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Summary
The high heritability of amyotrophic lateral sclerosis (ALS) contrasts with its low molecular diagnosis rate post-genetic testing, pointing

to potential undiscovered genetic factors. To aid the exploration of these factors, we introduced EpiOut, an algorithm to identify chro-

matin accessibility outliers that are regions exhibiting divergent accessibility from the population baseline in a single or few samples.

Annotation of accessible regions with histone chromatin immunoprecipitation sequencing and Hi-C indicates that outliers are concen-

trated in functional loci, especially among promoters interacting with active enhancers. Across different omics levels, outliers are

robustly replicated, and chromatin accessibility outliers are reliable predictors of gene expression outliers and aberrant protein levels.

When promoter accessibility does not align with gene expression, our results indicate that molecular aberrations are more likely to

be linked to post-transcriptional regulation rather than transcriptional regulation. Our findings demonstrate that the outlier detection

paradigm can uncover dysregulated regions in rare diseases. EpiOut is available at github.com/uci-cbcl/EpiOut.
Introduction

Amyotrophic lateral sclerosis (ALS) is a rare neuromuscular

degenerative disease affecting 0.6 to 3.8 per 100,000 peo-

ple with a poor survival prognosis without a cure.1,2 ALS

is a complex disease where a single gene or pathway

cannot explain the disease phenotype due to the heteroge-

neity of genetic causes and over 30 genes associated with

ALS.1,3 Meta-analysis and twin studies estimate the herita-

bility of ALS disease at 61% (with 38%–78% confidence in-

tervals) in sporadic cases (sALS), i.e., patients without a his-

tory of the disease in the family.4 Despite the high

heritability of ALS, only 11% to 25% of patients5–7 receive

a diagnosis after genetic testing. The gap between high her-

itability and low diagnostic rate implies the existence of

many undiscovered ALS-related genes.

There are large-scale sequencing efforts to discover the ge-

netic bases of ALS.8,9 These studies utilized genome-wide as-

sociation studies (GWASs), quantitative trait locus (QTL),

and differential expression analysis from a large cohort of

samples to detect aberrations in ALS patients compared

with control samples.8,10–12 These statistical approaches

successfully detected the most common factors (variants,

genes, and pathways) associated with disease phenotype,

yet detecting rare genetic factors remains challenging due

to low statistical power. Outlier detection is a complemen-
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tary statistical approach that uncovers aberrations specific

tooneor a fewpatients. Applying theoutlier detectionpara-

digm to transcriptomics data has revealed the dysregulation

of many novel splicing and gene expression outliers.13–19

This approach offers a promising direction for enhancing

molecular diagnostic rates of rare disorders, as it effectively

captures their heterogeneous genetic architecture.

The outlier detection approach has recently been app-

lied to proteomics20,21 and methylation,21 and robust

replication of aberrations across multiple omics data dem-

onstrates the reliability of the outliers for disease diagnos-

tics. Expanding the outlier detection approach to chro-

matin accessibility could provide further insight into the

dysregulation of functional regions and their impact on

gene expression in disease. Because transcription factors

typically bind to open chromatin regions, defining the ac-

tivity of promoters and enhancers, which in turn regulate

transcription.22 Thus, aberrations in chromatin accessi-

bility correlate with the dysregulation of gene expression

potentially linked to diseases.23–25 Despite the widespread

use of assays such as assay for transposase-accessible chro-

matin with sequencing (ATAC-seq) and DNase-seq ena-

bling genome-wide investigation of the chromatin accessi-

bility landscape,26 the outlier detection approach has not

been applied to chromatin accessibility data to the best

of our knowledge.
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Figure 1. EpiOut offers a framework for
the identification of dysregulated regions
using chromatin accessibility data
First, a consistent set of accessible regions is
identified across the cohort of samples, and
sequencing reads from the assay are cou-
nted per region. Chromatin accessibility
outliers are detected from the count mat-
rix using a negative binomial test, with
the expected counts calculated by an au-
toencoder. Then, the accessible regions are
annotated to facilitate functional inter-
pretation and to map interactions between
regions. Finally, the potential impact of
chromatin accessibility outliers on gene
expression is predicted. These predictions
help distinguish gene expression aberra-
tions that arise from transcriptional or
post-transcriptional regulation.
Here, we present EpiOut, a software developed for chro-

matin accessibility outlier detection (Figure 1). Our pro-

posed method takes read alignment files and accessible

regions as input, performs ultra-fast read counting per

accessible region, detects outliers using a linear autoen-

coder (LR-AE) with a negative binomial objective function,

and annotates outlier regions using chromatin immuno-

precipitation sequencing (ChIP-seq) and Hi-C. Optimiza-

tion of the decoder layer and dispersion parameters re-

quires solving a large number of independent convex

problems. We significantly accelerated the LR-AE using

TensorFlow27 by utilizing a vectorized variation of back-

tracking line search for the dispersion parameters and

L-BFGS for the decoder layer.We utilized EpiOut to identify

chromatin accessibility aberrations in motor neuron cells

from 253 samples in the AnswerALS cohort,9 which com-

prises multiple omics data from ALS patients and clinically

healthy controls. EpiOut pinpoints a small number of sam-

ple-specific loci as outliers. Comparison of chromatin

accessibility outliers with gene expression outliers and pro-

tein aberrations reveals consistent replication across multi-

ple omics levels. This analysis can offer valuable insights

into whether aberrations inmolecular phenotype are influ-

enced by transcriptional or post-transcriptional regulation.

The outlier detection approach identifies known ALS genes

and potentially novel disease gene candidates.
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Results

In this study, we explored aberrant

chromatin accessibility in ALS using

ATAC-seq experiments from the

AnswerALS dataset (methods). This

dataset comprises paired genomics,

transcriptomics, chromatin accessibi-

lity, and proteomics experiments

from 253 individuals. With our novel

method, EpiOut, we pinpointed re-

gions with abnormal chromatin acces-

sibility and investigated the molecular
impact of these outliers by comparing paired experiments

across different omics levels. Our results highlight the bio-

logical relevance and robustness of the identified accessi-

bility outliers.

Detection of accessible regions

Detection of aberrant accessibility requires read counts for

a set of accessible regions consistent across the individuals.

First, we merged ATAC-seq reads of all samples into one

meta-sample, then performed joint peak calling with

MACS228 using the meta-sample to obtain a consistent

set of accessible regions. Joint peak calling results in nar-

rower regions compared with sample-specific peak calling,

and there is a substantial overlap (� 88% for under-accessi-

bility and � 63% for over-accessibility) in outliers identi-

fied by the two methods (Figures S1A and S1D). We de-

tected a total of 858;268 peaks before any filtering. Next,

we counted the number of ATAC-seq reads overlapping

with each accessible region. Counting reads from a large

sample cohort is computationally intensive.15 Thus, we

developed EpiCount, an efficient read counter designed

for accessibility data. EpiCount is twice as fast as the

state-of-the-art generic counting tool29 (methods), using

� 50 times less memory (Figures S2A and S2B) and 15

times faster than the reported runtime of commonly

used counting methods.15 The runtime of EpiCount is



comparable with the bedtools30’ implementation of the

chrom-sweep algorithm.31 The tidy memory footprint of

EpiCount enables the independent parallelization of

counting across a large number of samples. Last, we filtered

accessible regions based on the read counts because many

accessible regions often do not replicate across samples.We

imposed a replication filter to these peaks, ensuring that

the accessible regions were observed in at least 50% of

the samples with a minimum of two reads and exhibited

high accessibility (100 reads) in at least one sample

(Figure S3A). Applying these filters yielded 114; 428 acces-

sible regions replicated across samples.

Outlier detection and benchmark

Using an outlier detection approach, we aim to spotlight

the rare aberrations unique to a few or single samples.

This was achieved by eliminating major covariation in

chromatin accessibility data and examining the remaining

variance between samples. We investigated the relation-

ship between the principal components of accessibility

data and the disease status of the samples. Figure 2A illus-

trates the lack of clustering between samples by disease

phenotype along the site of the top two principal compo-

nents of chromatin regions with highly variable accessi-

bility (counts are normalized with variance stabilizing

transformation [VST]32). The top 25 principal components

account for approximately 79% of the chromatin accessi-

bility variation between samples (Figure S4A). However,

none of these top principal components significantly sepa-

rate ALS samples from controls in this cohort (Figure S4B).

Similarly, top principal components of transcriptomics

data do not clearly separate cases from the control samples

(Figures S5A and S5E). The observations align with the

biology of ALS, given that the most prevalent cause, a hex-

anucleotide (GGGGCC) repeat expansion in the C9orf72,

is present in only about 7% of patients, and other known

factors account formerely 1%–2% of cases.7 Thus, focusing

on the rare aberrations might reveal dysregulation associ-

ated with ALS.

To evaluate the performance of the outlier detection

methods, we employed an artificial outlier injection pro-

cedure previously proposed for detecting aberrant gene

expression.33 To create ground truth, we injected large ab-

errations, called artificial outliers, to read counts of ALS

samples and then benchmarked the performance of tools

to classify those artificial outliers on the area under the pre-

cision-recall curve (methods) (Figure 2C). In naive negative

binomial, we estimated the mean of the negative binomial

test as a sample mean of read count per ATAC-seq peaks

(methods) and estimated dispersion with maximum likeli-

hood estimation (MLE), then ranked predictions by p value

based on the negative binomial test. The naive negative

binomial model performs poorly with area under the preci-

sion-recall curve (auPRC) of 1:8%51% because the ex-

pected read counts of the naive negative binomial model

are not sample specific. As an alternative outlier detection

method, expected read counts per peak and sample can
Hu
be estimated by principal-components analysis (PCA)

(methods), and ranking predicted outliers by Z score based

on the expected and observed read counts of the PCA

model have the performance of auPRC 9:7%50:9%. Our

proposed method estimates expected read counts using

an LR-AE (Figure 2B). Expected read counts are incorpo-

rated into a negative binomial test as the mean parameter,

and the dispersion is estimated based on the expected and

observed counts (methods). In our implementation of the

LR-AE, the weights of the encoder and decoder layers are

initialized with the rotation matrix of PCA. Then, the

dispersion parameter is initially estimated using expected

counts based on initial weights, and weights of the decoder

layer are updated to maximize negative binomial likeli-

hood using initial dispersion estimation. After the decoder

layer optimization, we recalculate the dispersion estima-

tion and apply the negative binomial test to estimate

outliers. Also, it is critical to account for read coverage dif-

ferences between samples (Figure S3B); thus, read counts

are normalized for size factors32 (methods). We chose the

optimal bottleneck size of LR-AE with hyperparameter tun-

ing on the validation set (Figure S6). This approach out-

performs the previous two methods by achieving an

auPRC of 50:3%50:2%. An alternative LR-AE-based

method, OUTRIDER, outperforms PCA and performs simi-

larly with EpiOut (auPRC of 48%50:2%). Both methods

employ an LR-AE with a negative binomial, a more proper

distribution to fit counts data than PCA (methods). Those

results show that the estimation of dispersion and gene/

sample-specific accessibility expectation followed by the

negative binomial test is critical for outlier detection.

Chromatin accessibility is higher dimensional than gene

expression because accessibility data may contain hun-

dreds of thousands of accessible genomic regions. In con-

trast, gene expression data only contain around 10,000

to 15,000 expressed protein-coding genes. Thus, the scal-

ability of the outlier detection approach is essential to

apply the method to high-dimensional chromatin acce-

ssibility data. Although OUTRIDER and EpiOut have

similar auPRC scores, the autoencoder implementation of

OUTRIDER is significantly slower than our proposed

method (Figure 2D). For example, outlier detection with

EpiOut (745549 seconds) is 60 times faster than

OUTRIDER (44; 8745200 seconds). Our implementation

is faster due to a couple of reasons. First, we do not opti-

mize the encoder layer of the autoencoder because we

observed that the initial estimation of encoder weights

with PCA is close to optimal, so further training of the

encoder is unnecessary. Also, EpiOut only performs one

alternating optimization step to fit the decoder layer and

estimate dispersion. In contrast, OUTRIDER performs mul-

tiple alternative optimization steps to estimate dispersion

and train the encoder and decoder layers. Last, the optimi-

zation of the decoder layer and the estimation of disper-

sion parameters necessitate solving a multitude of inde-

pendent convex optimization problems. We efficiently

approach these using a vectorized L-BFGS for the decoder
man Genetics and Genomics Advances 5, 100318, July 18, 2024 3
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Figure 2. Proposed outlier detection methodology and its benchmark
(A) Samples do not form distinct clusters based on their disease phenotype according to the top two principal components of chromatin
regions with highly variable accessibility (read counts are normalized for VST).
(B) The architecture of the proposed methodology for outlier detection (EpiOut). The approach employs the negative binomial test. The
mean parameter of the negative binomial distribution is predicted with an LR-AE, which uses latent confounders obtained from data in
addition to reported known confounding as features to predict sample-specific expected accessibility. The dispersion parameter is fitted
with MLE using the observed and expected counts.
(C) A precision-recall curve shows the performance of alternative outlier detection methods. Methods were benchmarked based on
the classification accuracy of the injected artificial outlier. Specific cutoffs of models are indicated with cross marks (an absolute Z score
of 2 for PCA, a p value of 0:05 for naive negative binomial, OUTRIDER, and EpiOut).
(D) Runtime benchmark of outlier detection methods.
(E) Contribution of each component (such as latent and known confounding factors) of the model to reduce the number of outliers per
sample (errors indicate standard deviation).
(F) A cluster heatmap displaying the cross-correlation of samples based on the read counts of regions with highly variable accessibility
(normalized for VST) before controlling for cofounders and (G) cross-correlation of samples after correction of counts.
(H) Distribution of cross-correlation between sample pairs before and after correction of accessibility reads (� � � � p < 10�4).
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layer and a vectorized and bounded backtracking line

search for dispersion estimation, all implemented in

TensorFlow (methods).

We further integrated known confounding factors such

as batch ID, sex, reported race, and ethnicity into outlier

detection (methods). The contribution of each feature for

outlier detection is summarized in Figure 2E. The naive

negative binomial test estimates 76:55614 outlier regions

per sample, and the inclusion of latent confounding

factors for expected read count estimation significantly re-

duces the number of outliers to 18:3524. Known con-

founding factors such as batch ID, sex, race, and ethnicity

further reduce the number of an outlier to 14:2513:6 out

of 114;428 accessible regions per sample. Thus, our

method pinpoints only a handful of aberrant regions per

sample.

As another benchmark, we compared cross-correlation

between samples. Samples are highly cross-correlated

based on the read counts of regions with highly variable

accessibility (normalized for VST) before controlling for co-

founders (Figure 2F). In our detection approach, we aim to

eliminate the correlation between samples to detect rare

aberrations by controlling for latent cofounders. Correct-

ing for latent and known confounding factors and normal-

ization of read counts decorrelate samples and eliminate

clusters due to potential batch effects (Figure 2G). Samples

have an average cross-correlation of 90:9% based on the

read counts before correction. In comparison, there is a

0% average cross-correlation after the proposed correction

method (p < 0:001 based on the paired Wilcoxon test,

Figure 2H).

Functional annotation of accessible regions and outliers

To aid the functional interpretation of chromatin accessi-

bility outliers, we developed EpiAnnot, which annotates

accessible regions for histone marks and 3D chromatin in-

teractions based on ChIP-seq and Hi-C experiments.

EpiAnnot integrates publicly available ChIP-seq and Hi-C

for cell lines/tissues available in Roadmap Epigenomics34

and ENCODE35 or from custom data sources. We anno-

tated the previously identified accessible regions and out-

liers using the H3K4me3, H3K27ac, and H3K4me1 histone

marks observed in motor neurons. These neurons were

derived from the iPSCs of clinically healthy individuals

and ALS samples.36 Based on histone marks, accessible re-

gions were further classified as a promoter if the region

has a histone mark of H3K4me3 and is within 1;000 base

pair (bp) vicinity of the annotated transcript start site or

overlaps with 50 UTR, an active enhancer if the region

has both H3K27ac and H3K4me1 mark, and a poised

enhancer if only H3K4me1 signal is present while

H3K27ac mark is lacking (Figure 3A).37 The two largest cat-

egories of accessible regions were active enhancers (n ¼
39; 559), which have both H3K27ac and H3K4me1, fol-

lowed by poised enhancer (n ¼ 18; 817) regions, which

have only the H3K4me1mark (Figure 3B); 14:3% accessible

regions (n ¼ 16;446) have all three H3K4me3, H3K27ac,
Hu
and H3K4me1 histone marks. Chromatin accessibility out-

liers are enriched for histone marks, for example 28% of

outlier overlap with all three histone marks (Figure 3C).

Consequently, both over-accessibility and under-accessi-

bility outliers are more likely to occur in promoter regions

(Figure 3D, p < 0:001 for both based on Fisher’s exact test).

Active enhancers are the largest category of outliers,

contain 39% of over-accessibility and 38% of under-acces-

sibility outliers, and not significantly enriched or depleted

for outliers (p ¼ 0:26 for under-accessibility and p ¼ 0:22

for over-accessibility based on Fisher’s exact test). Further-

more, both poised enhancer and unannotated regions

strongly depleted for under-accessibility outliers as ex-

pected (p < 0:001 for both based on Fisher’s exact test).

Significant enrichment of outliers in functional regions in-

dicates the potential utility of accessibility outliers in delin-

eating molecular basis of ALS.

Another interesting observation is that outliers tended

to occur in the vicinity of each other (Figure 3E). Specif-

ically, 8% of outliers have a second outlier in the 10 kilo-

bp vicinity with an odds ratio of 688 (p < 0:001 based

on the Fisher’s exact test), and 34% of outliers have a sec-

ond outlier in 1 million bp with the odds ratio of 33

(p < 0:001 based on the Fisher’s exact test). We repeated

enrichment analysis between promoter outliers and active

or poised enhancer outliers and again observed significant

enrichment. Thirteen percent of promoter outliers have at

least one active enhancer outlier in 100 kilo-bp vicinity

(odds ratio ¼ 375; p < 0:001 based on the Fisher’s exact

test), and 24% of promoter outliers have an active enhancer

outlier in 1 million bp vicinity (odds ratio ¼ 70; p < 0:001

based on the Fisher’s exact test). The co-occurrence of the

outliers indicates the potential interaction between them.

Hi-C experiments from motor neurons provide further evi-

dence for the potential interaction between outliers. For

example, the relatively high Hi-C contact score between

the outlier promoter of the ZFP41 gene and a distal

enhancer outlier located � 110 kilo-bp upstream of the

gene suggests a potential interaction between outliers

(Figure 3F). We calculated the Hi-C contact score between

pairs of accessible regions and categorized regions by outlier

status. We observed that outlier pairs (p < 0:001 based on

the Mann-Whitney U test), including promoter-active

enhancer pairs (p < 0:001 based on the Mann-Whitney U

test), have higher interaction scores compared with a base-

line where at least one of the regions in the pair is not an

outlier (Figure 3G). Hi-C contact scores are distance-depen-

dent and decay according to power law with increasing

genomic distance. Thus, a higher interaction score could

possibly be confounded by the co-occurrence of outliers

in the vicinity of each other. To avoid this potential bias,

we fit power regression on Hi-C contact scores using the

outlier status as a feature and distance as a control variable

(methods). Outlier pairs have higher interaction scores

(p < 0:001 based on the t test) even after controlling

for distance with power regression (Figure S7A). Moreover,

even when we restricted our analysis to region pairs at
man Genetics and Genomics Advances 5, 100318, July 18, 2024 5
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Figure 3. Functional annotation of chromatin accessibility outliers
(A) Accessible regions were annotated using ChIP-seq marks and gene annotation as promoters, active or poised, and proximal or distal
enhancers.
(B) Overlap between H3K4me3, H3K27ac, and H3K4me1 histone marks and accessible regions (C) and outliers (D) Breakdown of pro-
moters, active enhancers, poised enhancers, and unannotated regions within the categories of under-accessibility, over-accessibility out-
liers, and non-outliers. Errors bars indicate standard error, p values calculated with Fisher’s exact test and corrected for multiple testing
with the Benjamini/Hochberg method (nsR0:05;� � �p < 10�3;� � � � p < 10�4).
(E) Cumulative odds of observing the second outlier in a region given that there is an outlier in the region (top) and the cumulative per-
centage of outliers with a second outlier in the vicinity (bottom) based on the distance between regions and the annotation.
(F) The interaction between the outlier promoter of ZFP41 and � 100 kilo-bp apart outlier distal enhancer is highlighted by the Hi-C
track containing contact score between 5 kilo-bp long genomic bins. Coverage tracks for H3K4me3, H3K27ac, and H3K4me1 histone
marks are colored green. Red boxes indicate the outlier status of the accessible regions.
(G) The Hi-C contact scores distribution of non-outlier, outlier, and promoter-enhancer pairs. p values were calculated with the Mann-
Whitney U test and corrected with the Bonferroni correction for multiple testing.
least 100,000 bp apart, the Hi-C contact scores of outlier

pairs still surpassed the baseline of non-outlier pairs

(Figure S7B). Overall, the co-occurrence of outliers in the vi-

cinity of each other and higher Hi-C contact scores between

outlier pairs indicate a potential interaction between

outliers.
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Chromatin accessibility outliers influence gene

expression and protein levels

Aberration in accessibility can impact downstream molec-

ular phenotypes such as gene expression and protein

levels. As an example, we found that the ALS case with

an under-accessibility outlier in the promoter of LCMT1
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Figure 4. Prediction of gene expression outliers and aberrant protein levels from chromatin accessibility
(A) The outlier promoter of the LCMT1 gene (in red) has a much lower ATAC-seq read coverage than promoters of non-outlier samples.
(B) Expected and observed accessibility in the promoter of LCMT1 gene across samples. The outlier sample is indicated with a red dot in
the figure panels.
(C) Z score distribution of promoter accessibility, (D) gene expression, (E) and protein levels of LCMT1 across samples.
(F) Correlation between the absolute log fold change of accessibility and expression outliers.
(G) The precision-recall curve compares the performance of a range of predictors to estimate gene expression outliers. Those predictors
are the absolute log fold change of promoter outliers (orange), the absolute log fold change of proximal enhancers (green), themaximum
absolute fold-change of any outlier in 100 kilo-bp vicinity (blue), the absolute log fold change of distal enhancers weighted by ABC score
(red), explainable boosting machine (EBM) trained with promoter, proximal-enhancer, and distal-enhancer features (purple).
(H) Z score distribution of proteins categorized by the outlier status of the promoter that transcripts them (� � � � p < 10�4).
(Figures 4A–4C) also showed decreased mRNA (Figure 4D)

and protein levels (Figure 4E).

To investigate the global relationship between accessi-

bility outliers and gene expression, we compared the vari-

ations in promoter accessibility with variations in gene

expression across all samples (Figure 4F).We observed a sig-

nificant correlation between the fold changes (log2ðFCÞ) in
accessibility at genes’ promoters and the respective expres-

sion levels of these genes (Spearman’s correlation

coefficient ¼ 71%, p < 0:001). The high correlation indi-

cates that aberrations in promoter accessibility potentially

influence the aberrations in gene expression.

Moreover, we demonstrated that gene expression out-

liers can be systematically predicted from the promoters,

proximal, and distal enhancer accessibility (Figure 4G).

Ranking promoter outliers by their absolute log fold

change (jlog2ðFCÞj) to predict gene expression outliers

achieve an auPRC of 11:4%. If the promoter is an outlier,

there is a 43:6% chance (precision) that its gene is an

expression outlier, and 23:6% of gene expression outliers

have an outlier promoter (recall). Similarly, outliers in

proximity are highly predictive of gene expression outliers.

Specifically, 26:8% (the recall at 21:1% precision) of gene

expression outliers have at least one proximal outlier.
Hu
Ranking genes based on the absolute log fold change of

their proximal outlier achieves the performance of auPRC

of 5:9%. We also ranked genes based on the maximum ab-

solute fold-change of accessibility outliers in 100 kilo-bp

vicinity regardless of annotation of outliers and achieved

2:9% auPRC. We weighted the absolute log fold change

of distal outliers by ABC score38 and obtained a score for

each gene (methods). The score calculated from distal out-

liers is also a reliable predictor of gene expression outliers

and achieves 5:7% auPRC. We trained an explainable

boosting machine39 to predict gene expression outliers

by combining features from transcript start site, proximal,

and distal outliers (methods). Themachine learning model

achieved 21:1% auPRC. Further benchmarking of alt-

ernative models40 incorporating ChIP-seq annotations

shows performance comparable to the model solely using

GENCODE annotation (Figures S8A and S8B). Addition-

ally, Hi-C measurements necessary for the ABC score can

be approximated through power-law regression when un-

available (Figure S8C). Altogether, these results show that

chromatin accessibility outliers are predictive for gene

expression outliers, and chromatin accessibility aberra-

tions in transcript start site, proximal, or distal regions

often translate into gene expression aberrations.
man Genetics and Genomics Advances 5, 100318, July 18, 2024 7
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Figure 5. Overlap between accessibility
outliers, gene expression outliers, and
rare genetic variants by consequence
(A) Aberration in gene expression can result
from dysregulation in transcriptional reg-
ulation, such as aberrant promoter or en-
hancer activity, or dysregulation in post-
transcriptional regulation, such as splicing
or nonsense-mediated decay. Error bars re-
present the 95% binomial proportion con-
fidence intervals (Cis) in all panels.
(B) Percentage of genes with potentially
NMD-triggering rare genetic variants by
outlier categories. Gene expression outliers
with promoter outliers are significantly de-
pleted for variants in each category, while
gene expression outliers without outlier
promoters are enriched for nonsense and
frameshift variants.
(C) Percentage of protein with amissense or
potentially NMD-triggering rare variants
where protein levels are at least deviant by
jZ scorej > 1 by outlier categories.
(D) Percentage of genes containing splicing-
disrupting variants predicted by AbSplice
by outlier categories (nsR0:05; �p <
0:05; � � p < 10�2; � � �p < 10�3; � � � � p
< 10�4 based on the hypergeometric test).
We focused on gene expression outliers with outlier pro-

moters and investigated aberrations in their protein levels

(Figure 4H). We observed that the gene expression outliers

with overly accessible promoters have higher protein levels

(average Z score ¼ 2:2; p < 0:001 based on the Mann-

Whitney U test, n ¼ 29), and genes with under-accessible

promoters have lower protein levels (average Z score ¼
2:2; p < 0:001 based on the Mann-Whitney U test, n ¼
79). Overall, we present the biological significance of

accessibility outliers on molecular phenotype by repli-

cating outliers from multiple omics levels.

A comparison of chromatin accessibility and gene

expression reveals whether aberrations in molecular

phenotype are linked to transcriptional or post-

transcriptional regulation

The interplay between transcription and degradation rates

determines RNA levels (Figure 5A). Aberrant promoter or

enhancer activity can lead to up- or down-regulation of

gene expression by altering transcription. Alternatively,
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alteration of post-transcriptional pro-

cesses may affect RNA degradation,

notably but not exclusively via non-

sense-mediated decay (NMD).16 He-

nce, the potential regulatory process

associated with aberrant gene expre-

ssion can be revealed by comparing

accessibility outliers against gene exp-

ression outliers.

To demonstrate this point, we inves-

tigated the enrichment of rare and

potentially NMD-triggering variants
in different outlier categories. Figure 5B presents the fre-

quency of potentially NMD-triggering rare variants, such

as splice acceptor, donor, nonsense, and frameshift vari-

ants, based on their SnpEff41 consequences by the outlier

type of the affected gene. These variants were observed

rarely and appeared in fewer than 0.1% of non-outlier

genes. Compared with expression outliers with outlier pro-

moter, these variants are significantly more prevalent in

gene expression outliers if their promoters are not accessi-

bility outliers. The enrichment holds for splicing acceptor

(n ¼ 13; p ¼ 0:0026 based on the hypergeometric test)

and splicing donor (n ¼ 16; p ¼ 0:0007), nonsense

(n ¼ 46; p < 0:001), and frameshift variants (n ¼ 59;

p < 0:001). Remarkably, only one of the gene expression

outliers with aberrant promoter activity contains poten-

tially NMD-triggering rare variants, indicating a significant

depletion pattern (Figure S9A). Based on a subsequent

analysis focusing on genes intolerant to loss-of-function

(LoF) mutations42 (with an LoF observed/expected upper

bound fraction [LOEUF] of less than 35%), we observed a



similar pattern of depletion of potentially NMD-triggering

variants among expression outliers with aberrant promoter

accessibility (n ¼ 13;p ¼ 0:0026, Figure S9B).

Further investigation of both missense and potentially

NMD-triggering rare variants in genes with aberrant pro-

moter accessibility and protein levels presents a similar

trend of depletion (Figure 5C); 19:8% of expression outlier

genes (n ¼ 163; p < 0:001 based on the hypergeometric

test) with aberrant protein levels (jZ scorej > 1) contain

at least one of such variants. When genes with promoter

outliers were excluded, the enrichment of variants rose

to 24:1% (n ¼ 131;p ¼ 0:27). The remaining expression

outlier genes (n ¼ 32) have promoters with aberrant

accessibility, and only one of these genes contains genetic

variants with mentioned consequences. The substantial

depletion of these variants in these genes (p ¼ 0:0052) in-

dicates that their aberrant protein levels are potentially

linked to aberrant promoter accessibility rather than cod-

ing variants (Figure S9C).

Aberrant splicing is another mechanism that can affect

gene expression by resulting in aberrant RNA isoforms sub-

ject to NMD.43 Thus, we further explored the impact of

exonic or intronic splicing-disrupting variants prioritized

by AbSplice.44 We detected 48 gene expression outliers

containing at least one splicing-disrupting variant priori-

tized by AbSplice and none of these genes has an outlier

promoter (Figure 5D). In contrast, subsetting gene expres-

sion outliers without aberrant promoters increases the

prevalence of splicing disturbing variants for the subset

(Figure S9D).

Furthermore, our investigation of genetic variants in

chromatin accessibility outliers, which could disrupt tran-

scription by altering cis-regulatory elements, showed slight

enrichment of single-nucleotide variants (SNVs) or inser-

tion-deletion mutations (indels) (Figure S10A, n ¼
163; p < 0:001 based on hypergeometric test). Structural

variants are more frequently observed in the vicinity of

chromatin accessibility outliers than in non-outliers; how-

ever, nearby structural variants are only identified in

� 1:3% of these outliers (Figure S10B).

The results underscore that comparing accessibility out-

liers against gene expression outliers and aberrant protein

levels can identify whether aberration in the molecular

phenotype is tied to transcriptional or post-transcriptional

regulation. The observed enrichment of small and struc-

tural variants in chromatin accessibility outliers might

indicate that disrupting regulatory sequences within these

accessible regions could lead to transcriptional aberrations.

Identifying known and suspected ALS genes usingmulti-

omics outliers

We reviewed the literature to understand the biological sig-

nificance of outliers observed across multiple omics levels

in ALS samples. The proposedmethod operates in an unsu-

pervised manner; consequently, not all detected aberra-

tions are necessarily associated with ALS. For example,

we observed a similar number of outliers in ALS cases
Hu
and clinically healthy controls (Figures S11A and S11B).

Furthermore, loci prioritized through outlier analysis are

orthogonal to those identified by GWASs, as the proposed

methodology captures rarer effects that may not be de-

tected by GWASs (Figures S12A and S12E). Therefore, the

integration of additional evidence from the literature is

crucial to prioritize genes potentially linked to ALS patho-

genesis. Among the outlier genes that exhibited aberra-

tions in both promoter accessibility and gene expression

(Table S1), 12 have previously been associated with ALS:

CDKL5, HIF1A, ABCA2, VPS4B, NOVA1, NRG1, NIPA1,

BCL2, ALYREF, UBQLN2, IRAK4, and DDX3X.1,5,7,11,45–51

In some cases, variants have been associated with ALS or

pathways involving these genes are dysregulated. While

several proteomics measurements were missing due to

the limitations of mass spectrometry,52 three genes from

these outliers (VPS4B, ALYREF, DDX3X) also displayed

aberrant protein levels. For instance, we observed elevated

expression and protein levels of ALYREF, in accordance

with prior research (Figure S13) and knocking down an or-

thologue of ALYREF in an animal model reduces TDP-43

induced toxicity.53 Similarly, the CDKL5 gene exhibits

over-expression with an over-accessible promoter region

(protein levels are unavailable). Suppressing CDKL5

expression using a small molecule probe enhances the sur-

vival of human motor neurons under endoplasmic reticu-

lum stress conditions.54 Another outlier gene we identi-

fied, HIF1A, contributes to motor neuron degeneration

through hypoxic stress, and prolonged survival observed

in ALS mice suggests up-regulation of HIF1A as a potential

therapeutic target.55 Finally, VPS4B is pathologically

increased in familial and sporadic ALS neuronal nuclei.56

A closer examination of these identified outlier genes

could reflect potential mechanisms involved in ALS and/

or illuminate pathogenesis in subsets of ALS patients.

While some of the outlier genes are previously unre-

ported as being associated with ALS, they play an impor-

tant role in pathways involved in ALS; thus, they might

be linked to ALS pathogenesis. For example, the promoter

of LCMT1 is less accessible, and both its gene expression

and protein level are down-regulated in our dataset.

Increased tau phosphorylation has been reported in

ALS57 and down-regulation of LCMT1, in conjunction

with the up-regulation ofHIF1A, has been linked to tau hy-

perphosphorylation.58DDX6 is another gene that is down-

regulated across three omics levels (Figure S14) and is an

LoF intolerant gene42 (with an LoF observed/expected up-

per bound fraction of LOEUF ¼ 17%). Although the role

of DDX6 in ALS has not been documented, DDX6 plays a

critical role in RNA metabolism, particularly in the assem-

bly of stress granules, a pathway dysregulated in ALS.59

Furthermore, DDX6 interacts with the ALS gene ATXN2,

and a knockout of DDX6 severely disrupts p-body for-

mation.60 In two ALS samples, we observed reduced pro-

moter accessibility, gene expression, and protein levels

of NEDD4L (Figure S15), another LoF intolerant gene

(LOEUF ¼ 20%). NEDD4L is a direct substrate of USP7
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that regulates proteotoxicity in ALS.61 Oxidative stress is

implicated in neurodegeneration,62 and up-regulation of

TXNL1 has been shown to reduce oxidative stress in neuro-

logical conditions.63,64 Therefore, the pronounced down-

regulation of promoter accessibility, gene expression, and

protein levels of TXNL1 observed in our studymay be asso-

ciated with increased oxidative stress (Figure S16). Vesicle

transport is dysregulated by LoF of ALS-associated genes,

such as VAPB65 or NEK1.66 LMAN1, a cargo receptor for

the endoplasmic reticulum-Golgi transport,67 is also inv-

olved in the trafficking of neuroreceptors.68 The observed

reduction in promoter accessibility, gene expression, and

protein levels of LMAN1 in two of our samples could be

of relevance to ALS (Figure S17).While the systematic iden-

tification of aberrations across multi-omics data serves as a

foundation for formulating new hypotheses, establishing a

definitive link between these prioritized genes and ALS

pathogenesis requires further experimental validation.

By cross-referencing genes with those associated with

neurodegenerative disorders in OMIM,69 we obtained six

additional gene expression outliers (GAN, EIF4A2, NARS1,

HSD17B10, ERCC8, SLC25A46) with aberrant promoter

accessibility that are involved in a range of neurodegener-

ative and neurodevelopmental disorders. A notable exa-

mple is ERCC8, involved in DNA damage repair and

when mutated causes Cockayne Syndrome,70 an early-

onset degenerative condition.71 ERCC8 has also been

identified as a comorbid factor in shared genetics between

Parkinson disease and ALS.72

Overall, our multi-omics level analysis both detects

known ALS genes and introduces potential novel candi-

dates that might be playing a role in the ALS disease path-

ways. The results demonstrate the utility of the proposed

statistical approach for prioritizing suspected regions and

generating hypotheses about ALS pathogenesis.
Discussion

In this study,we introducedEpiOut,a computational toolbox

for detectingandannotatingchromatinaccessibility outliers,

which are characterized as large aberrations in a few regions

specific to a single or few samples. We applied our proposed

method to ATAC-seq data from ALS patients and clinically

healthy individuals. Our methodology employs a negative

binomial test for detecting outliers with statistical signifi-

cance. Themean parameter of the negative binomial is fitted

using a linear autoencoder (LR-AE), and the dispersion

parameter is inferred based on observed and expected counts

using MLE. Controlling for both known and latent con-

founding factors is crucial to exclude outliers resulting from

technical artifacts or confounding factors during outlier

detection.14,33 The proposed LR-AE is an effective statistical

method for obtaining latent confounders from high-dimen-

sional data. PCA, a specific case of an LR-AE, can also detect

and correct for latent confounders better than alternative sta-

tistical methods.73 However, PCA minimizes the Euclidean
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distance between measured and reconstructed counts;

thus, it is suboptimal for discrete read counts of omics

data with high dispersion and uncertainty due to low

coverage.74 Thus, the negative binomial objective in our

methodology ismoreapt fordiscrete readcounts.Moreover,

our software is more scalable than OUTRIDER and opti-

mized for chromatin accessibility with a dimensionality of

hundredsof thousandsof genomic regions.Whileprimarily

designed for ATAC-seq, our toolbox is readily compatible

with other accessibility assays, such as DNase-seq. The scal-

able outlier detection backend also enables the further

expansion of outlier detection into other high-dimensional

omics modalities, such as DNA methylation.

Our toolbox includes EpiAnnot, which annotates acces-

sible regions as promoters and enhancers based on ChIP-

seq marks. It also establishes a link between enhancer and

promoter pairs through the ABC score, which is derived

from either predicted or observed Hi-C scores. Using

EpiAnnot, we found that outliers are enriched in functional

regions, particularly promoters and active enhancers. Inter-

estingly, outlier pairs tend to occur nearby, with many pro-

moter outliers tied to active enhancer outliers within 1

millionbpvicinity. Thisobservation is supportedby the rela-

tively high Hi-C contact scores for outlier pairs in the vicin-

ity, indicating potential interactions between these outliers.

By examining multiple omics levels, we found consistent

replication of outliers. Accessibility outliers are associated

with downstream biological processes such as gene expres-

sionandprotein levels. Inparticular, a significantproportion

of the gene expression outliers can be predicted from the

aberrant accessibility of the promoter, proximal, and distal

enhancer regions. Similarly, aberrant promoter activity is

correlated with up- and down-regulation of protein levels.

Analyzing the interplay between accessibility and gene

expression outliers yields insight into whether aberration

in gene expression originates from transcriptional regula-

tion, such as increased synthesis rate via higher promoter

activity, or post-transcriptional regulation, such as splicing

or nonsense-mediated decay. We observed substantial

depletion of NMD-triggering rare variants in gene expres-

sion outliers if promoters of these genes are an accessibility

outlier and conversely observed enrichment of these vari-

ants if their promoter is not an outlier.

The outlier detection method presented here is subject

to certain limitations. The methodology is effective at de-

tecting rare aberrations in the molecular phenotype; how-

ever, it does not establish a definitive link between these

aberrations and specific phenotypic traits. Integrating the

outliers with additional evidence, such as known disease

genes, is necessary for the effective prioritization of aberra-

tions thatmight be linked to a disease. QTL analysis detects

variants affecting molecular traits, yet prioritization of

causal gene-disease links and estimation of disease risk re-

quires the integration of GWASs with QTL in Mendelian

randomization studies.75 Similar integration of GWAS var-

iants with outliers is challenging, given variants associated

with outliers have low allele frequency; thus, they may not
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be prioritized by GWASs. Additional methodological inno-

vations are needed to establish an unbiased link between

outliers and disease traits.

Another future research direction is the investigation of

genetic factors leading to chromatin accessibility outliers.

The enrichment of genetic variants in the chromatin

accessibility outliers indicates that cis-regulatory elementdis-

rupting genetic variants might be one source of the aberra-

tions.However, themajorityof thesevariants arenon-coding

variants; thus, effectiveprioritizationof specificvariants lead-

ing to chromatin outliers requires the development of statis-

tical tools such as sequence-based deep learning models.76

Our outlier detectionmethodology offers a novel avenue

for studying rare diseases. We have successfully adapted

the outlier detection approach to ATAC-seq data and

underscored that chromatin accessibility is a beneficial

complementary assay for rare disease diagnostics. Detected

outliers in ALS samples are highly robust and consistently

replicated across multiple omics levels. Many of these out-

liers are either known ALS genes or are involved in path-

ways implicated in ALS. Thus, the continued development

and integration of the outlier detection approach with dis-

ease gene discovery methodologies may ultimately lead to

a more comprehensive understanding of the genetic fac-

tors contributing to ALS. Such advancements could finally

bridge the gap between the disease heritability and the

known catalog of ALS disease genes.
Methods

AnswerALS dataset
The multi-omics dataset, which includes ATAC-seq, RNA-seq, pro-

teomics, and whole-genome sequencing (WGS), for ALS was

downloaded from the Answer ALS portal (dataportal.answerals.

org). The data contain 245 individuals diagnosed with ALS and

45 samples from clinically healthy controls. All samples had corre-

sponding ATAC-seq and RNA-seq experiments. A total of 253 sam-

ples also have WGS data. For the scope of our study, we restricted

our analysis to the 253 samples that had paired data across three

omics levels. Additionally, 204 of these samples have proteomics

data. In the proteomics-related analysis, we subset and only used

these samples with the proteomics data.

Peak calling
We performed joint peak calling on ATAC-seq data to detect acces-

sible regions across all samples using MACS2.28 First, we merged

bam files from every sample into a unified bam file utilizing SAM-

tools,77 and subsequently filtered out reads with a mapping qual-

ity (MAPQ) below 10. Duplicate reads were retained after merging

reads across samples. The default arguments of MACS2 were used,

except for the duplicate read filter. ATAC-seq peaks contained in

the narrow peak bed file generated by MACS2 were used in the

downstream analysis.

Read counting
We implemented an ultra-fast read counting algorithm for ATAC-

seq described in Algorithm S1. The algorithm is a simplified

version of the chrom-sweep algorithm.31 The counting algorithm
Hum
is optimized based on two primary assumptions: ATAC-seq peaks

are not overlapping and are separated by at least a gap longer

than a read length; moreover, both peaks and reads are sorted by

the genomic coordinates. We ensure the first assumption by

jointly calling peaks as described above and collapsing any peaks

closer to each other than the minimum gap distance (default

200 bp); thus, an ATAC-seq read never intersects with two peaks

simultaneously. Since the bam file format is pre-sorted by genomic

coordinates, ATAC-seq peaks are sorted to guarantee the second

condition before the counting step. The counting algorithm cre-

ates two stacks of sorted peaks and reads, iterates over reads and

peaks, and tracks the number of overlaps (Algorithm S1). The re-

sulting runtime complexity of the counting step is OðrþpÞ where

r is the number of reads, and p is the number of peaks. In the pre-

processing step, peaks are sorted, so the overall complexity is

Oðp logðpÞþrÞ. However, since the number of reads is much larger

than the number of peaks (r > p), the algorithm practically be-

haves in linear runtime in terms of the number of reads. Themem-

ory complexity of counting is linear in terms of the number of

peaks (OðpÞ) because reads are fetched iteratively per chromosome

by leveraging the indexable file format of BAM.

Filtering peaks by replication rate
We applied two filters to the ATAC-seq peaks detected by MACS2

to ensure consistent peak replication across samples. First, we

eliminated peaks with low coverage, specifically those with fewer

than 100 reads in any samples. This cutoff could be adjusted based

on the coverage of the dataset; however, outliers may not be iden-

tified for these peaks if their read coverage is too shallow. As a sub-

sequent criterion, any peak must be supported by a minimum of

two reads in at least 50% of all samples.

Size factor normalization
To account for coverage differences across the ATAC-seq experi-

ments, we performed size factor normalization on the read counts,

a method initially proposed by DESeq2.32 The size factor si for a

sample i is defined as:

kgi ¼
 Yn

j¼1

kij

!1=n

(Equation 1)

sj ¼ median
kij
kgi

(Equation 2)

where kij represents the number of reads mapped to region j in

sample i and kgi is the geometric mean of the reads across regions

for sample i. The median of kij to kgi ratios is defined as the size fac-

tor si of sample i.

Outlier detection
After normalizing the read counts of peaks with size factor normal-

ization, we log-transformed the normalized counts and centered

them around zero by subtracting the mean normalized counts:

xij ¼ nij � nj (Equation 3)

nij ¼ log

�
kij þ 1

sj

�
(Equation 4)

Autoencoder is applied on xij to calculate the expectation of

normalized read counts (bxij). fe is the encoder function of the au-

toencoder, which takes observed normalized counts (xij) as input
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and calculates major covariates. Major covariates are concatenated

with known confounders to obtain latent representation (h),

which is decoded back to expected normalized counts (xij) with

the decoder function fd:

h ¼ �
fe
�
xij
���cknown� (Equation 5)

bxij ¼ fdðhÞ (Equation 6)

We used linear encoder and decoder functions. The encoder

model uses a principal-component analysis (PCA), where the

encoder weights (We) are the rotation matrix of PCA. The decoder

weights (Wd) are initialized with linear regression and further

trained with the negative binomial objective:

feðxÞ ¼ Wex (Equation 7)

fdðhÞ ¼ Wdh (Equation 8)

The log-normalized counts (xij) are transformed back to the orig-

inal natural scale:

bkij ¼ ex̂ijþnj sj � 1 (Equation 9)

The dispersion parameter is optimized with MLE where the like-

lihood function is:

L
�
rj
� ¼

Y
i

NB
�
kij
��bkij; rj

�
(Equation 10)

Fitting the dispersion parameter requires solving an indepen-

dent convex problem for each peak. To solve a large number of in-

dependent convex problems quickly, we implemented a vector-

ized backtracking line search algorithm using TensorFlow. The

dispersion parameter range is set between a lower bound of 0.01

and an upper bound of 1,000 to avoid numerical stability issues

and overfitting.

The p value (Pij) of each peak and sample is calculated with a

two-sided negative binomial test:

Pij ¼ min

(
1

2
;
Xk̂ij
k¼0

NB
�
kij

��bkij; rj
�
;1 �

Xk̂ij �1

k¼0

NB
�
kij

��bkij; rj
�)

(Equation 11)

Finally, p values are corrected for multiple testing corrections to

control the false discovery rate with the Benjamini-Yekutieli

method.

In addition to p values, we report the log of fold-change or the

log ratio of observed read counts to expected read counts calcu-

lated by:

lij ¼ log2ðFCÞ ¼ log2

�
kij þ 1bkij þ 1

�
(Equation 12)

and Z score based on fold changes defined as:

Z-scoreij ¼
lij � ml

j

sl
j

(Equation 13)

We consider peaks as outliers if their adjusted p values are smaller

than 5% (Padj < 0:05), their absolute log fold changes are greater

than 50% (jlog2ðFCÞj > 0:5) and either their read counts (kij) or

expected read counts (bkij) are at least 50.

All the statistics calculated during the outlier detection are

stored in anndata78 file format.
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Injection of artificial outliers
In order to benchmark the performance of outlier detection

methods, we conducted a simulation experiment using artificial

outliers. We created an outlier mask Mij for sample-peak pairs. A

sample-region pair is categorized as either an over-accessibility or

under-accessibility outlier with a probability of 0.01%:

Mij ¼

8>>>><>>>>:
1;with probability ¼ 0:0005

�1;with probability ¼ 0:0005

0;with probability ¼ 0:999

(Equation 14)

Log-normalized counts are updated using an artificial outlier

mask:

xinjij ¼ xij þ sje
N ð3;1ÞMij (Equation 15)

where the deviation in accessibility outlier is simulated by scaling

the standard deviation of the peak (sj) using a value sampled from

a log-normal distribution parameterized by amean of 3 and a stan-

dard deviation of 1. Equation 9 transforms log-transformed

normalized injected counts (x
inj
ij ) back to counts in the natural

count scale (k
inj
ij ).

Outlier detection methods are evaluated by benchmarking their

capability to predict the outlier mask (Mij) from the injected

counts (x
inj
ij ). The primary benchmark metric for this evaluation

is the area under the precision-recall curve (auPRC). We generated

10 outlier masks for testing and one additional mask for the vali-

dation set. Hyperparameter tuning was performed on the valida-

tion set to identify the optimal bottleneck size of autoencoder-

based models. The evaluation procedure was executed 10 times

on the test folds, and the average auPRC performance and its stan-

dard deviation are reported.

We evaluated four methods: naive negative binomial test, PCA,

OUTRIDER, and EpiOut. During the precision-recall calculation, pre-

dictions foreachmethodwereprimarily rankedusingpvalues, except

for PCA, which was ranked by its Z score. The performance of each

method at a specific cutoff (either at the adjusted p values of 0.05 or

the absolute Z score of 2) is indicated on the precision-recall curve.

For the naive negative binomial test, we averaged counts across

samples per peak to obtain the mean parameter of the negative

binomial distribution, NBðkinjij

���kinjij ; rjÞ. The dispersion is estimated

with MLE (Equation 10).

To evaluate the PCA model, we used PCA to estimate the ex-

pected read counts, bkinjj . These expected read counts are the recon-

structed read counts of PCA. The number of principal components

retained was determined through hyperparameter tuning on the

validation set. Predictions were subsequently ranked based on

the Z score, as formulated in Equation 13, using the expected

counts from PCA. We did not compute dispersion or perform a

negative binomial test.

We ran OUTRIDER and EpiOut with their default parameters.

The bottleneck size of all autoencoder-basedmethods was selected

based on the hyperparameter tuning on the validation set.
Cross-correlation between sample
We used Pearson’s correlation to calculate the cross-correlation be-

tween samples. The raw cross-correlations were obtained using

observed counts (kij) without any transformation. The cross-corre-

lation after correction was calculated using corrected counts:
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kcorrectedij ¼ kij � bkij (Equation 16)

Runtime benchmark
To measure runtime to call outliers with OUTRIDER and EpiOut,

we subset peaks into groups of 10,000, 25,000, 50,000, and

100,000 and calculated runtime for each input size. Eight CPU

cores are used during the benchmark. The analysis is repeated 10

times. The average runtime and standard deviation of runtime

were reported. We ran each tool with bottleneck sizes of 5, 10,

50, and 100 in each iteration to avoid runtime differences result-

ing from hyperparameter tuning. We reported the total runtime

across different bottleneck sizes.

Functional annotation of accessible regions with ChIP-

seq
We introduced EpiAnnot, a software tool for functional annotation

of accessible genomic regions using ChIP-seq marks. If a specific

ChIP-seq for a cell line or tissue is present in the Roadmap Epige-

nomics34 or ENCODE35 databases, EpiAnnot can retrieve ChIP-seq

data fromthesepublic data sources.Additionally, users canannotate

their accessible regions using their own custom ChIP-seq data.

EpiAnnot can also attribute accessible regions to genomic fea-

tures using a gene transfer format (GTF) file. For instance, it anno-

tates accessible regions as 50 UTR, TSS, etc. In scenarios where an

accessible region overlaps with the H3K4me3 histone ChIP-seq

markandTSSor50 UTRof a gene, EpiAnnotdesignates these regions

as promoters. Conversely, regions intersecting with the H3K4me1

histone ChIP-seqmark are labeled as enhancers.When the histone

mark is available, enhancers overlapping with H3K27ac are catego-

rized as active; otherwise, they are poised. EpiAnnot also annotates

enhancers as proximal or distal based on their distance from genes.

Specifically, enhancers within a gene body or located up to

10,000 bp upstream or 2,000 bp downstream of a gene are tagged

as proximal. All others are marked as distal enhancers.

By using EpiAnnot with H3K4me3, H3K27ac, and H3K4me1

histone ChIP-seq marks from in vitro differentiated motor neurons

from ALS and clinically healthy samples,36 we annotated acces-

sible regions from ATAC-seq experiments and used the GTF file

of GENCODE v38. The histone ChIP-seq data were downloaded

from ENCODE.

Enrichment of outlier pairs in the proximity
To investigate the potential interaction between nearby outlier

pairs, we quantified the pairs of accessible regions within prede-

fined distances, irrespective of the outlier status of regions. Then,

we applied Fisher’s exact test to calculate the enrichment of outlier

pairs, using a contingency table structured with the outlier statuses

of accessible regions in the pair. We repeated this analysis for

10,000, 100,000, 500,000, and 1,000,000 bp distances. The odds

ratio was also calculated to highlight the likelihood of the region

being an outlier, given the outlier status of the nearby region.

Annotation of chromatin interactions with Hi-C
To delve deeper into the interactions between outliers, we anno-

tated their interactions based on Hi-C contacts using EpiAnnot.

We downloaded public Hi-C data from motor neurons differenti-

ated from iPSCs36 from ENCODE and computed contact scores

basedon thenumber ofHi-C reads betweenaccessible regionsusing

EpiAnnot. For the interaction analysis, the genome is partitioned

into bins of 5,000 bp. The interaction between a first source region
Hum
(s) and a target second region (t) is determined by the highest Hi-C

contact score between these bins or their immediate neighbors:

hs/t ¼ max
	
HiCscore

�
bini; binj

�
; i˛ ft � 1; t; t þ 1g;

j˛ fs � 1; s; sþ 1g
 (Equation 17)

We fitted a power regression to estimate Hi-C contact scores

between pairs of accessible regions, using the outlier status of

the pairs while controlling for distance. p values for the regression

coefficients were calculated using a t test.

We utilized EpiAnnot to compute the ABC score, which signifies

potential interactions between regions informed by Hi-C contact

scores. The ABC score is defined as:

ABCs/t ¼ hs/t � ktP
i˛ vicinityðsÞ

hs/i � ki (Equation 18)

where the numerator represents the Hi-C contact score between

regions multiplied by the accessibility of the target region (kt ¼P
i

kij) and the denominator normalizes this value for all region

pairs associated with the source region.
Aberrant gene expression prediction from chromatin

accessibility
Gene expression outliers were called with OUTRIDER using the

DROP pipeline. If genes were deviant by at least an absolute log

fold-change of 30% (jlog2ðFCÞj > 0:3), and their adjusted p values

based on the negative binomial test were smaller than 5%

(Padj < 0:05), they were considered expression outliers. These

gene expression outliers constituted the ground truth labels in

the benchmark. In order to predict gene expression outliers from

accessibility outliers, we trained an explainable boosting machine

(EBM). The EBM model was trained and tested with 10-fold cross-

validation. The model aggregates features from promoters and

enhancers as input to predict the probability of a gene being cate-

gorized as an expression outlier. For predicting a gene’s outlier

status, themodel considers the following features: log fold change,

p value, and outlier status of the transcript start site, maximum ab-

solute log fold change of the outliers in proximity, and the ABC

score weighted absolute log fold change of the distal outliers.

The score for the weighted distal enhancer is computed as follows:

enhancerdistal ¼
X

enhancer˛ g

��ABCpromoter/enhancer � log2ðFCenhancerÞ
��

(Equation 19)

Depletion of rare variants with certain consequences in

genes with promoter outlier
We assessed the depletion of potentially NMD-triggering rare var-

iants in the gene expression outliers where promoters of these

genes are also outliers. Variants are annotated with SnpEff v4.341

according to their consequences for genes. Variants with splice

acceptor, donor, nonsense, and frameshift consequences were

considered as potentially NMD-triggering. Only low-frequency

variants with a minor allele frequency ranging from 1% to 0.5%

and rare variants with a frequency below 0.5% were included in

the analysis. Variant frequencies are downloaded from the gno-

mAD database.42 Consequence categories used for depletion

analysis include stop codon, frameshift, acceptor, donor site dinu-

cleotides, and missense variants. AbSplice was used to classify
an Genetics and Genomics Advances 5, 100318, July 18, 2024 13



splicing-disrupting exonic or intronic variants using thresholds of

0.05, as advised by the authors. We determined the proportion of

genes affected by each variant category based on the outlier status

of the genes and their associated promoters. The statistical signif-

icance was calculated with the hypergeometric test. Moreover, we

analyzed proteomics data to quantify the proportion of proteins

impacted by NMD-triggering or missense variants. Z scores for

the proteomics data were obtained with PROTRIDER.

Enrichment of SNVs, indels, and structural variants in

chromatin accessibility outliers
To evaluate the enrichment of genetic variants in chromatin acces-

sibility outliers, we measured the frequency of SNVs, indels, and

structural variants present near chromatin accessibility outliers

within a 25 kbp distance. Structural variants from the WGS data

were identified using GRIDSS.79 The variants longer than 50 bp

are considered structural variants. The statistical significance was

calculated using a hypergeometric test. Only variants with an

allele frequency < 1% were included in the analysis.

Curation of genes associated with neurodegenerative

diseases
We manually curated a list of ALS genes from the litera-

ture1,11,46–51,53–55,80–89 and ALSOD.45 The curated list is available

at 10.5281/zenodo.8331545. Moreover, we queried the OMIM69

database using ‘‘neurodegenerative’’ and ‘‘neurodegeneration’’

keywords, filtered the retrieved entries based on neurologic clin-

ical synopsis, and generated a list of genes associated with neuro-

degenerative diseases via the REST API. The genes were further

annotated for their LoF intolerance obtained from gnomAD.42

Genes are considered LoF intolerant if their LoF observed/expected

upper bound fraction (LOEUF) is below 35%.
Data and code availability

All the analyses in the paper are implemented in the repro-

ducible snakemake90 format available at github.com/uci-

cbcl/ALS-accessibility-outliers-paper. EpiOut, the Python

package for outlier detection and annotation, is available

at github.com/uci-cbcl/EpiOut. Data used in the prepara-

tion of this article were obtained from the ANSWER ALS

Data Portal (AALS-01184). For up-to-date information on

the study, visit https://dataportal.answerals.org/.
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ogenicity of splicing defects: mechanistic insights into pre-

mRNA processing inform novel therapeutic approaches.

EMBO Rep. 16, 1640–1655.
an Genetics and Genomics Advances 5, 100318, July 18, 2024 15

http://refhub.elsevier.com/S2666-2477(24)00057-5/sref14
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref14
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref15
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref15
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref15
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref15
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref15
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref16
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref16
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref16
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref16
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref17
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref17
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref17
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref18
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref18
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref18
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref18
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref19
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref19
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref19
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref19
https://doi.org/10.1101/2021.03.09.21253187
https://doi.org/10.1101/2021.03.09.21253187
https://doi.org/10.1016/j.xgen.2023.100401
https://doi.org/10.1016/j.xgen.2023.100401
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref22
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref22
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref22
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref23
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref23
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref23
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref23
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref23
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref24
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref24
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref24
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref24
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref24
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref25
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref25
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref25
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref25
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref25
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref26
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref26
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref26
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref27
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref27
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref27
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref27
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref28
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref28
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref28
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref28
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref29
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref29
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref29
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref30
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref30
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref30
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref31
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref31
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref31
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref32
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref32
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref32
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref33
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref33
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref33
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref33
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref33
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref33
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref33
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref33
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref33
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref34
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref34
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref34
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref34
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref34
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref35
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref35
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref35
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref36
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref36
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref36
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref36
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref36
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref37
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref37
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref37
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref37
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref37
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref38
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref38
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref38
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref38
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref38
https://doi.org/10.48550/arXiv.1909.09223
https://doi.org/10.48550/arXiv.1909.09223
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref40
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref40
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref40
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref41
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref41
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref41
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref41
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref41
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref41
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref42
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref42
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref42
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref42
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref42
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref43
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref43
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref43
http://refhub.elsevier.com/S2666-2477(24)00057-5/sref43
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