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Abstract

Background Early evidence that patients with (multiple) pre-existing diseases are at highest
risk for severe COVID-19 has been instrumental in the pandemic to allocate critical care
resources and later vaccination schemes. However, systematic studies exploring the
breadth of medical diagnoses are scarce but may help to understand severe COVID-19
among patients at supposedly low risk.
MethodsWe systematically harmonized >12million primary care and hospitalisation health
records from ~500,000 UK Biobank participants into 1448 collated disease terms to
systematically identify diseases predisposing to severe COVID-19 (requiring hospitalisation
or death) and its post-acute sequalae, Long COVID.
Results Here we identify 679 diseases associated with an increased risk for severe COVID-
19 (n = 672) and/or Long COVID (n = 72) that span almost all clinical specialties and are
strongly enriched in clusters of cardio-respiratory and endocrine-renal diseases. For 57
diseases, we establish consistent evidence to predispose to severe COVID-19 based on
survival and genetic susceptibility analyses. This includes a possible role of symptoms of
malaise and fatigue as a so far largely overlooked risk factor for severe COVID-19.We finally
observe partially opposing risk estimates at known risk loci for severe COVID-19 for
etiologically related diseases, such as post-inflammatory pulmonary fibrosis or rheumatoid
arthritis, possibly indicating a segregation of disease mechanisms.
ConclusionsOur results provide a unique reference that demonstrates how 1) complex co-
occurrence ofmultiple – including non-fatal – conditions predispose to increasedCOVID-19
severity and 2) how incorporating the whole breadth of medical diagnosis can guide the
interpretation of genetic risk loci.

From the outset of the COVID-19 pandemic it was evident that underlying
conditionswere associatedwithboth the riskof infectionwithSARS-CoV-2,
the cause of COVID-19, and the risk of it being severe, based on the risk of
hospitalisation, to ventilation and death1. Initial focus was on the small

number of diseases known to put people at higher risk of other respiratory
viral infections, such as influenza. The Center for Disease Control in the US
and other national bodies published lists of diseases associated with
COVID-19 and in the UK more than 1 million people were identified as
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Plain Language Summary

Early in the COVID-19 pandemic it was clear
that people with multiple chronic diseases
were vulnerable and needed special protec-
tion, such as shielding. However, many peo-
ple without such diseases required hospital
care or died from COVID-19. Here, we inves-
tigated the importance of underlying dis-
eases, including mild diseases not requiring
hospitalization, for COVID-19 outcomes.
Using information from electronic health
records we find that many severe, but also
less severe diseases increase the risk for
severe COVID-19 and its impact on health
even months after acute infection (Long
COVID). This included an almost two-fold
higher risk among people that reported poor
well-being and fatigue. Our findings show the
valueofusingprimarycarehealth recordsand
the need to consider all themedical history of
patients to identify those in need of special
protection.
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clinically extremely vulnerable and required ‘shielding’ based on having one
or more specified diseases2. This included older individuals, men, and those
with the presence of multiple, pre-exiting long-term conditions, such as
impaired immunity, type 2 diabetes, hypertension, or chronic kidney dis-
ease (CKD)1.

However, the vast body of COVID-19 risk factor studies were based on
a candidate approach (e.g., diseases known to be associated with immune
compromise), studying commondiseases in limitednumbers (usually fewer
than 100 diseases)3–6. Studies that systematically investigated diseases across
clinical specialties, including those primarily managed and treated in pri-
mary care, are largely lacking, but are needed to understand why some
patients with COVID-19 suffer from a severe outcome or dead, albeit at
supposedly low-risk. Such a systematic, ‘diseasome’-wide study can further
improve our understanding of how variation in the host genome7,8 confers
risk for severe COVID-19 and guide drug target prioritisation strategies.

Here, we collate millions of health records from primary care, hospi-
talisations and cancer registrations, and death records among ~500,000
participants of the UK Biobank (UKB) into medical diagnosis concept
terms9, so-called ‘phecodes’10, to systematically assess the risk for severe
COVID-19 and its post-acute sequalae, Long COVID, across the breadth of
medical diagnosis. Apart from well-recognized high-risk patient groups,
such as those with chronic kidney disease or those with compromised
immune function, we demonstrate consistent evidence for the possible role
of less recognized diseases and symptoms, including malaise and fatigue,
based on survival and genetic susceptibility analyses.Wefinally observe that
some genomic regions conferring a higher risk for severe COVID-19might
be protective for diseases that partially share pathomechanisms with
COVID-19, or vice versa, with possible implications for drug development
programs, such as TYK2-inhibitors that may increase the risk for severe
COVID-19.

Methods
Study population
UKB is a prospective cohort study from the UK, which contains more than
500,000 volunteers between 40 and 69 years of age at inclusion. The study
design, sample characteristics and genome-wide genotype data have been
described in Sudlowet al.9 andBycroft et al.11. TheUKBwas approvedby the
National Research Ethics Service Committee Northwest Multi-Centre
Haydock and all study procedures were performed in accordance with the
World Medical Association Declaration of Helsinki ethical principles for
medical research. All participants gave broad consent to use of their
anonymised data and samples for any health-related research and for UKB
to access their health-related records. UKB is registered as a ResearchTissue
Bank (https://www.hra.nhs.uk/planning-and-improving-research/policies-
standards-legislation/research-tissue-banks-and-research-databases/) and
hence all approved data applications (here ID: 44448) can use this ethical
clearance to conduct their research. We included 502,460 individuals who
hadnotwithdrawn their consent. For survival analysiswe considered a setof
438,917 individuals who were still alive at the beginning of the COVID-19
pandemic (01/01/2020) and had genetically inferred ancestry also beyond
white Europeans.We chose the entire set of white Europeans (n = 441,671)
that passed standard quality control for genetic analysis to maximise
statistical power.

COVID-19 and Long COVID outcome definitions
We defined a total of four different COVID-19 related outcomes closely
aligned with previous studies8,12,13. We used hospital episode statistics to
identify participants who had been ‘hospitalised’ with COVID-19 based on
ICD-10 codes U07.1 and U07.2, and the same ICD-10 codes to identify
participantswho have died from/with COVID-19 based on death registries.
Wedid not require a positive PCRCOVID-19 test due to differences in local
reporting of test results.We adopted a slightlymore sophisticated definition
for ‘severe respiratory failure’, demanding a positive COVID-19 test (based
on test results released for England, Scotland, andWales provided by UKB
through the COVID-19 Second Generation Surveillance System) within a

month of acute respiratory failure, defined by ICD-10 codes J80, J96.00,
J96.09, Z99.1 from hospital episode statistics or E85.1 and E85.2 when
admitted to the intensive care unit. To define ‘Long COVID’ we used pri-
mary care data released by UKB (covid19_emis_gp_clinical.txt, cov-
id19_tpp_gp_clinical.txt) searching for codes indicating suspected
diagnosis [CTV3: Y2b89 – “Referral to post-COVID assessment clinic”,
Y2b8a – “Referral to Your COVID Recovery rehabilitation platform”,
Y2b87 – “Post-COVID-19 syndrome”, and Y2b88 – “Signposting to Your
COVID Recovery”; SNOMED-CT: 1325161000000102 – “Post-COVID-
19 syndrome”, 1325031000000108 – “Referral to post-COVID assessment
clinic”, 1325041000000104 – “Newcastle post-COVID syndrome Follow-
up Screening Questionnaire”, 1325181000000106 – “Referral to Your
COVIDRecovery rehabilitation platform”, 1325021000000106 – “Ongoing
symptomatic disease caused by severe acute respiratory syndrome cor-
onavirus 2”, 1325141000000103 – “Signposting to Your COVIDRecovery”,
1325081000000107–“AssessmentusingPost-COVID-19Functional Status
Scale structured interview”, 1325061000000103 – “Assessment using
COVID-19 Yorkshire Rehabilitation Screening tool”, 1325071000000105 –
“Assessment usingNewcastle post-COVID syndrome Follow-up Screening
Questionnaire”, 1325051000000101 – “COVID-19 Yorkshire Rehabilita-
tion Screening tool”]. For each event, we took the earliest record to define
disease onset.

We identified a total of 7507 (hospitalisation), 662 (respiratory failure),
and 1546 cases (death), with first cases occurring end of January 2020. Due
to restricted availability of primary care data, we only included records up
until 30/09/2021 to identify 470 cases of Long COVID.

Disease ascertainment
We collated electronic health records (EHRs) from primary and secondary
care, cancer registries, and death certificates based on tables provided by
UKB (gp_clinical.txt, covid19_emis_gp_clinical.txt, covid19_tpp_gp_cli-
nical.txt, hesin_diag.txt, death.txt) downloaded in June 2022. We parsed all
records to exclude codes with a recorded date before or within the year of
birth of the participant to minimize coding errors from EHRs. We used
mappings provided by UK Biobank to include self-reported conditions
based on ICD-10 codes. For each data set separately, we generatedmapping
tables that link ICD-10, ICD-9, Read version 2, Clinical Terms Version 3
(CTV3) terms, or SNOMED-CT codes to a set of 1560 summarized clinical
entities called phecodes14,15 (Supplementary Data 1). For example, more
than 90 ICD-10 codes can indicate participants with type 1 diabetes that are
here collectively summarized under the phecode ‘type 1 diabetes’16. We
subsequently fused all data sources based on a common set of phecodes and
retained for each participant and each phecode only the earliest entry across
all EHR resources. We identified a total of 1448 phecodes with at least 100
cases in the overall UKB sample. For each participant and phecode, we kept
only the earliest date as an indicator for disease onset and defined all events
occurring before 01/01/2020 as prevalent, while we considered any event for
genetic analysis. To increase the accessibility of our results, we use the term
‘disease’ instead of ‘phecode’ throughout the paper.

Survival analysis
We used Cox-proportional hazard models to estimate the risk associated
with each disease and any of the four COVID-19 related outcomes with
age as the underlying scale, adjusting for sex (omitted for sex-specific
diseases) and genetically inferred ancestry. For each COVID-19 outcome,
we defined controls separately as all those participants without a corre-
sponding record during the time course of the study. We repeated Cox-
proportional hazard models considering all-cause death as a competing
event rather than censoring as a sensitivity analysis. We selected 01/03/
2020 as the starting point of our study and used 31/12/2022 (COVID-19
endpoints) or 30/09/2021 (Long COVID) as endpoints of the observation
period depending on the availability of health record linkage. We com-
puted Schoenfeld residuals to test for the proportional hazard assump-
tion, and further computed time varying effects of diseases by
introducing 6 months breaks. For each disease – COVID-19 model, we
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considered all participants that passed inclusion criteria. We applied
stringent multiple testing correction (p < 0.05/4*1448 = 4.8 × 10−8) and
further filtered results for those possibly violating the proportional
hazard assumption (p < 10−3). To establish endpoint-specific associa-
tions, we performedmeta-analysis across disease associations for all three
COVID-19 endpoints derived using the R package metafor (v.3.8.1). We
performed additional sensitivity analysis using an extended set of con-
founders similar to previous work17, including self-reported smoking
status and alcohol consumption, body mass index, and Townsend
deprivation index (all based on baseline values), healthcare utilization in
the five years before the pandemic (number of stays and total days in
hospital), as well as a variable indicating participants with two or more
long-term conditions.

We tested for a potential modifying effect of sex, non-European
ancestry, age ( ≤ 65 years vs > 65 years), and social deprivation (Townsend
index above median vs below median; median =−2.22) on the results by
systematically performing interaction testing, i.e., introducing a disease –
sex/non-European ancestry interaction term into Cox-models. For the
latter, we requested to have at least 50 observations in each group to ensure
model convergence. We subsequently corrected for a total of 13,728 tests
(p < 3.6 × 10−6). All statistical analysis were implemented using R v4.1.2.

Disease network
We computed a sex-aware disease network using partial correlations as
implemented in the R package ppcor (v.2.1.1) following previous work18.
Briefly, partial correlations (rP) account for the fact, that a correlation, or co-
occurrence, between two diseases might be driven by a third or any other
disease considered. We retained only partial correlations passing stringent
multiple testing (p < 4.9 × 10−8) and rP > 0.02 as we reasoned that a disease-
disease network likely exhibits scale-free properties19 with node degrees
following a power law. The latter step omitted many significant, but very
weak and potentially artificial edges. The final network contained 5212
edges connecting 1381 diseases. We then performed community detection
based on the Girvan-Newman algorithm to identify groups of diseases that
weremore closely connectedwith each other compared to all other diseases
in the network. We finally computed different node characteristics to
identify diseases with important roles in the network.We implemented and
visualized this analysis with the R package igraph (v.1.3.1).

Genotyping, quality control, and participant selection
Details on genotyping for UKB have been reported in detail by Bycroft
et al.11. Briefly, we used data from the ‘v3’ release of UKB containing the full
set ofHaplotypeReferenceConsortium(HRC) and1000Genomes imputed
variants. We applied recommended sample exclusions by UKB including
low quality control values, sex mismatch, and heterozygosity outliers. We
defined a subset of ‘white European’ ancestry by clustering participants
based on the first four genetic principal components derived from the
genotyped data using a k-means clustering approach with k = 5. We clas-
sified all participants who belonged to the largest cluster and self-identified
as of being ‘white,’ ‘British’, ‘Anyotherwhite background’, or ‘Irish’ as ‘white
European’. After application of quality control criteria and dropping par-
ticipants who have withdrawn their consent, a total of 441,671 UKB par-
ticipants were available for analysis with genotype and phenotype data.

We used only called or imputed genotypes and short insertions/dele-
tions (here commonly referred to as single nucleotide polymorphisms
(SNPs) for simplicity) with a minor allele frequency (MAF) > 0.001%,
imputation score > 0.4 for common (MAF ≥ 0.5%) and > 0.9 for rare
(MAF < 0.5%), within Hardy-Weinberg equilibrium (pHWE> 10

−15), and
minor allele count (MAC) > 10. This left us with 15,519,342 autosomal and
X-chromosomal variants for statistical analysis. GRCh37 was used as
reference genome assembly.

Genome-wide association studies
Weperformed genome-wide association studies (GWAS) for a total of 1445
diseases with at least 80 cases (n > 100 prior genetic exclusions; 3 diseases

droppedout) usingREGENIEv2.2.4 via a two-stepprocedure to account for
population structure as described in detail elsewhere20. We used a set of
high-quality genotyped variants (MAF > 1%, MAC> 100, missingness
< 10%, pHWE > 10

−15) in the first step for individual trait predictions using
the leave one chromosome out (LOCO) scheme. These predictions were
used in the second step as offset to run logistic regressionmodelswith saddle
point approximation to account for case/control imbalance and rare variant
associations. Each model was adjusted for age, sex, genotyping batch,
assessment centre, and the first ten genetic principal components. For dis-
eases reported in only one sex (n = 113 in women, n = 26 in men), we
excluded the respective sex fromGWAS to avoid inflation by inappropriate
controls. In general, we included all participant with a disease in their
records as case and treated all other participants as controls tomake best use
of the computational efficacy of REGENIE. Testing for reported SNPs
showed highly consistent results whether related diseases were included as
controls rather than omitted. We used LD-score regression to test for
genomic inflation (LDSC v1.0.1)21.

COVID-19 genetic correlation and Mendelian randomization
We downloaded GWAS summary statistics for two different endpoints
related to COVID-19 (A2 – critical illness; B2 – hospitalisation) and Long
COVID (stringent case definition vs broad control set) provided by the
COVID-19 Host Genetics Initiative (release 7)8,13. We used summary sta-
tistics excluding UKB to avoid sample overlap. We computed genetic cor-
relations as implemented by LD-score regression (LDSC v1.0.1)21 with
precomputed LD-scores, excluding the extended MHC region. To test for
potentially causal associations of diseases onto COVID-19, we used genetic
instruments identified in the present study for a total of 41 diseases with at
least five genetic variants and evidence for significant genetic correlations in
a two-sample MR setting. We used MR-PRESSO22 as a first line tool as
previously suggested23 to account for possible pleiotropy and subsequently
report effect estimates from inverse-variance weighted analysis as the pri-
mary results. We flagged MR results that showed signs of heterogeneity
across instruments using Cochran Q statistic. We excluded any variants
mapping to the MHC regions for all analysis and implemented MR using
the R packages MendelianRandomization (v0.6.0)24 and TwoSampleMR
(v0.5.6)25.

Colocalisation at COVID-19 risk loci
We collected association statistics for a total of 49 independent risk loci for
COVID-19 (selected based on regional clumping ( ± 500 kb) of COVID-19
HGI GWAS statistics excluding UKB participants, but SNPs available
among imputedgenetic data inUKB) across all 1445diseases included in the
genetic analysis. For variant – disease pairings passing a moderate sig-
nificance threshold (p < 10−6), we implemented statistical colocalization26

accounting formultiple causal genetic variants via fine-mapping27 using the
Rpackages coloc (v.5.3.2) and susieR (v.0.11.92).Weallowed for amaximum
of five causal variants during fine-mapping of the disease and linked
COVID-19 outcome (via a potentially shared genetic variant) and subse-
quently tested each credible set for colocalization. We applied a stringent
prior to consider a shared signal (p12 = 5 × 10−6) and further filtered signals
with evidence that the lead signal (r2 with best remaining signal > 0.8) for
COVID-19 was dropped from the set of overlapping genetic variants
between our UKB GWAS and the COVID-19 GWAS.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
Here, we systematically investigate the risk conferred by the presence and
potential causal relevance of 1448 diseases for COVID-19 severity (hospi-
talisation, severe respiratory failure, and death) and Long COVID (Fig. 1),
based on medical disorder concepts14,16 defined and collated from > 12
million medical records from primary (general practice), secondary care
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(hospital admissions), and disease registry (cancer registry), death certifi-
cates, and patient-reported conditions among 502,460 UKB participants
(Fig. 1 and Supplementary Data 1). Incorporating primary care data more
than doubled case numbers for more than half (n = 817; 56.4%) of the
diseases we considered (Supplementary Data 1).

Disease risk profiles for COVID-19 and Long COVID
We identified 1128 significant (p < 1.1 × 10−5) disease – COVID-19 out-
comeassociations, includingalmosthalf (n = 679)of thediseases considered
with at least one of the four COVID-19 outcomes derived (Fig. 2 and
Supplementary Data 2). Pre-existing diseases were almost exclusively
associatedwith a higher risk for COVID-19 endpoints (median hazard ratio
(HR): 2.39, range: 0.59–17.3), only two diseases (benign neoplasm of skin
and varicella infection) were associated with a decreased risk. Associated
diseases spanned almost all chapters of the ICD-10 (17 out of 18) but were
consistently enriched in the chapters ‘respiratory’ (odds ratio [OR]: 5.96;
p-value: 2.7 x 10−8), ‘circulatory’ (OR: 2.95; p-value: 3.5 x 10−7), and ‘endo-
crine/metabolic’ diseases (OR: 2.76; p-value: 9.1 × 10−4) when associated
with severe COVID-19. In contrast, pre-existing disease-codes classified as
‘symptoms’ were more than 13-fold enriched among diseases associated
with an increased risk for Long COVID (OR: 13.2; p-value: 3.6 x 10−8) but
also hospitalisation (OR: 5.53; p-value: 9.9 x 10−5) and death (OR: 3.06;
p-value: 7.3 x 10−3).

For COVID-19 requiring hospitalisation, we replicated and refined
known associations with serious pre-existing diseases that have been pre-
viously used to identify clinically extremely vulnerable people. This included
respiratory diseases like pseudomonal pneumonia (HR: 7.53, 95%-CI:
4.74–11.97; p-value < 1.2 x 10−17), acute renal failure (HR: 4.02, 95%-CI:
3.74–4.32, p-value: <10−300) or type 2 diabeteswith renal complications (HR:
7.44; 95%-CI: 5.67–9.76; p-value: 1.5 x 10−47), as well as immune defi-
ciencies (e.g., deficiency of humoral immunity HR: 6.02; 95%-CI:
4.36–8.31; p-value: 1.3 x 10−27) or patients under immune suppression
(e.g., liver transplants HR: 7.25 95%-CI: 4.51–11.68, p-value: 3.4 x 10−16).
However, we further observed strong associations with so far less
recognized pre-existing mental health and psychiatric diseases and
conditions with effect sizes comparable to those previously considered to
identify extremely vulnerable people. This included symptoms of malaise
and fatigue (HR: 2.17, 95%-CI: 2.07–2.27, p-value: 4.4 x 10−222) or suicide
attempts (HR 5.33, 95%-CI: 4.45–6.39, p-value: 3.6 x 10−73). Most dis-
eases (n = 641, 95.5%, phetero > 10

−3) associated with similar magnitude
across all three different definitions of COVID-19 severity, with different
forms of dementias (phetero< 2.1 x 10

−24) being among the few exceptions,
associating with hospitalisation (HR: 3.83; 95%-CI: 3.38–4.34; p-value:
2.3 x 10−97) and death (HR: 10.82; 95%-CI: 9.15–12.80; p-value:
1.4 x 10−170), but not severe respiratory failure (HR: 1.15; 95%-CI:
0.51–2.57; p-value: 0.74) due to COVID-19.

Fig. 1 | Outline of the study design. Scheme of the study design and analysis done,
illustrating our workflow to define disease mechanisms that may causally contribute
to severe COVID-19 or Long COVID. SNPs Single nucleotide polymorphisms; SPA

= saddle point approximation; MAF = minor allele frequency; *COVID-19 HGI =
COVID-19 Host Genetic Initiative, but excluding contributions from UK Biobank
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In contrast, pre-existing diseases associated with an increased risk for
Long COVID only partially overlapped with those increasing the risk for
severe COVID-19. Most notably, we replicated associations with anxiety
disorders28 (HR: 2.59; 95%-CI: 2.09–3.20; p-value:1.8 x 10−18) and other
mental health symptoms, but most prominently with symptoms of malaise
and fatigue (HR: 2.78; 95%-CI: 2.29–3.37; p-value:1.5 x 10−25) that are
hallmarks of Long COVID and were also strongly associated with severe
COVID-19.

Almost all significant associations (99.8%, n = 1126) were consistent
when considering all-cause death as a competing event (Supplementary
Data 3), and more than half (63.6%; n = 718) remained statistically sig-
nificant (p < 4.4 x 10−5) when accounting for a large set of potential con-
founders in multivariable Cox-models (Supplementary Data 3). This
suggests that potentially unreported associations, such as the increased risk
for severe COVID-19 among patients reporting symptoms of malaise and
fatigue (adjustedHR: 1.66, 95%-CI: 1.58 - 1.74,p-value = 7.3 x 10−92), arenot
just a reflection of a general disease burden or other chronic diseases
associated with a greater risk for severe COVID-19.

We observed limited evidence for effect modifications by sex (n = 7),
non-European ancestry (n = 1), or age (n = 8), but not social deprivation,
with 16 disease – COVID 19 pairings showing evidence of significant dif-
ferences (Supplementary Data 4; p < 3.6x10−6). All included stronger effects
inwomen compared tomen, e.g., gout for hospitalisedCOVID-19 (women:
HR: 2.56, 95%-CI 2.21–2.96, p-value: 1.3x10−36; men: HR: 1.46, 95%-CI:
1.34–1.58, p-value: 2.1 x 10−19), among Europeans reporting vitamin D
deficiencies (Europeans: HR: 2.31, 95%-CI: 2.13–2.51, p-value: 2.1 x 10−87;
non-Europeans: HR: 1.31, 95%-CI: 1.08–1.60, p-value = 5.5 x 10−3), or
among younger participants, e.g., disorders of magnesiummetabolism and
death with COVID-19 as a likely result of renal failure (age ≤ 65 years: HR:

42.98, 95%-CI: 20.10–91.90, p-value: 3.0 x 10−22; age > 65 years: HR: 5.35,
95%-CI: 3.51–8.16, p-value: 5.9 x 10−15).

Complex patterns of multimorbidity are associated with
increased risk
We next derived a disease-disease network18 (Fig. 3a) to understand, whe-
ther the large set of diseases associated with an increased risk for severe
COVID-19 act independently or rather reflect an increased risk among
participants suffering from multiple pre-existing conditions, i.e., multi-
morbidity. The network contained a total of 1381 diseases connected
through 5212 edges based on non-random co-occurrence (Supplementary
Data 5a, b). Diseases segregated into 31 ‘communities’ being more strongly
connected to each other compared to the rest of the network (Fig. 3b, c).

Two disease communities were consistently and strongly enriched for
diseases associated with severe COVID-19. The first (e.g., OR: 5.20;
p-value = 2.2 x 10−10; for severe respiratory failure) communitywas strongly
enriched for circulatory (OR: 17.6; p-value: 4.4 x 10−39) and respiratory (OR:
10.3; p-value: 7.8 x 10−16) diseases, closely resembling the cardio-respiratory
risk profile already described above (Fig. 3b). The second community
consisted of diverse endocrine (OR: 6.19; p-value: 1.9 x 10−13) and circula-
tory disease (OR: 3.75; p-value: 5.4 x 10−8), and largely reflected the renal-
diabetic risk profile (Fig. 3c). Accordingly, for each disease acquired during
lifetime within the latter disease community, participants’ risk increased by
18% and 20% to be hospitalised (HR: 1.18; 95%-CI: 1.17–1.18; p-value:
p < 10−300) or die with COVID-19 (HR: 1.20; 1.19–1.20; p-value < 10−300),
respectively.

Diseases increasing the risk for severe COVID-19, but not Long
COVID further significantly correlatedwithhub status (e.g., hospitalisation:
r = 0.59;p-value: 2.8 x 10−124) in thedisease-diseasenetwork (Fig. 3d), that is,

Fig. 2 | Association results for three different COVID-19 outcomes and
long COVID. Each panel contains association statistics, p-values (triangles), from
Cox-proportional hazard models (two-sided) testing for an association between the
disease on the x-axis and three different COVID-19 outcomes, as well as Long
COVID. Disease associations passing the multiple testing correction (dotted line,

p < 1.1 × 10−5) are depicted by larger triangles of which facing up ones indicate
positive, e.g., increased disease risk, associations and downward facing vice versa.
The diseases are ordered by ICD-10 chapters (colours) and the top ten for each
endpoint annotated. Underlying sample numbers and statistics can be found in
Supplementary Data 1 and 2.
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diseases that connect a large cluster of diseases to the rest of the network and
might hence be considered as multimorbidity hotspots. For example, acute
renal failure, strongly associated with severe COVID-19 (Fig. 3d), showed
strong partial correlations with 30 other diseases and patients are hence
prone to complex multimorbidity. However, the imperfect correlation
between hub status and disease-association profiles indicates that certain
forms of multimorbidity, such those related to secondary malignancies of
lymph nodes, are possibly less related to severe COVID-19.

Convergence of associated disease risk and genetic liability
We next systematically characterised whether diseases identified to be
associated with COVID-19 severity or Long COVID shared genetic simi-
larity with host genetic susceptibility to severe COVID-19 to understand
potential underlying causal mechanisms. We computed genetic correlation
estimates for all 1128 disease – COVID-19 outcome pairs and observed 75
pairs (6.6%) that showed evidence for significant (p < 4.4 x 10−5) and
directionally consistent genetic correlations (Fig. 4 and Supplementary
Data 6), indicating a putatively causal link of any of 57 unique diseases on
severe COVID-19. We did not observe evidence of convergence for Long

COVID,whichmight likely be explained by the still low statistical power for
the respective genome-wide association study13.

The diseases with consistent evidence from survival and genetic analysis
included well-described risk-increasing effects of pre-existing endocrine (e.g.,
type 2 diabetes), respiratory (e.g., respiratory failure), or renal (e.g., chronic
kidney disease) diseases, but also digestive (e.g., gastritis and duodenitis), or
musculoskeletal (e.g., rheumatoid arthritis) diseases, and further symptoms of
malaise and fatigue (rG = 0.26; p-value = 4.7 × 10

−6) and abdominal pain
(rG = 0.33;p= 2.5 × 10

−11), aswell as adverse reactions todrugs (e.g., poisoning
by antibiotics: rG = 0.38; p-value = 2.2 x 10−6). Findings that collectively
demonstrated theneed for a comprehensive assessmentofdisease-riskbeyond
few, selected common chronic conditions.

Among the 41 diseases for whichwe had sufficient genetic instruments
to perform more stringent Mendelian randomization (MR) analyses to
assess causality, we observed only nominally significant (p < 0.05) evidence
for gout and hospitalisation (OR: 1.03; 95%-CI: 1.01–1.05, p-value: 0.03), as
well as arthropathy not elsewhere specified (OR: 1.28; 95%-CI: 1.06–1.55;
p-value: 0.02) and unspecifiedmonoarthrtitis (OR: 1.21; 95%-CI: 1.04–1.41;
p-value: 0.02) for severe COVID-19 (Supplementary Data 7). While we
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Fig. 3 | Disease-disease network and hub score. a Disease – disease network based
on significant (p < 4.8 x 10−8) positive partial correlations (two-sided). Nodes (dis-
eases) are coloured by ICD-10 chapters and strength of partial correlation depicted
bywidth of the edges. The underlying data can be found in SupplementaryData 5a–c
Same network, but only highlighting two disease communities strongly enriched for
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might have been still underpowered for many diseases, this leaves the
possibility that convergence of survival and genetic correlation analysis
might, in part, be explained by shared risk factors.

Evidence for partially opposing roles of shared molecular
mechanisms between severe COVID-19 and related disorders
To finally understand possible molecular mechanisms linking the ‘disea-
some’ to COVID-19, we systematically profiled disease associations across
49 independent genomic regions linked toCOVID-19or LongCOVID.We
observed strong and robust evidence of a genetic signal shared between
severeCOVID-19anda total of 33diseases at nine loci (posteriorprobability
(PP) > 80%) (Fig. 5a and Supplementary Data 8). Apart from known

pleiotropic loci, such as ABO and FUT2 coding for blood group types, this
included respiratory risk loci, albeit with contradicting effect estimates for
three loci (Fig. 5b). While COVID-19 risk increasing alleles at LZTFL1 and
TRIM4 were consistently associated with a higher risk for viral pneumonia
and post-inflammatory pulmonary fibrosis, respectively, risk-increasing
alleles atMUC5B, NPNT, and PSMD3 were inversely associated with post-
inflammatory pulmonary fibrosis and asthma. An observation that exten-
ded even beyond shared loci (Fig. 5c) illustrating a general trend of phe-
notypic divergence of genetic effects on diseases that share pathological
features with severe COVID-19.

A notable observation was the TYK2 locus that has previously been
suggested to indicate the efficacy of successfully repurposed drugs for severe
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COVID-1929. Briefly, TYK2 encodes for tyrosine kinase 2 (TYK2) a protein
partially targeted by Janus kinase (JAK) inhibitors like baricitinib, that have
been approved for rheumatoid arthritis and successfully repurposed for
severe COVID-19, although predating possible evidence from genetic
studies30–32. Accordingly, we observed that the same genetic variant,
rs34536443 (PP = 99.8%), associated with the risk for severe COVID-19
was also associated with, amongst others, the risk of rheumatoid arthritis,
but in opposing effect directions (Fig. 5b). Rs34536443 is a loss-of-
function missense variant (p.Pro1104Ala) for TYK2 and the functionally
impairing minor C allele was associated with a 50% increased risk for

severe COVID-19 (odds ratio: 1.50; 95%-CI: 1.40– 1.62, p-value =
4.3 x 10−29) but a 23% reduced risk for rheumatoid arthritis (odds ratio:
0.77; 95%-CI: 0.72–0.83; p-value = 2.4 x 10−12) as well as other auto-
immune diseases, in particular psoriasis (Supplementary Data 8). While
the discrepancy between the success of the drug and genetic inference
might be explained by the rather weak affinity of baricitinib for TYK233,
patients undergoing trials with TYK2-inhibitors for psoriasis34 might be
at an elevated risk for severe COVID-19. This observation seemingly
aligns with studies on Tyk2-/- mouse models reporting an impaired
immune response to viral infections35.
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Discussion
An immediate understanding which patients are at greatest risk for severe
COVID-19 and possibly death has proven to be instrumental to triage
patients early in the pandemic to allocate critical care resources, such as
ventilation or extracorporealmembrane oxygenation and, later, vaccination
aswell. The vastmajority of studies3–6, however, focussed on a rathernarrow
set of common, usually chronic, conditions in the risk assessment leaving a
considerable number of severe COVID-19 cases unexplained. We
demonstrate here how capitalizing on the whole breadth of medical diag-
noses through electronic health record linkage revealed 1) so far largely
neglected patient populations at considerable risk, including those reporting
symptoms of malaise and fatigue, and 2) that patients with multiple pre-
existing conditions, in particular cardio-respiratory and endocrine-renal
diseases, are probably at highest risk. Via integration of host genetics, we
further provide evidence that a considerable set of diverse diseases may
causally drive, or at least share causal drivers with, the risk for severe
COVID-19, and exemplify how disease-wide characterisation of specific
risk loci can inform disease mechanism and derivation of potentially
druggable targets or adverse effects.

Among the diseases for which we observed consistent evidence from
survival and genetic analysis to be linked to severeCOVID-19weremultiple
examples that have been rarely if at all reported. For example, we observed
consistent evidence that symptoms ofmalaise and fatigue, as well as chronic
fatigue, predispose to severeCOVID-19.While the vast amount of literature
currently discusses or reported these symptoms and disease as character-
istics for COVID-19 and its post-acute sequelae28,36, little to nothing is
known why patients reporting fatigue might be at higher risk. While our
definition of ‘malaise and fatigue’ covered a broad range of partially
unspecific medical codes with most cases (n = 83,316 out of 87,908, 92.4%)
originating from primary care, we observed consistent evidence for the
refined diagnosis of chronic fatigue classified as post-viral fatigue symptom
(Supplementary Data 2). A hypothesis might be, that patients that are
already suffering frompost-viral symptoms are at a greater risk in general to
suffer from more severe courses of viral infections through yet to be iden-
tified mechanisms, that may well comprise an altered immune response.
However, the evidence we provide does not preclude the existence of gen-
eral, currently inaccessible, risk factors that predispose tomore severe long-
term consequences of viral infections.

Our extensive genetic analysis revealed some partially contradicting
findings that may point to a segregation of overall genetic susceptibility and
risk conferred by specific loci andmechanisms, replicating and augmenting
findings fromaprevious study in theMillionVeterans Study37. For example,
we observed consistent evidence that pre-existing post-inflammatory pul-
monary fibrosis, likely representing cases of idiopathic pulmonary fibrosis,
is a strong risk factor for severe COVID-19 and death, and genome-wide
effects were highly correlated between both (rG=0.45, p = 2.3 x 10−5), but
effects at one of the strongest risk loci for post-inflammatory pulmonary
fibrosis were protective for severe COVID-19. Our results thereby extend
previous observations of misaligning effects at the MUC5B locus and
idiopathic pulmonary fibrosis38,39. Results that might be explained by a
latent, genome-wide risk component (as genome-wide significant loci do
not contribute togenetic correlationanalysis) that predisposes to severe lung
fibrosis irrespective of the exact trigger, and specific molecular pathways
characteristic for each disease that differ based on the required immune
response to combat the infection. Cell-type and state-specific effects of
shared genetic variants or possible design artefacts of GWAS studies of
infectious disease, by which certain patient groups are ‘underrepresented’
due to tailored shielding efforts to minimize viral exposure, are other pos-
sible explanations. A similar paradoxical effect at the TYK2 locus highlights
the unique potential of integrating electronic health care records with
genetic data toguidedrug target identificationand risk estimation, including
emerging diseases and targets in clinical trials.

There are a number of limitations that need to be taken in con-
sideration when interpretating our results. Firstly, the COVID-19 pan-
demic was characterised by strong disruptions of social life and health

care, with different waves of new SARS-CoV-2 variants of different
pathogenicity, lockdowns, and implementation of vaccines programs, all
of which will have influenced the general risk to develop severe COVID-
19 for which we could not control for in survival analysis. However, we
observed generally little evidence of violation of the proportional hazard
assumptions and filtered associations with evidence for strong violations.
Secondly, we cannot exclude the possibility that the multitude of diseases
associated with severe COVID-19 might also be explained by shared,
generic risk factors, such as obesity or smoking, and we implemented
sensitivity analysis and comprehensive genetic analysis to mitigate pos-
sible confounding, although even larger genetic studies are needed to
identify robust genetic signals for diseases like chronic fatigue and other
rare diseases that we linked to COVID-19. Thirdly, while we obtained
little evidence that disease-risk patterns differ across ancestries, the UK
Biobank cohort is not a representative sample of the general population
and does not sufficiently cover underrepresented populations, e.g., ethnic
minorities, and additional work is needed to verify our observations in
other populations. Lastly, while our effort to collate and harmonize
electronic health records across various sources into medical concept
terms covered almost 1500 diseases, it is still only an approximation of
the complexity of medical diagnosis and more work, using electronic
health records at a national scale, is needed to refine and augment the
space of diseases to investigate.

Our results demonstrate the unique potential of integrating health
records fromprimary and secondary carewithhost genetic data to 1) rapidly
identify patients at highest risk beyond commonly assessed risk groups, 2)
understand pathological pathways, and 3) inform druggable strategies for
emerging health threats, such as COVID-19.

Data availability
Genome-wide summary statistics for diseases (‘phecodes’) in UK Biobank
were generated, in part, from primary care data released to UK Biobank
specifically for the use of COVID-19 research only, according to COPI
regulations, and can therefore not be made publicly available. Access to
individual level data can be requested by bona fide researchers from the UK
Biobank (https://www.ukbiobank.ac.uk/). This research has been con-
ducted under the application 44448. Mapping of Read codes to phecodes
can be downloaded from https://github.com/spiros/ukbiobank-read-to-
phecode. We downloaded GWAS summary statistics for two different
endpoints related to COVID-19 (A2 – critical illness; B2 – hospitalisation)
and Long COVID (stringent case definition vs broad control set) provided
by the COVID-19 Host Genetics Initiative (release 7) from https://www.
covid19hg.org/. Source data for the figures are available in Supplementary
Data 1-8.

Code availability
Associated code and scripts for the analysis canbe foundhere https://github.
com/comp-med/phecode-covid19-ukb40.
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