcomes.

(E) Health reports are generated from a framework

established on the measured IR spectra and ma-

chine learning models, which quantify unknown

health-related properties of each individual to

describe their physiology.
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hinder the identification of individual constituents. The measured

IR absorption spectrum is characteristic of a sample’s overall

molecular composition, representing a superposition of the re-

sponses of all fragments. The corresponding IR absorption spec-

trum is thus referred to as amolecular fingerprint—simultaneously

integrating the entire set of omes across biomolecules (e.g., pro-

teins, lipids, and metabolites).20 When analyzing systemic bio-

fluids, suchasplasma,physiological phenotypesmaybeencoded

within the molecular fingerprints as spectral patterns, and ma-

chine learning algorithms can be trained to detect them—linking

IR fingerprints to multiple phenotypes (Figure 1).

Applications of IR fingerprinting to address medical problems

have been previously examined, including numerous studies

applying different approaches of IR spectroscopy for in vitro clin-

ical diagnostics.20–35 However, the concept of biofluid IR finger-

printing for medical health diagnostics or screening has not been

evaluated in a large-scale naturally variable population, nor has
2 Cell Reports Medicine 5, 101625, July 16, 2024
the approach been introduced into the

canon of healthcare practices.36,37 To

test its capacity—as an in vitro phenotype

medical diagnostic tool—large-scale clin-

ical studies involving deeply parametrized

individuals whose physiology reflects a

diverse patient population are required.

Moreover, covariates potentially affecting

IR fingerprints (e.g., anthropometric pa-

rameters or comorbidities) are yet to be

established. Furthermore, trained pheno-

type detection models must be robustly

validated in ways that closely align with

real-world scenarios. Hindered by the

scale of efforts required, progress toward

incorporating IR-based phenotyping in

medical diagnostic routines has been

limited.38

To assess whether an alliance between

IR fingerprinting and machine learning
could fuel a single-measurement multi-phenotype medical

diagnostics platform, we applied Fourier transform IR (FTIR)

spectroscopy to profile blood plasma in a large phenotyped

cohort. Experimentally, we measured 5,184 samples from 3,169

individuals within the population-based Cooperative Health

Research in theRegionofAugsburg (KORA) longitudinal cohort,39

representing a potential patient population. Profiling the largest

population with IR fingerprinting to our knowledge, our study

aimed to examine the capacity of the approach to comprehen-

sively detect several medically relevant human health pheno-

types. With an age range of 32–88 years and the corresponding

frequent occurrence of multimorbidity in the older age groups,

we focused on the capacity to simultaneously detect a set of

commonly occurring phenotypes—dyslipidemia, hypertension,

prediabetes, type 2 diabetes, interrelated conditions of the

metabolic syndrome (MetS), and healthy states. We employed

different methods of validating how such a parallel, multilabel
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phenotype classification model performed to examine the utility

of the proposed approach. Furthermore, we examined the corre-

lations between clinical laboratory test analytes and the informa-

tional content of IR spectra, facilitating their broader interpret-

ability in a known clinical context. Our results provide a strategy

to enable a robust and efficient multi-phenotyping platform.

RESULTS

Study characteristics for testing IR fingerprinting in
populational screening
To test the performance of IR fingerprinting, we analyzed the

KORA population-based longitudinal cohort.39 The study cohort

comprised a random sample from the general adult population,

aged 32 to 88 years, in Southern Germany (STAR Methods;

Table S1). Our analysis included samples from two time points

within the cohort: KORA-F4, sample set #1 (conducted between

2006 and 2008) and KORA-FF4, sample set #2 (conducted be-

tween 2013 and 2014), both of which are follow-ups of the

KORA-S4 study (conducted between 1999 and 2001). The first

sample set (KORA-F4) included 3,044 participants, while the

second (KORA-FF4) included 2,140 participants. In total, 5,184

blood plasma samples from 3,169 unique individuals were

considered. Among these, 2,015 individuals participated in

both sample sets. Extensive medical examinations were per-

formed on the participants using standardized protocols (STAR

Methods). FTIR spectroscopy in transmission mode was per-

formed on all 5,184 samples in two independent measurement

campaigns—one for each sample set—where the measurement

times were separated by an average of 2.7 years. The two sam-

ple sets were thus collected at different times, freezer-stored for

varying periods, and measured independently—all on a multi-

year scale (STAR Methods).

Combining IR spectroscopy of human blood plasma with ma-

chine learning analysis, we put forward a rapid approach for

describing several characteristics of human health at a popula-

tional level (Figure 1). Our study aimed to investigate the potential

of IR molecular fingerprints to simultaneously detect commonly

occurring chronic conditions and non-communicable diseases

(NCDs) through a single, cost-efficient sample measurement.

As proof of concept, we focused on conditions that were

highly prevalent in multimorbid individuals (Figure 2A). Dyslipi-

demia was the most frequently occurring condition among the

population, accounting for a total of 49% of the first sample

set and 42% of the second sample set. Hypertension was the

second most commonly occurring condition, observed in 38%

of the individuals in the first sample set and 39% of the individ-

uals in the second. Prediabetic and type 2 diabetic individuals

accounted for 28% of the first sample set and 33% of the sec-

ond when combined. Corresponding to these terms, we defined

an additional category of individuals as ‘‘healthy’’—encompass-

ing individuals negative for each of the four aforementioned

phenotypes. Across the 5 phenotypes, we observed that the

investigated conditions did not occur randomly in individuals

but in certain natural combinations, such that 12 different co-

occurrence patterns existedwith varying prevalence (Figure 2A).

The healthy group was found to be the largest sub-category of

individuals in both sample sets.
IR fingerprinting enables simultaneous detection of
multiple phenotypes
The capacity to capture and distinguish if a single phenotype or

any combination of phenotypes existed in an individual would be

essential for health screening and monitoring.40,41 To evaluate

whether IR molecular fingerprinting has any capacity herein,

we first examined the study cohort in a cross-sectional fashion.

Specifically, we tested whether the approach was sensitive and

robust enough to simultaneously detect the presence of dyslipi-

demia, hypertension, prediabetes, and type 2 diabetes and the

absence of these conditions (the healthy group).

We developed amultilabel machine learning classifier capable

of simultaneously detecting and distinguishing between the con-

ditions of interest, with the output being a five-dimensional vec-

tor describing the phenotypic state of each individual (Figure 2B).

The classifier incorporated a procedure in which the task was

broken down into five binary classifications linked through a

chain of decisions (STAR Methods). This allowed the multilabel

classifier to consider correlations between the outcomes, lead-

ing to improved detection performance, as well as consider

mutual exclusivities (e.g., diabetic individuals cannot be predia-

betic and an individual with any chronic condition cannot be in

the healthy group).

The inclusion of two sample sets from the examined study

population allowed us to test how the classification performed

with several validation methods (STAR Methods; Figure S1).

First, we applied a 10-fold cross-validation, independently, on

each of the two sample sets. This resulted in two classification

performance estimates (one for the sample set #1 and another

one for the sample set #2), whereby the two sample sets were

collected as well as measured years apart. Yet, since a signifi-

cant portion of individuals were sampled at both time points,

and their samples contributed to both sample sets, the cross-

validated metrics are not truly independent of each other in the

initial examination here. To overcome this and ensure a robust

evaluation unbiased by any possible overlap of the involved

individuals, we applied a further validation strategy to examine

how the classification performed when tested on samples from

entirely different individuals. Specifically, the classifier was

repeatedly trained on a portion of individuals from sample set

#1 and tested on a held-out portion of independent individuals

from sample set #2 (STARMethods). This strategy was designed

to test the classification’s generalizability over sample storage

time, measurement time, as well as across different individuals.

The complex multi-output nature of this classification, which

encompasses the occurrence of 12 clinically feasible phenotype

combinations (Figure 2A), requires a more thoughtful evaluation

as predictions may be partially correct. We therefore considered

three established metrics that measure multilabel prediction ef-

ficacy in different ways: the exact match ratio, Hamming score,

and Hamming loss (metric definitions further explained in

STAR Methods).42–45 Briefly, the exact match ratio rewards pre-

dictions that accurately identify the physiological state of a sam-

ple across all possible outcomes—scoring each 5-dimensional

prediction with either a 0 or 1. The metric is strict as it treats

partially correct predictions as wholly incorrect. In contrast, the

Hamming score considers partially correct predictions as having

value. For a given sample, it is defined as the proportion of
Cell Reports Medicine 5, 101625, July 16, 2024 3
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Figure 2. Detection of highly prevalent and co-occurring phenotypes using IR molecular fingerprints

(A) Distributions of all possible combinations of the investigated phenotypes in sample set #1 (upper panel) and sample set #2 (lower panel), encompassing the

study cohort. Due to unknown/missing values in the medical records relevant to the listed phenotypes, 91 samples (out of 3,044) were excluded from sample set

#1 and 85 samples (out of 2,140) were excluded from sample set #2. Individuals with listed phenotypes are highlighted in black, with each row representing a

group of combined phenotypes and its height scaled by the number of individuals in that group.

(B) Model architecture of a multilabel classifier trained to describe the phenotypic state of each input IR spectrum, giving out a five-dimensional vector. A chained

binary classification modeling method was applied where each model classifies one outcome against all others using the depicted classification order.

(C) Multilabel classification performance estimates for models trained to simultaneously predict all outcomes of a given IR fingerprint. Classification performance

was estimated on unseen test samples by independently cross-validating on each sample set (sample set #1 in dark blue bar and sample set #2 in light blue bar).

For independent testing (gray bar), classification performance was estimated by training on a portion of sample set #1 and testing the trained classifier on entirely

independent individuals from sample set #2. This provides an estimate of classification generalization across measurements performed years apart, encom-

passing different training-test individuals. The white dashed lines are a reference that depicts estimates for random chance multilabel predictions for each

classification metric (STAR Methods).

(D) Receiver operating characteristic (ROC) curves for binary classifications modeling each listed outcome against the remaining of the population. For each

classification, the mean cross-validated ROC curves of the test sets are depicted and the area under the curve is listed below, along with its standard deviation.

(E) Difference between the mean IR fingerprints of samples positive and negative for each phenotype on each sample set (sample set #1 in dark blue and sample

set #2 in light blue). Gray-shaded areas depict the standard deviation of IR fingerprints negative for each corresponding phenotype.
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correctly predicted positive outcomes to the total number of pre-

dicted/actually positive outcomes for the sample. The Hamming

loss is defined as the proportion of incorrectly predicted labels

across all samples and the 5 labels. All three metrics range

from 0 to 1, where higher values for the exact match ratio and

Hamming score indicate better predictive performance, while a

lower Hamming loss indicates better performance. To provide

a consistent interpretation, we calculate 1 � Hamming loss,

where higher values also signify better predictive performance.

Unlike binary predictions, where a threshold of 0.50 is often

assumed to gauge classifiersmaking randompredictions, a con-
4 Cell Reports Medicine 5, 101625, July 16, 2024
textually relevant point of comparison formultilabel classification

is more complex and dependent on the definition of the evalua-

tion metric (details on chance predictions in STAR Methods).

Applying the multilabel classification, we found that the

approach was capable of predicting all the exact phenotypic

outcomes of the probed individuals with exact match ratios of

0.58 and 0.55 when independently cross-validated on each of

the two sample sets (Figure 2C, light/dark blue bars). Impor-

tantly, the performance of the classification was stable between

sample set #1 and #2, with differences falling within the standard

deviation of the validation splits. When the classification was
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repeatedly tested on the sample-set-independent measure-

ments, we observed an exact match ratio of 0.51, which signifi-

cantly exceeds a chancemodel (Figure 2C, gray bars). The Ham-

ming loss ranged between 0.82 and 0.86 across the three

validation methods—revealing that, in the worst case, only

18% of the individual phenotypes were misclassified across all

the test samples. In light of the simplicity and cost-effectiveness

of the single-measurement IR fingerprinting method, combined

with the medical challenge to assess several phenotypes simul-

taneously, it was surprising to find such high multilabel predic-

tion rates across the three metrics and validation methods.

This underscores that the approach is not only sensitive to the di-

versity of phenotypes but also specific to medical aberrations

and their combinations.

This investigation also revealed that the classification perfor-

mance estimates derived through cross-validation were fairly

consistent with how the classifier performed when tested on da-

taset-independent samples—a validation approach that more

closely mirrors practical applications. However, it is important

to highlight that a minor drop in predictive efficacy was

observed. This drop underscores the importance of validating

how such classifications perform when tested on samples that

were collected andmeasured by different operators at consider-

ably different time points from the training dataset. Such data-

set-independent validation helps prevent the potential of overes-

timating how a classification would perform in more realistic

applications. Despite this drop, it was surprising to observe

that the phenotypes were encoded in IR molecular fingerprints

to an extent that enabled their robust detection, even though var-

iations between the sample sets and measurement conditions

had significant effects on the spectra (Figure S2).

Phenotype-dependent detection capacity
Since the multilabel classification was built on a series of binary

classifiers, where the predictions were driven exclusively by the

information encoded in an input IR spectrum, we further exam-

ined the diagnostic capacity of each individual phenotype-spe-

cific classifier (Figure 2D). This analysis provides a quantitative

assessment of the degree to which each individual phenotype

was detectable by the IR spectra in a case-control setting—

where the control class here combined the set of the remaining

four phenotypes (i.e., one-vs-rest analysis). To assess predictive

performance, we computed the receiver operating characteristic

(ROC) curves of each binary classification, following the same

validation procedure as previously described in the multilabel

analysis. To combine the measures of sensitivity and specificity,

we calculated the area under the ROC curve (AUC) as a summa-

rizing metric of performance.

The AUCs ranged from 0.76 for prediabetes to 0.97 for dyslipi-

demia when independently tested, which shows that all 5 pheno-

types were detectable with a high degree of confidence (Fig-

ure 2D). The highest prediction efficacies were observed for

type 2 diabetes and dyslipidemia, underscoring the approach’s

potential for these conditions. Intriguingly, the classifier detect-

ing whether an individual was healthy achieved an AUC of 0.90

when employing the sample set-independent testing method.

This revealed that the IR-based approach was capable of both

predicting each phenotype individually and providing a metric
of an overall healthy physiology. Importantly, the classification

performance remained stable across the three testing methods

for all the investigated phenotypes in this binary classification

setting.

To further assess the efficacy of detecting each individual

phenotype, we repeated the aforementioned analysis but

removed the chain mechanism such that each phenotype was

classified with an independent binary classifier (Figure S3).

Without the chain, all classifications perform comparably well

(Figure 2D vs. Figure S3). This similarity in predictive efficacy

was expected for the binary classifications, as all predictions—

whether chained or not—relied exclusively on information in

the IR spectra. Hence, the classifiers did not require information

about the predictions of previous classifiers as they were able to

leverage all the information encoded in the IR spectrum. The only

noticeable (albeit minor) drop in prediction efficacy was

observed for prediabetes detection. This likely arose from the

fact that prediabetes is an intermediate condition, and the con-

trol class included both type 2 diabetic and normal glucose

tolerant (NGT) individuals. Therefore, we found that a single

(linear) classifier struggled to single out the intermediate predia-

betic cases, compared to combining multiple linear classifiers

that have the capacity to single out NGT and type 2 diabetic in-

dividuals as well.

Phenotype-specific IR spectral signatures
Investigating the capacity to detect medically relevant pheno-

types—both individually and simultaneously—raised the ques-

tion of whether the molecular signature of individuals positive

for a phenotype was characteristically distinct from those nega-

tive for it. To examine this, we calculated the difference between

the mean IR molecular fingerprint of individuals positive for a

phenotype and that of the remaining individuals’ combined set

of fingerprints encompassing the four remaining phenotypes

(Figure 2E).

Differences in the molecular IR signatures of individuals

bearing dyslipidemia, hypertension, and diabetic states showed

very characteristic profiles with clear distinctions between one

another. The signature of prediabetic individuals was revealed

to share a very similar shape to that of individuals bearing type

2 diabetes—with only smaller variations in the magnitude of

the differences. The latter finding is both promising and reassur-

ing, given that prediabetes is an intermediate condition at a high

risk of progressing into type 2 diabetes. Moreover, it was very re-

assuring to observe that the region with the most significant dif-

ferences in the IR fingerprints of type 2 diabetic cases and con-

trols was 1,000–1,180 cm�1, with the peaks aligning with known

spectral signatures of glucose.46 When the fingerprints of the

healthy individuals were compared to all the other individuals

in the population, the differences revealed a shape that is similar

to the inverse differences of all the other conditions studied—

thereby supporting the aforementioned results. Crucially, the

signatures of all phenotypes remained stable between the two

sample sets, given the heavy overlap between the two curves

depicted for each phenotype. Summarizing, these comparisons

of spectral differences further corroborate the distinctive proper-

ties and reproducibility of the plasma-based IR fingerprinting

approach.
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Comparing the predictive value of IR fingerprints to
clinical analytes
To examine the predictive value of IR molecular fingerprints in

relation to standard clinical analytes, we repeated the multilabel

classification but in a modified fashion. Rather than using IR fin-

gerprints, we used a set of 12 commonly measured analytes

from blood-based clinical chemistry and hematology analysis

as the input features to make predictions (Figure S4). These an-

alytes are widely used in blood cell counts, along with metabolo-

mic and lipidomic panels.

Using the 12 clinical analytes as exclusive predictors of the

studied phenotypes, this multilabel classification gained a slight

advantage over the classification based only on IR fingerprints—

with an exact match ratio of 0.57 and Hamming score of 0.70,

compared to the previously mentioned exact match ratio of

0.51 and Hamming score of 0.68 (Figure 2C vs. Figure S4A).

As the panels of clinical analytes included fasting glucose, he-

moglobin A1c (HbA1c), low-density lipoprotein (LDL) choles-

terol, high-density lipoprotein (HDL) cholesterol, and triglycer-

ides, it was not surprising that an improvement in predictive

capacity was observed when predicting type 2 diabetes and

dyslipidemia as such clinical parameters are often used to clini-

cally diagnose these conditions (Figure 2D vs. Figure S4B). For

the condition that is not closely defined by such analytes, hyper-

tension, the IR-based model outperformed the clinical-based

model.

The involved costs of instrumentation and reagents, alongwith

turnaround times, are a limiting factor for blood-based clinical

laboratory testing. In contrast, the IR-based approach offers a

reagent-free, one-shot measurement of bulk plasma, providing

a comprehensive view of the sample’s cross-molecular profile.

This provides an efficient means of predicting the presence of

health conditions, requiring minimal sample preparation, small

sample volume, and short measurement time. A further highlight

is that the IR-based approach is not limited to health conditions

closely defined by conventional clinical laboratory parameters.

IR fingerprints are sensitive to anthropometric
parameters
Gender, age, and body mass index (BMI) are risk factors for

NCDs and chronic conditions.47,48 Should plasma-based IR fin-

gerprints encode the contributions of such anthropometric pa-

rameters, their effects on the IR fingerprints would potentially

influence the predictions of models trained to detect clinical

phenotypes.

To investigate the extent of their contributions, we first

examined the capacity to predict the gender, age, and BMI of

the sampled individuals using their IR molecular fingerprints

(Figures S5A–S5C). Classifying gender was highly successful,

achieving an AUC of 0.96. Estimating age with multivariate

regression modeling was possible with an R2 value of 0.58 and

a root-mean-square error (RMSE) of 8.39 years. BMI was esti-

mated with an R2 value of 0.43 and an RMSE of 3.66 kg/m2.

These results demonstrate the unambiguous impact of gender,

age, andBMI on blood-based IRmolecular fingerprints, affecting

any future diagnostic applications.

To further investigate their contributions independently of any

possible health deviation, we performed the same analysis, but
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only on the healthy subset of individuals (Figures S5D–S5F). In

this setting, classifying gender remained stable, with an AUC of

0.96. The efficacies of estimating age and BMI, however, were

reduced to R2 values of 0.52 and 0.37, respectively. Given that

it was more challenging to estimate age and BMI in the healthy

subset, this analysis suggested that NCDs or chronic conditions

had an influence on the models estimating these anthropometric

parameters. This supported the notion that the signals of aging

and increased BMI are reflected in declining health states.

Prompted by these results, we further examined the capacity

to detect each phenotype in a case-control setting—but classi-

fying on samples of similar anthropometric distributions, rather

than considering the populational distribution as previously.

For each phenotype, we pair-matched a case individual to a con-

trol individual of similar gender, age, and BMI to minimize their

possible contributions (Table S2). Using independent classifica-

tion models, the AUCs ranged from 0.60 for prediabetes to 0.97

for dyslipidemia (Figure S6)—newly revealing that the contribu-

tion of these anthropometric parameters was higher for pheno-

types with weaker disease signals.

Overall, we identified anthropometric parameters that signifi-

cantly influence IR molecular fingerprints and, thereby, affect

the phenotype classificationmodels. These findings shall directly

inform any future IR fingerprinting medical case evaluations as

well as case-control clinical study designs.

IR fingerprints uncover shared pathophysiologies of
MetS
MetS isacomplexprogressive conditioncharacterizedbyamani-

festation of interconnected metabolic abnormalities involving

visceral obesity, hyperglycemia, raised blood pressure, raised tri-

glycerides, and lowered HDL cholesterol (Figure 3A). Although its

definition andpathogenesis are controversial,49,50MetS identifies

individuals with shared pathophysiology—ones who are at risk of

developing further health conditions, such as atherosclerotic car-

diovascular disease, type 2diabetes,51 cerebrovascular events,52

liver cancer,53 andcolorectal cancers.54Robust yet unsophistica-

ted methods of identifying individuals with MetS would not only

facilitate a better understanding of its pathophysiology but also

enable efficient methods of stratifying populations into different

levels of risk. This approach could further facilitate individualized

pharmacologic and/or lifestyle interventions.55,56

Following the harmonized criteria of the International Diabetes

Federation and the American Heart Association/National Heart,

Lung, and Blood Institute,57 MetS is present when at least three

out of five aforementioned metabolic risk factors are present. As

an early sign ofMetS, one or two risk factors qualify as pre-MetS,

a precursor condition thatmay represent the critical intermediate

transition phase.58,59 Breaking down the number of risk factors

we observed in our two sample sets, we found that most individ-

uals were at a pre-MetS stage (Figure 3B). At the pre-MetS

stage, visceral obesity was the most prevalent risk factor, fol-

lowed by hypertension and hyperglycemia (Table S3).

Employing the IR fingerprinting approach, we first systemati-

cally evaluated the extent to which we can single out individuals

with varying numbers of metabolic risk factors from those with

none (Figure 3C). We found that the classification efficacy

increased when the number of metabolic risk factors increased
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Figure 3. Detecting shared pathophysiologies through the metabolic syndrome

(A) Metabolic syndrome (MetS) was defined according to the harmonized criteria of the International Diabetes Federation (IDF) and American Heart Association/

National Heart, Lung, and Blood Institute (AHA/NHLBI)—requiring individuals to have at least three of the five listed metabolic risk factors.

(B) Proportion of samples with different numbers of concurrent risk factors. The pure sample counts are listed on each corresponding bar. Samples with unknown

values for any of the risk factors were excluded. Distributions of sample set #1 (dark blue bars) and sample set #2 (light blue bars) are depicted separately. See

also Table S3 for a breakdown of risk factor prevalence.

(C) Binary classifiers were trained on the IRmolecular fingerprints to distinguish individuals with one, two, three, and so on risk factors from those with none of the

risk factors. Classifier validation was carried out as previously described—by cross-validating on sample set #1, cross-validating on sample set #2, and

repeatedly training on a portion of sample set #1, testing on independent individuals from sample set #2. The mean area under the ROC curve is depicted for

classifying each group, with the error bars showing the standard deviation of the AUCs across the validation sets.

(D) Binary classifiers were trained on the IR molecular fingerprints of the two population-based sample sets to distinguish those with MetS (i.e., having at least

three risk factors) and those without MetS (i.e., having two or fewer risk factors). ROC curves are depicted on unseen test samples where classifier validation was

carried out as previously described. The mean AUC is listed for each validation type, along with the standard deviation across the validation sets.

(E) Binary classification to forecast the future onset of MetS using IR molecular fingerprints. The classifier was trained on individuals from two groups: those who

did not have MetS at baseline and developed it by the follow-up (n = 233), and those who did not have MetS at baseline and remained without it by the follow-up

(n = 1,154). Classifier training and testing (via a 10-fold cross-validation) was performed exclusively onmeasurements from the baseline visit (sample set #1), while

the medical records of the follow-up were examined to set the outcomes that describe whether the syndrome was developed (within an average of 6.5 follow-up

years). The mean test AUC is listed along with its standard deviation.
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within the group. Intriguingly, the approach had the capacity to

single out pre-MetS cases with a high efficacy—achieving an

AUC near 0.75 when identifying individuals with one risk factor

and an AUC near 0.90 when identifying individuals with two con-

current risk factors. This observation underscored the classi-

fier’s ability to stratify individuals depending on their metabolic

burden.

We further discovered the high capacity of identifying individ-

uals with MetS, achieving an AUC near 0.90 (Figure 3D). This

further highlighted the high efficacy of identifying those at a

greater risk of developingmore serious health conditions, as pre-

viously mentioned.

IR fingerprints forecast the development of MetS
In contrast to detecting the presence of MetS and metabolic risk

factors, the longitudinal aspect in our dataset enabled us to also
assess the capacity of forecasting the possible future develop-

ment of MetS (Figure 3E). Within the study population, a subpop-

ulation of 2,015 individuals participated in both baseline (sample

set #1) and follow-up (sample set #2) samplings. Of these individ-

uals, 1,387 did not have MetS at baseline, and among them, 233

developed MetS during the 6.5-year follow-up period. We con-

structed a predictive model that aimed to identify the individuals

who transitioned fromnot havingMetS at baseline but developed

it in the follow-up sampling. As the control group, we used the

1,154 individuals who remained free of MetS throughout both

samplings. Classifier training and testing were performed exclu-

sively on the IR spectra of the baseline sampling (via 10-fold

cross-validation). The binary outcomes, which denote whether

each individual developedMetSduring the follow-up,weredeter-

mined by reviewing medical records from the follow-up. We

found that the baseline measurements could effectively forecast
Cell Reports Medicine 5, 101625, July 16, 2024 7
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the future onset of MetS within the 6.5-year follow-up period,

achieving an impressive AUC of 0.77 (Figure 3E). This AUC

is comparable to a previously reported proteomics-based

approach using 11 serum proteins, albeit over a 10-year follow-

up period.60

Altogether, these results further highlighted the IR finger-

printing modality in screening scenarios as an efficient means

of early detection to reduce the risk of developing further health

conditions.

Interpreting IR spectral features through clinical
analytes
To facilitate the medical utility of the approach, the nature of IR

molecular fingerprintsmust be described in the context of known

substances—e.g., clinical chemistry analytes. Since different

biomolecules are composed of different atoms and chemical

bonds, the concentrations of distinct molecular groups may

correlate to different spectral regions at varying degrees. We

therefore investigated how each spectral feature correlated

with the concentrations of 12 commonly measured clinical lab

analytes (Figure 4A).

Triglycerides and LDL cholesterol heavily overlapped in the

regions of highest correlation with absorbance—with the re-

gions of 1,725–1,750 cm�1 (C=O stretching modes of fatty

acids61) and 2,800–2,975 cm�1 (CH2 and CH3 stretching modes

of lipid61) reflecting the highest levels of positive correlations.

Triglycerides also observed high levels of correlation with absor-

bance in the region of 1,100–1,275 cm�1 (C–O and C–O–C

stretching of carbohydrates61). As LDL is the main source of

cholesterol build-up, the total cholesterol also showed a very

similar trend in correlation across the spectral range. HDL

cholesterol, on the other hand, revealed a relatively weak corre-

lation pattern compared to the aforementioned parameters. The

remaining analytes revealed different patterns from that of the

lipid profile. As HbA1c is a glycosylated form of hemoglobin

localized within erythrocytes, it was reassuring to find that

HbA1c and glucose concentrations correlated to similar wave-

numbers. It was also expected to find that the measures of he-

matocrit (representing the volume of erythrocytes) and the num-

ber of erythrocytes had very similar patterns. Albumin, the most

abundant protein in blood plasma, showed its strongest correla-

tions at the so-called amide-I and -II bands, generally specific to

proteins (between 1,550 and 1,700 cm�1).62 The remaining pa-

rameters observed relatively weak correlations across the spec-

tral range.

These analyses were performed on the plasma IR finger-

prints to broadly interpret the information encoded in the spec-

tral positions by relating them to the concentrations of known

clinical lab analytes. Although univariate analyses provide

some insights by examining individual spectral features, they

do not capture the full scope of molecular information in the

IR fingerprints. Plasma, a highly complex biofluid, contains

numerous molecular constituents that produce overlapping

absorbance signals across different spectral features, poten-

tially obscuring one another. To comprehensively understand

the relationships between these clinical analyte concentrations

and the information embedded in the IR fingerprints, it is

crucial to consider the dependencies among spectral features.
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In the following subsection, we employ multivariate analyses to

further examine relations between the clinical lab analytes and

plasma IR fingerprints.

Information is shared between clinical analytes and IR
fingerprints
To further investigate the extent to which the studied clinical an-

alytes were encoded within the IR fingerprints, we applied multi-

variate regression analysis to quantify their individual concentra-

tions using the plasma IR spectra (Figure 4B). Unlike univariate

analysis, the interactions and dependencies among all spectral

features are considered here, potentially capturing relations

that may be obscured by molecular absorbance overlap.

We found that analytes relating to the lipid profile and glucose

level were most accurately estimated, all with R2 values R 0.91

(Figure 4B). Surprisingly, the concentration of HDL cholesterol

was estimated with a high efficacy despite its relatively weak

correlations with individual spectral features as depicted in Fig-

ure 4A. This highlighted that, despite the molecular overshadow-

ing effect that likely concealed its molecular contributions at

individual spectral features, theHDL cholesterol content had suf-

ficient contributions that were distributed across several spectral

features—thereby enabling the analyte to be accurately esti-

mated when spectral dependencies were considered.

Albumin, creatinine, and HbA1c revealed relatively weaker yet

still significantly strong associations with the informational con-

tent encoded in the fingerprints. For albumin, the relatively

weaker R2 value of 0.58 sparked intriguing considerations—

particularly due to its high abundance and its integral role in

shaping the IR spectrum of blood plasma.63 This prompted us

to re-perform the analysis depicted in Figure 4B, but on non-

normalized spectra (Figure S7B). Without the normalization, no

statistically significant change was observed in the concentra-

tion prediction efficacy—neither for albumin nor for any other an-

alyte. Although it was previously reported that IR spectroscopy

using quantum cascade lasers has the means to quantify albu-

min,64 our FTIR evaluations of plasma show differences here.

This may be attributed to the fact that, in our setting, the clinical

chemistry laboratory albumin concentrations were measured in

serum (Methods), which may have contributed noise to the

task of quantifying albumin from the plasma-based IR spectra.

In addition, in this molecularly complex milieu, however, the

presence of numerous coexisting plasma molecules might

conceivably eclipse the distinctive spectral contributions of albu-

min—especially given that several other highly abundant pro-

teins overlap in their regions of absorbance.63

As nearly half of the blood volume ismade of erythrocytes, and

as they serve as a reservoir of factors secreted in plasma, it was

not surprising to find that their numbers could be estimated, to

an extent, using IR molecular fingerprints of plasma. The param-

eters that were least reflected in the IR molecular fingerprints

related to other types of blood cell counts—platelets and leuko-

cytes. This indicated that neither their intracellular molecules nor

their metabolic products strongly contribute to the extracellular

composition of plasma and that the approach is not capable of

specifically addressing their impacts on the chemistry of plasma

(without any cellular enrichment and more dedicated analysis—

e.g., immune cell profiling).
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Figure 4. Classical clinical analytes reflected in IR molecular fingerprints

(A) Pearson correlation coefficient (red curves) between the concentrations of each clinical analyte and the absorbance at each wavenumber between 1,000 and

3,000 cm�1 for preprocessed spectra. The mean absorbance spectrum of all measured IR spectra (5,184 samples) is depicted in gray on each panel as a visual

reference for the shape of the spectrum.

(B) Performance of quantitatively predicting clinical analytes using the preprocessed IR spectra of the measured population. Regression algorithms were trained

for each parameter to capture the relations between the clinically measured values and the multivariate spectral features. The predicted values follow from the

test sets of 10-fold cross-validations. Each point represents a measurement. The mean coefficient of determination (R2) and the root-mean-square error (RMSE)

are listed for each parameter, along with their standard deviations across the test splits. The diagonal (dashed red line) is a visual reference for a perfect fit.

This same investigation was carried out on non-normalized spectra (Figure S7), where the univariate correlations (A) expectedly showed shifts in correlation

trends while the efficacy of quantifying the concentration of each analyte (B) remained relatively unchanged.
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In some instances, ratios between clinical analytes are utilized

in medical diagnostics. For instance, ratios of triglycerides, LDL

cholesterol, and total cholesterol to HDL cholesterol are often

used for cardiovascular disease (CVD) risk assessments and

have proven to be superior risk markers over individual analyte

concentrations.65 Since the IR molecular fingerprints are

capable of estimating the concentrations of different parameters

simultaneously, they are also informative to estimate ratios be-
tween them. To assess this, we calculated the ratios of triglycer-

ides, LDL cholesterol, and total cholesterol to HDL cholesterol

and studied the capacity to estimate their values (Figure S8).

Thereby, we revealed that all three ratios were well estimated,

each with an R2 value near 0.92. This highlighted the potential

of applying the approach to CVD risk assessments.

Altogether, it was evident that several distinct molecules and

molecular groups correlate to the informational content of IR
Cell Reports Medicine 5, 101625, July 16, 2024 9
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fingerprints to a high degree despite the high complexity of

blood plasma. IR fingerprint-based phenotype classification

models can thus be linked to several relevant clinical lab param-

eters, providing a level of interpreting IR-based classifications in

a known clinical context. Moreover, IR fingerprints present a

viable alternative to traditional clinical laboratory methods for

directly quantifying key clinical analytes, such as cholesterol

and glucose levels, in routine clinical lab analysis. This provides

an efficient, reagent-free means of simultaneously quantifying

several analytes in a one-shot measurement.

DISCUSSION

The value of high-throughput molecular profiling is highest when

molecular alterations have the capacity to define several medical

phenotypes. The framework for IR fingerprinting to possibly fuel

medical screening targeting the diversity of common conditions

and their combinations within a naturally variable population has

not been provided before.37,38,66 It was yet to be comprehen-

sively proven whether IR fingerprinting could facilitate the

robustness required for population-wide screening or whether

it carries any capacity to capture the reality of complexmultimor-

bid prevalence.

Combining IR spectroscopy with machine learning, our study

demonstrated that IR molecular fingerprints (1) have the capac-

ity to simultaneously detect and distinguish between common

health phenotypes, providing a basis for multi-task phenotype

detection; (2) can detect health-to-disease intermediate medi-

cal phenotypes (e.g., prediabetes and (pre-)MetS) that are of

great value to screen and stratify populations for risk of devel-

oping further health conditions and intervene timely; (3) can fore-

cast the future onset of clinically relevant health disorders,

showcasing the approach’s potential as an early detection

approach; (4) strongly correlate to the concentrations of several

clinical chemistry analytes; (5) reflect the physiological contribu-

tions of anthropometric parameters (gender, age, and BMI); and

(6) are robust to variations in sample handling, storage time, and

measurement regime differences on a multi-year scale. The

approach is powerful for high-throughput population-scale

screening. Specifically, for describing common, chronic health

state phenotypes with a single cost-effective measurement

that requires no preanalytical sample preparation or a priorimo-

lecular knowledge.

Health is multidimensional and individually heterogeneous,

and parametrizing it is non-trivial. As complex clinical traits

may be effectively probed systemically,67 system-level cross-

molecular IR fingerprints provide a new in vitro diagnostic advan-

tage here. The impact of the presented paradigm, beyond clinical

study scenarios, is manyfold. Especially as, in any adult popula-

tion, the majority of individuals with identified health aberrations

will likely havemultiple coexisting conditions, and various shared

disease mechanisms can ideally be targeted via lifestyle or phar-

macological interventions.40,55,68 Thus, screening avenues to

efficiently discern between different multimorbid states are

essential. Multimorbid states have been initially thought of as a

collection of independent ailments and are still often measured

separately. Given the direct coupling betweenmany phenotypes

(e.g., metabolic abnormalities and cardiovascular conditions),
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informing measures on multimorbidity could advance therapeu-

tic strategies and help assess and stratify risk levels. Importantly,

the classifier detecting healthy individuals provided a very high

prediction capacity (AUC of 0.90 when independently tested).

This demonstrates that the approach is well suited to single

out individuals in their healthspan (the period of life free from

disease).

Beyond the phenotypes investigated here, the approach can

serve as a platform that can be extended to screen and stratify

for a variety of other health conditions. It may also be suitable

for conditions of either unknown molecular origins or ones

without knowledge of the underlying multi-molecular changes.

To better understand and capture sub-clinical, intermediate phe-

notypes, we showcased how IR fingerprinting could facilitate the

isolation of actionable at-risk phenotypes. Specifically, reporting

on prediabetes could present an intervention that may prevent or

delay the onset of type 2 diabetes that would, in turn, reduce the

incidence of atherosclerotic CVD, kidney disease, vascular de-

mentia, and Alzheimer’s disease.69–72 Although methods for

diagnosing prediabetes and type 2 diabetes are available,73,74

tools to identify individuals at risk for type 2 diabetes that could

guide interventions are still lacking.75 The second example is the

capacity of IR fingerprinting to detect pre-MetS, a precondition

and risk factor that may contribute to the evolution of further dis-

eases. Thus, the presented framework is valuable for dynamic

risk predictions across a variety of phenotypes as well as to cap-

ture combined conditions and potentially forecast their future

onset—especially given its minimally invasive nature, ease of

measurement, and low cost of the approach.

Previous clinical spectroscopy studies typically relied on rather

small patient cohorts, hindering the potential of developing IR-

based diagnostic models that adeptly generalize to larger popu-

lations.38 Involving two datasets, from samples collected at two

different times as well as experimentally measured years apart,

we not only cross-validated the outcomes of each sample set

separately but also further validated the robustness of our find-

ings in a more realistic validation setting. Specifically, we were

capable of training a classifier on samples from individuals

collected at a point in time and testing this classifier on a different

group of individuals that weremeasured years apart. Such a vali-

dation approach limited the potential to overestimate the clinical

efficacy of our developed detection models. Additionally, the

analyzed study paradigm reduced the possibility of patient selec-

tion bias since the individuals assessedwere fromanaturally het-

erogeneous population-based study involving a variety of poten-

tial conditions and health states—thus reflecting a realistic

demographic distribution and true disease prevalence.

Limitations of the study
Critically seen, the generalizations of our machine learning appli-

cations may be limited to the studied population—where many

individuals likely share similar genetic backgrounds and life-

styles.39 To investigate the extent of this limitation, the models

must be further tested on independent sets of ethnically diverse

individuals. Secondly, the presented metrics of model validation

considered the ground truth to be the health characterizations

determined using existing clinical evaluations and may have

been limited by the efficiency of the clinical analytical procedures
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performed. For instance, diagnosing prediabetes and type 2 dia-

betes relied on an oral glucose tolerance test. Although

commonly applied, this diagnostic approach is influenced by a

multitude of physiological fluctuations.74,76 Finally, some of our

analyses treated two time-separated samplings of partially over-

lapping individuals as two cross-sectional sample sets. This may

partially explain the agreement between the cross-validations

performed on the two sample sets. Additional testing on cohorts

from fully independent clinical studies would provide an even

more definitive verification of our findings.

Conclusions
The human body is a dynamic and complex system—with a

multitude of ongoing biochemical processes driven by genetics,

individual lifestyles, and aging.77 The role of IR fingerprints to

predict future disease onset and regression will need to be

further assessed in additional longitudinal analyses that will be

important to even more accurately capture and model (sub)clin-

ical phenotypes, especially in light of the heterogeneity of per-

son-specific healthspans. The concept of within-person stability

of IR fingerprints has been revealed,78 and we also demon-

strated the underlying concept that time-tracking of IR finger-

prints enhances phenotype detection.79 However, it still remains

to be proven whether decades-long health state trajectories can

be decoded with IR fingerprinting.

Altogether, this study sets a framework with analytical validity

and clinical utility that could reduce and streamline clinical oper-

ations, improve sample turnarounds, accelerate time to treat-

ment for a variety of medical conditions, and risk stratify popula-

tions. We identify the value of IR fingerprinting when combined

with machine learning as a multi-phenotyping modality able to

fuel medical screening at very affordable costs and demon-

strated potential to complement health checkups. If further

developed and independently validated, the approach has the

potential to provide actionable information to support and

empower reliable clinical decisions while conserving resources.
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dreu, M., Garrigues, S., and de la Guardia, M. (2012). Protein determina-

tion in serum and whole blood by attenuated total reflectance infrared

spectroscopy. Anal. Bioanal. Chem. 404, 649–656.

35. Perez-Guaita, D., Ventura-Gayete, J., Pérez-Rambla, C., Sancho-An-
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REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Human blood plasma of KORA cohort Helmholtz Biobank https://helmholtz-munich.de/en/epi/cohort/kora

Pooled human blood serum BioWest, Nuaille, France Cat# S4200-100; Lot# S1559454200

Deposited data

Medical examination records of KORA cohort KORA study, Holle et al.39 https://helmholtz-muenchen.managed-otrs.com/external

FTIR measurements of KORA cohort This study https://helmholtz-muenchen.managed-otrs.com/external

Software and algorithms

Python (version 3.8.8) Python Software Foundation https://python.org

NumPy (version 1.21.2) Harris et al.80 https://numpy.org

Pandas (version 1.2.4) McKinney81 https://pandas.pydata.org

SciPy (version 1.6.2) Virtanen et al.82 https://scipy.org

Scikit-learn (version 0.24.1) Pedregosa et al.83 https://scikit-learn.org

Matplotlib (version 3.5.1) Hunter84 https://matplotlib.org

Other

MIRA Analyzer (MA6) mid-infrared analyzer Clade GmbH, Germany https://clade.io
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Mihaela �Zigman

(mihaela.zigman@mpq.mpg.de).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d The data of this study are available upon request by means of a project agreement from KORA (https://helmholtz-muenchen.

managed-otrs.com/external). Requests should be sent to kora.passt@helmholtz-muenchen.de and are subject to approval by

the KORA Board.

d This study does not report original code. Details on the software and algorithms used in this study are listed in the key resources

table and STAR Methods.

d Any additional information required to reanalyze the data reported in this study is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Study design and sample collection
The KORA study is a population-based cohort in Southern Germany.39 It served as the basis for analysis in this work. The study

comprised of an age- and gender-stratified sample of participants randomly drawn from the resident registration offices within

the study area. The KORA S4 baseline was conducted in 1999–2001 (n = 4261) and was followed up in 2006–2008 (n = 3080) and

2013–2014 (n = 2279) –- named KORA F4 and KORA FF4, respectively.85 Medical examination data and blood plasma samples

from the available subset of the KORA F4 (n = 3044) and FF4 samplings (n = 2140) were included in this work and were denoted

by sample set #1 and sample set #2, respectively. Within these sample sets, some individuals participated in only one sample dona-

tion, while others participated in both. Across both sample sets, 2015 individuals participated in both donations, while 1154 individ-

uals participated in only one donation. This results in a total of 5184 blood plasma donations from 3169 unique individuals. Data

collection methods and standardized sample collections have been described in detail elsewhere.39,85–87 Table S1 provides an over-

view of the cohort distributions. The KORA F4 and FF4 studymethodswere approved by the ethics committee of the Bavarian Cham-

ber of Physicians, Munich (EC No. 06068).
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Phenotype definitions, biochemical and hematological analysis
Individuals were identified as dyslipidemic based on abnormally elevated levels of non-HDL cholesterol with the commonly used cut-

off point at 4.1 mmol/L.88,89 Hypertension was defined based on a blood pressure test with a reading R 140 and/or 90 mmHg or by

known use of antihypertensive medication.90 The diabetic state was determined by an oral glucose tolerance test (OGTT) or a vali-

dated self-report.85,87 Self-reported diabetes was confirmed by contacting the responsible physicians, medical chart reviews, or by

taking self-reported glucose-lowering medications.85 For individuals with no prior diagnosis of diabetes, an OGTT test was per-

formed and the diabetic state was determined according to the 1999 WHO diagnostic criteria.87,91 Prediabetes included individuals

with impaired fasting glucose, impaired glucose tolerance, or both. As previously applied to the KORA F4 and FF4 samples,92 meta-

bolic syndrome was defined according to the harmonized criteria proposed by the International Diabetes Federation (IDF) and Amer-

ican Heart Association/National Heart, Lung, and Blood Institute (AHA/NHLBI) in 2009.57 Metabolic syndrome was present ifR 3 of

the following 5 criteria were satisfied: (1) waist circumferenceR 94 cm for males,R 80 cm for females; (2) systolic blood pressureR

130 mmHg or diastolic blood pressure R 85 mmHg or treatment with anihypertensive medication; (3) fasting serum glucose R

100 mg/dL or intake of antidiabetic medication; (4) serum HDL cholesterol < 40 mg/dL for males, < 50 mg/dL for females, or drug

treatment for reduced HDL (fibrates); and (5) fasting serum triglycerides R 150 mg/dL or drug treatment for elevated triglycerides

(fibrates). Blood samples were collected from the cubital vein without stasis of all participants and immediately measured for the

biochemical analysis using standardized protocols described elsewhere.93–95 Blood glucose levels were determined using a hexo-

kinase method from serum.93,94 HbA1c was determined using a reverse-phase cation-exchange High-Pressure Liquid Chromatog-

raphy (HPLC) analysis.93 Total cholesterol, HDL cholesterol, and LDL cholesterol were determined using enzymatic, colorimetric

routines (CHOD-PAP) from serum.93,94 Triglycerides were determined using an enzymatic, colorimetric routine (GPO-PAP) from

serum.93,94 Creatinine was determined using a modified kinetic Jaffe reaction from serum. Hematological parameters (leukocytes,

erythrocytes, hematocrit, platelets) were determined by impedance measurements from EDTA.93,94 Albumin was determined using

immunonephelometry from serum.95

Exclusion of samples
Due to missing values in the medical examination records, some samples were excluded from analysis whenever the missing values

were relevant to the investigated question. The sample sizes used for each investigated question wasmentioned in each correspond-

ing figure.

METHOD DETAILS

Sample preparation and FTIR measurements
The plasma samples were stored at�80�C until analysis in this work. The samples were handled in a randomized and blinded fashion

where the person performing the measurement had no access to either sample identifiers or associated medical records. In advance

of the FTIR measurements, one aliquot per plasma sample was thawed and again centrifuged for 10 min at 2000 g. The supernatant

was distributed into 50 mL measurement tubes and refrozen at �80�C. Thus, all FTIR measurements were performed upon two

freeze-thaw cycles. Measurements were performed in the liquid phase using a commercially available automated spectrometer

(MIRA Analyzer, Clade.io) with a flow-through transmission cuvette made of calcium fluoride (CaF2) with a path length of approxi-

mately 8 mm. The spectra were acquired with a resolution of 4 cm-1 in a spectral range between 950 cm�1 and 3050 cm�1. A water

reference spectrum was recorded after each sample measurement to reconstruct the IR absorption spectra. To track experimental

errors over extended time,96 a measurement of quality control serum (QC, pooled human serum, BioWest, Nuaille, France) was per-

formed after every five plasma measurements. Each measurement sequence contained up to 40 samples, including the plasma and

QC samples. After each measurement sequence, the spectrometer was carefully cleaned and re-qualified according to the manu-

facturer’s recommendations. Measurements of sample set #1 were performed over the span of 3 months. Measurements of sample

set #2were performed approximately 2.7 years prior to themeasurements of sample set #1 and also spanned over 3months. As CaF2
is slightly soluble in water, the volume and path length of the measurement cuvette increases over time. Due to wearing off, different

transmission cuvettes were used between measurements of the first and second sample sets. The spectra of the QCs were used to

evaluate themeasurement error. In our previous study, involving the same experimental procedures, we found that themeasurement

error was small when compared to the inter-person biological variability of IR spectra of serum.78

Measurement preprocessing
Preprocessing of the IR spectra was performed as in our previous study.21 If the liquid sample contains less water than the reference

(pure water), negative absorption occurs. This was corrected by a previously described approach where a scaled water absorption

spectrum was added to each sample spectrum using a coefficient optimized such that the first derivative of the signal between 2000

and 2300 cm�1 is minimal.21,78,97 Subsequently, all spectra were truncated to 1000–3000 cm�1 and the region between 1800 and

2800 cm�1 was removed since, in plasma, it observes no significant and biologically relevant absorbance. Each measured spectrum

was then treated as a vector and normalized using the L2 norm, unless otherwise mentioned in the figure legend. The normalization

helps to correct for measurement noise and spectral differences that can arise from changes in the total molecular concentration in
e2 Cell Reports Medicine 5, 101625, July 16, 2024
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the samples (e.g., owing to variations in sample collection, storage/handling, and processing) as described in previous work.78,98

Figure S2 depicts the effect normalization had on the comparability between different groups of samples.

QUANTIFICATION AND STATISTICAL ANALYSIS

Classification analysis
An L2-regularized logistic regression algorithm was used for the classification analysis. To enable multilabel predictions, where an

input can be assigned to multiple labels (i.e., phenotypes), a chaining method was employed.42,99 The strategy consisted of fitting

one logistic regression classifier per modeled label. The architecture and label order of the classification chain was depicted in Fig-

ure 2B. When training, each classifier was fit on a training set of IR spectra, in addition to the true labels of the investigated pheno-

types. The first classifier in the chain had no additional information other than the input IR spectra and the true labels relevant to its

prediction (dyslipidemia). Subsequent classifiers had additional access to the true labels from all preceding phenotypes when

training. When making predictions, only the input IR spectra were used and the predictions of each preceding classifier got passed

on to all other classifiers comingwithin the chain since all the true labels are hidden from the classifier chain. Naturally, the order of the

classification had an effect on the predictive performance of themultilabel classification. To investigate its effects and select a model

with the optimal classification order, an exhaustive grid search was carried out on all possible permutations of ordering the 5 labels to

examine the predictive performance of each multilabel classification variant. The grid search was only carried out on measurements

from sample set #1 where each label order was tested in a 10-fold cross-validation. A large number of label arrangements were found

to lead to similar predictive efficacies (Table S4). It was reassuring to observe that the top performing models followed analytically

comparable label arrangements – e.g., the classifier detecting whether an individual was healthy remained toward the end of the

chain. From the total of 120 possible label arrangements, the order which maximized the exact match ratio was selected since

this investigation on sample set #1 showed that consistent results would be achievable using different arrangements. The commonly

used metrics of exact match ratio, Hamming score, and Hamming loss were used as measures of overall multilabel performance

(further explained below).43–45,100 Based on the probabilities given by the classifiers, a threshold of 0.5 was selected to identify

each positive class prediction from a negative class prediction. Furthermore, the ROC curve was examined for each logistic regres-

sion within the chain to observe how each binary classification performed across all possible prediction thresholds. Classifier vali-

dation is described in the following section.

Validation of multilabel and binary classifications
All reportedmetrics of classification performance were validated on unseen test samples (Figure S1). Relevant to the results depicted

in Figures 2C, 2D, 3C and 3D, three types of validations were performed: (1) a 10-fold cross-validation on sample set #1; (2) another

10-fold cross-validation on sample set #2; and (3) a sample set-independent validation. For the sample set-independent validation,

our aim was to investigate how the classifications performed when tested on samples measured years apart and on entirely different

individuals from the training samples. Since a large portion of individuals overlapped between the two sample sets utilized in our

study, we could not directly train on sample set #1 and test on sample set #2. Instead, we held-out approximately 10% of the indi-

viduals that overlapped between the two sample sets to be used for classifier testing. We then trained the classifier on sample set #1,

using individuals not included in the held-out set. The trained classifier was then tested on the held-out portion of individuals from

sample set #2. This procedure was then repeated 10 times, holding-out a different 10% of test individuals in each iteration. This al-

lowed us to retain a large number of samples for both classifier training and testing while not violating the goal of training and testing

on fully different individuals from the two samples sets. Classification performance metrics (the exact match ratio, Hamming score,

Hamming loss, and ROC curves) were averaged across all test splits of the data and reported along with their standard deviations.

Multilabel classification metrics
In multilabel classifications, unlike binary or multiclass classifications, one input may be simultaneously associated with multiple out-

puts/labels. Interpreting the efficacy of such predictions is more complex as predictions may be entirely correct, partially correct to

varying degrees, or entirely incorrect. Therefore, several metrics that judge the prediction efficacy differently should be used to judge

the multilabel prediction. In this study, three established metrics were used: Exact match ratio,42,45 Hamming score,43–45 and Ham-

ming loss.42,43,45 Descriptions of each metric are provided below. An illustrative example of interpreting each metric is provided in

Table S5.

The exact match ratio is a strict metric that treats partially correct predictions as entirely incorrect. Given a sample xi, the prediction

is scored with a 1 only if the prediction by i exactly matches the true label vector yi associated with the sample. Otherwise, the pre-

diction is scoredwith a 0. This evaluation was performed for every sample and averaged to provide the proportion of exactly matched

predictions. Its values range from 0 to 1, where higher values indicate better prediction efficacy. The metric is expressed as the

following where I is the indicator function:

Exact Match Ratio =
1

nsamples

Xnsamples

i = 1

Iðyi = by iÞ
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The Hamming score, also known as the Jaccard similarity coefficient, considers partially correct predictions to different degrees.

Given a sample, it is defined as the proportion of predicted positive labels matching the true labels to the total number of possible

positive (predicted and actual) labels for that sample. A predicted positive label here implies the existence of a certain label/condition

(e.g., a phenotype is observed for a given sample). Themetric does not reward amodel correctly predicting that a label does not apply

to a given sample (true negative), while it penalizes false positive predictions. The metric is therefore more strict than simply calcu-

lating the fraction of predicted labels that match the true labels. Its values range from 0 to 1, where higher values indicate better

prediction efficacy, and is expressed as the following:

Hamming Score =
1

nsamples

Xnsamples

i = 1

jyiXby ij
jyiWby ij

The Hamming loss is defined as the fraction of incorrectly predicted labels across all instances and labels. It considers each class

individually and counts the number of times the model’s predictions differ from the actual labels. Its values range from 0 to 1, where

lower values indicate better prediction efficacy (i.e., lower label misclassification rate). To keep a consistent interpretation between

the three metrics, where higher values indicate better predictive efficacy, we calculated 1 - Hamming loss as follows:

1 � Hamming loss = 1 � 1

nsamples � nlabels

Xnsamples

i = 1

Xnlabels
j = 1

I
�
yi;j s byi;j

�

In the multilabel analysis applied in our study, we considered five labels. These labels can occur in any of 12 different clinically

feasible combinations, each with varying prevalence (Figure 2A). We performed a stochastic procedure to establish a benchmark

for comparing the prediction value in relation to random chance. For each of the 12 unique label combinations, we randomly sampled

1000000 5-dimensional vectors that describe the labels of the samples observed in our dataset. These sampled label vectors thus

preserve the clinically feasible label combinations that may occur and the prevalence of each label combination in the population (i.e.,

the sampling preserves the distribution of the labels). The same sampling procedure was then repeated but with a shuffling proced-

ure, thus breaking the correspondence between the two sets of 100000 5-dimensional vectors. We then computed the three metrics

described above on the two sets of 100000 5-dimensional vectors. This procedure resulted in a stochastic estimate of the three eval-

uationmetrics for a classifier making clinically feasible predictions that follow the true label distributions but was unable to learn when

to make which prediction. These estimates served as a benchmark to assess the multilabel model’s predictive efficacy and were

depicted by dashed lines in Figure 2C.

Regression analysis
An L2-regularized linear regression algorithm (ridge regression) was used for the regression analysis. IR spectra from both sample

sets were combined together and used as the model inputs. Predictive performance was estimated by the root mean squared error

(RMSE) and coefficient of determination (R2) in 10-fold cross-validations. The metrics of evaluations were calculated on the test sets,

averaged across the 10 cross-validation splits, and reported along with their standard deviation. The predicted values from the test

splits were further plotted and compared to the clinically determined ones (Figure 4B).

Feature selection analysis
No explicit feature selection algorithm was applied prior to the classification and regression analysis. Instead, our approach relied on

the relatively large sample sizes and the established ability of multivariate predictive analysis to discern optimal weights through L2

(ridge) regularization,101 alongside comprehensive testing of predictive efficacy on unseen test samples.

Analysis software
Data analysis was performed using Python (version 3.8.8). The open-source Scikit-learn package (version 0.24.1) was used for its

implementations of the logistic regression and linear regression algorithms.83
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