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SUMMARY
Metabolism oscillates between catabolic and anabolic states depending on food intake, exercise, or stresses
that change a multitude of metabolic pathways simultaneously. We present the HuMet Repository for
exploring dynamic metabolic responses to oral glucose/lipid loads, mixed meals, 36-h fasting, exercise,
and cold stress in healthy subjects. Metabolomics data from blood, urine, and breath of 15 young, healthy
men at up to 56 time points are integrated and embedded within an interactive web application, enabling re-
searchers with and without computational expertise to search, visualize, analyze, and contextualize the dy-
namic metabolite profiles of 2,656 metabolites acquired on multiple platforms. With examples, we demon-
strate the utility of the resource for research into the dynamics of human metabolism, highlighting
differences and similarities in systemic metabolic responses across challenges and the complementarity
of metabolomics platforms. The repository, providing a reference for healthy metabolite changes to six stan-
dardized physiological challenges, is freely accessible through a web portal.
INTRODUCTION

The human body continually adapts and dynamically responds

to physiological perturbations and challenges, such as dietary

intake, physical activity, or stress.1 Impaired metabolic flexibility

is a hallmark of many metabolic disorders, including type 2 dia-

betes and cardiovascular diseases.2 It leads to aberrations from

the ‘‘normal,’’ healthy response to challenges in patients. To

differentiate between such atypical metabolic responses and

the normal adaptation of metabolism in a healthy state, detailed

knowledge of metabolism’s typical, healthy dynamics and its

variance across individuals is crucial.

Metabolomic profiles in accessible body fluids such as blood

or urine provide snapshots of a person’s metabolic state at a

given time.3 Multiple snapshots taken at time points (TPs) during

or immediately after a specific challenge (e.g., extended fasting,

exercise, or eating a fat- or carbohydrate-rich meals) allows

time-resolved monitoring of the systemic metabolic adaptation,
Cell Reports 43, 114416, Au
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i.e., metabolomics enables us to watch metabolism ‘‘at work’’ in

healthy and patient cohorts.

However, most metabolomics studies involving challenges

collect only two samples, before and after (or under) the chal-

lenge. Only a few studies have described the normal dynamic re-

sponses to standardizedor all-daymetabolic stressors, including

different nutritional challenges4–7 or exercise,7–9 in detail using

time-resolved metabolomics. The HuMet study7 was specifically

designed to capture the dynamics of metabolism in a homoge-

neous, healthy group (n = 15) across multiple challenges,

including four highly standardized (i.e., reproducible) nutritional

challenges, physical exercise, and a stress test. Due to their

high dimensionality, accessing and leveraging the time-resolved

metabolomics data from these studies remains challenging even

for simple research questions, particularly for researchers who

are not used to handling big and complex longitudinal datasets.

We here describe the HuMet Repository, a public online

resource that allows intuitive, interactive exploration and
gust 27, 2024 ª 2024 The Authors. Published by Elsevier Inc. 1
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Figure 1. HuMet Repository frontend

The HuMet Repository (https://humet.org) integrates four modules to explore the time-resolved metabolomics data of the HuMet study, reflecting responses to

physiological challenges in healthy individuals. In the selection module, the user can select metabolites from a table, with options for sorting and filtering by

metabolite properties, including time course similarities. Line plots within the time course module visualize time-resolved metabolite profiles of participants,

providing multiple options for data transformation and representation. Plots within the statistics module depict statistical results from multiple analyses. The

networks module offers a holistic overview of metabolite changes within predefined and reconstructed biological pathways.
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visualization of a comprehensive time-resolved metabolomics

dataset capturing the normal dynamics of metabolism in men

(Figure 1). To build this resource, we profiled samples from the

HuMet study cohort7 using five complementary non-targeted

mass spectrometry-based (nt-MS)metabolomics and lipidomics

methods. These analyses resulted in time-resolved response

data for 2,179 analytes. Combined with the pre-existing data

for 477 metabolites, the HuMet Repository contains temporal

profiles for, in total, 2,656 metabolites measured in blood, urine,

or breath samples from 15 healthy, youngmales who engaged in

the 4-day HuMet trial with six different metabolic challenges and

samples collected at up to 56 TPs for each participant. For each

challenge, we identifymetabolites andgroupsofmetabolites that

change using univariate statistics as well as data-derived meta-

bolic networks. A dedicated web-based interface enables users

to search, browse, and visualize this complex dataset for further
2 Cell Reports 43, 114416, August 27, 2024
explorative analysis without specific computational expertise.

Single ad hoc questions such as ‘‘Do blood levels of a metabolite

of interest (e.g., a potential biomarker) changepostprandially or in

response to exercise? If so, when are its levels back to baseline in

healthy individuals?’’ can thus be answered directly based on

these data without any additional effort on data preprocessing

or analysis. In three showcases, we exemplify the use of the Hu-

Met Repository: (1) applying the implemented search functions,

we identify metabolites with similar trajectories, e.g., metabolites

that show a steady decrease over the study phase and presum-

ably stem from exposure before the study. (2) We check the sim-

ilarity of trajectories of the same metabolites determined on two

different metabolomics platforms, providing insights into the

concordance of these measurements. (3) Making use of data-

derived metabolic networks, we inspect the dynamic changes

during extended fasting across the whole metabolism.

https://humet.org


Table 1. Overview of metabolomics data provided within the HuMet Repository

Medium Platform Subjects Time points Metabolites Main pathways Unit Reference

Plasma Metabolon

HD4 (nt-MS)

15 56 595 amino acids, peptides,

carbohydrates, energy,

cofactors and vitamins,

lipids, nucleotides,

xenobiotics

norm. ion countsa this studyb

Plasma Lipidyzer

(Lipidyzer)

4 56 965 lipids mmol/L this studyc

Plasma Biocrates

p150 (t-MS)

15 56 132 amino acids, lipids mmol/L Krug et al.7

Plasma Numares

(LipoFIT) (NMR)

15 54 28 lipoproteins mmol/L; nm; mg/dL Krug et al.7

Plasma in-house

biochemistry

(chem.)

15 56 4 – mg/dL; Krug et al.7

Urine Metabolon HD4

(nt-MS)

15 16 619 amino acids, peptides,

carbohydrates, energy,

cofactors and vitamins,

lipids, nucleotides,

xenobiotics

norm. ion countsd this study

Urine Chenomx (NMR) 15 13 6 ketone bodies mmol/mmol creatinine Krug et al.7

Breath air in-house PTR-MS 11 32 106 features of volatile

compounds

norm. ion countse Krug et al.7

Breath

condensate

in-house

FTICR-MS

5 11 201 features of volatile

compounds

norm. ion countsf Krug et al.7

norm., normal; PTR, proton transfer reaction; FTICR, ion cyclotron resonance Fourier transform.
aIon counts normalized by batch median.
bData on selected time points have been part of a previous publication.11

cData on selected metabolites from this platform (69 specific phosphatidylcholines) have been part of a previous publication.12

dIon counts normalized by osmolality and batch median.
eIon counts normalized to count rate of primaries and water clusters and change in transmission over time and converted to parts per billion volume

(ppbv).
fIon counts normalized on the sum of signal intensity per spectrum and subject-wise on the sum of normalized signal intensities.
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In summary, the interactive HuMet Repository represents a

resource of time-resolved metabolomics data in response to

different physiological challenges within the same healthy homo-

geneous population while covering a wide variety of metabolo-

mics approaches. The HuMet Repository is freely accessible at

https://humet.org/.

RESULTS

Deep metabotyping provides time-resolved profiles for
2,179 metabolites
To build the HuMet Repository as a comprehensive resource of

time-resolved metabolomic profiles in healthy individuals, we

examined 840 (15 subjects 3 56 TPs) plasma and 240 (15 sub-

jects 3 16 TPs) urine samples of the HuMet study cohort7 using

four nt-MS analytical methods (Metabolon HD4 platform10). This

resulted in time-resolved relative quantifications for 595 and 619

metabolites in plasma and urine, respectively (Table 1), including

397 metabolites for which the time courses are available in both

fluids. These metabolites span eight different metabolite classes

called ‘‘super-pathways’’ (amino acids, carbohydrates, cofac-

tors and vitamins, energy, lipids, nucleotides, peptides, xenobi-
otics) and more than 83 different metabolic pathways (‘‘sub-

pathways’’). In addition, the samples of four participants were

analyzed on the Lipidyzer platform, yielding quantifications of

965 molecules that provide structurally detailed information on

complex lipids (see STAR Methods).

In the repository, we also included the previously published

data from the initial metabolomics analysis of the HuMet sam-

ples,7 which covered mainly amino acids, lipids (acylcarnitines,

glycerophospholipids, sphingolipids), and lipoproteins. The

plasma concentrations of these metabolites were measured us-

ing the commercially available Biocrates p150 kit for targeted

MS-based (t-MS) analysis. Levels of plasma lipoproteins were

assessed at numares AG (formerly LipoFIT, Regensburg, Ger-

many) applying a nuclear magnetic resonance (NMR)-based

approach. Moreover, breath air and breath condensate samples

had been analyzed on in-house platforms of partners from

academia. This first wave of measurements resulted in quantifi-

cations for 477 metabolomic measures for HuMet samples

(Table 1).

While several of the previously profiled metabolites overlap

with metabolites measured as part of the newly added data

(e.g., amino acids, acylcarnitines), information from the previous
Cell Reports 43, 114416, August 27, 2024 3
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Figure 2. Metabolite profiles across six physiological challenges

(A) A sequence of metabolic challenges was applied over two study blocks, each covering a period of 2 days. All participants had the same chicken meal for

dinner at 7 p.m. on the evening before each block. Five of the six challenge tests were applied once, while participants were exposed to the mixedmeal challenge

three times (SLDr, SLD1, SLD2). Challenge tests along with their abbreviations as used in the scheme are listed in (B). Plasma, urine, and breath samples were

collected at up to 56 time points in variable time intervals (15 min–2 h) depending on the challenge.

(B) In the repository, various representations of metabolite time courses can be visualized. In the provided example, the red line represents the mean levels of

plasma glucose over time, i.e., levels for the 15 study participants have been averaged at each of the 56 time points. The inset zooms into the 15 individual

metabolite time courses for challenges SLDr and SLD1 (see legend), colored by study participants.
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and new platforms is largely complementary in (1) coverage of

the metabolome (with many metabolite classes added through

the new data, e.g., nucleotides, carbohydrates, steroids, xenobi-

otics; Table 1), (2) type of quantification (with Biocrates p150 and

NMR-based platforms providing absolute quantification), and (3)

isobaric/isomeric resolution of lipids (e.g., measurement of iso-

bars as sums in Biocrates p150 versus fatty acid resolution in

Lipidyzer). For those metabolites measured on multiple plat-

forms, we kept the recorded time course from each platform

to allow cross-platform comparisons (see also showcase plat-

form comparison). Descriptions of all (newly and previously

measured) metabolites are provided in Table S1. Thus, in total,

the HuMet Repository provides access to time-resolved data
4 Cell Reports 43, 114416, August 27, 2024
for 2,656 metabolites in plasma, urine, and breath, resulting in

a total of 1.1 million data points.

Metabolic responses to six physiological challenges
To characterize the normal, healthy dynamics in metabolism un-

der physiological challenges, we analyzed the concentration

changes of each metabolite during/after each of the six physio-

logical challenges, which the HuMet study participants were

exposed to during the 4 days of sample collection (Figure 2): in

the first block of 2 days, participants fasted for 36 h (Fasting)

and were allowed to recover from fasting after breakfast and a

lunch consisting of a standardized drink that represents a mixed

meal (SLDr, SLD1). The second block of the study, which was
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conducted after a 4-week break, included a physical activity test

(PAT), a stress test (Stress), and three different nutritional chal-

lenges, namely an oral glucose tolerance test (OGTT) resembling

a diet rich in carbohydrates, an oral lipid tolerance test (OLTT)

resembling a high-fat diet, and a mixed meal (SLD2; same liquid

diet as SLDr). Throughout the experiment, three different sample

types (plasma, urine, and breath) were collected at up to 56 TPs

in variable time intervals (15 min–2 h, depending on the chal-

lenge), enabling temporal profiling of metabolite changes during

or after the six challenges for each participant (for details, see

STAR Methods and Krug et al.7).

To identify metabolites whose abundances significantly

changed in response to a challenge, we performed paired t tests

for each metabolite and TP during/after the challenge (time

frames are given in Table 2) compared to the challenge-specific

baseline. After adjustment for multiple testing, this analysis

yielded 620, 27, 117, 101, and 21 significant hits, comprising

220, 15, 66, 64, and 16 metabolites that changed at various

TPs during/after extended fasting, glucose/mixed/high-fat

meals, and physical activity, respectively (Table S2). Stress did

not show any significant hit after correction for multiple testing

(Bonferroni). Since only subtle changes, such as an increase in

cortisol,13 are expected in response to a cold stress test, we

assumed that this negative finding might be due to the limited

sample size. Based on the effect estimate for cortisol, we per-

formed a power calculation and found that 58 participants would

be needed to detect this effect with 80% power when applying

the Bonferroni-corrected significance threshold.

For each of the challenges, Table 2 lists those significantly

altered metabolites that showed the lowest p value and/or

largest fold change (decrease/increase) observed. As an

example, the ketone body 3-hydroxybutyrate (BHBA) in urine

showed the largest increase after 36-h fasting when compared

to overnight (12-h) fasting (log2 fold change [log2fc] = 7.7). Sig-

nificant increases of BHBA in plasma were observed after

prolonged fasting before those in urine (log2fc = 3.0 after 22 h

fasting), indicating the generation of ketone bodies for energy

supply in this phase. Comparing the observed levels of plasma

BHBA during extended fasting to those measured after the

OLTT, we found similar levels of this ketone body 6 h after inges-

tion of the lipid-rich challenge drink. All statistical results are pro-

vided in tabular form as well as in interactive volcano plots within

the HuMet Repository (statistics module).

Data-derived metabolic networks provide molecular
context for metabolite changes
To allow inspection of dynamic metabolic changes in the context

of metabolic pathways and overall metabolism, we generated

different types of metabolic networks covering the metabolites

of the t-MS- and nt-MS-based platforms in plasma and urine

(Biocrates p150, Metabolon HD4), which were applied to sam-

ples from all participants and TPs: (1) knowledge-based net-

works, which connect metabolites by their pathwaymembership

based on existing pathway or metabolite class definitions (e.g.,

KEGG) as annotated by the providers of the metabolomics

data, and (2) data-derived networks, where we built on our pre-

vious findings that connecting metabolites based on their signif-

icant partial correlations in blood and urine reconstructs known
Cell Reports 43, 114416, August 27, 2024 5
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metabolic networks from cross-sectional data, yielding so-

called Gaussian graphical models (GGMs).14–16 Applying a

method that takes the longitudinal design of data into account,17

we constructed GGMs based on the HuMet data from blood and

urine for each fluid and platform separately (single-fluid net-

works). For plasma, we additionally generated GGMs combining

data from multiple platforms (Metabolon HD4, Biocrates p150,

in-house biochemistry). For data from the Metabolon HD4 plat-

form, we connected the plasma- and urine-specific GGMs into

multi-fluid networks by linking the two nodes representing

the same metabolite in each fluid by an additional edge. For

example, the plasma network comprising metabolites from the

Metabolon HD4 platform contains 339 edges connectingmetab-

olites with partial correlationsR0.12 (see STAR Methods for de-

tails on cutoffs). Merging the plasma network with the network

inferred from urine metabolites (Metabolon HD4 platform, partial

correlations R 0.09; see STAR Methods), which consists of 227

edges, results in a multi-fluid network, where 333 edges connect

the same metabolites measured in plasma and urine.

To test whether the GGMs inferred from longitudinal metabo-

lomics data reconstruct metabolic networks similarly to GGMs

inferred from cross-sectional data,14 we examined how close

metabolites connected via an edge in the GGM were within the

human biochemical reaction network. For each pair of con-

nected metabolites of the plasma GGM, we assessed their

pathway distance in KEGG,18 i.e., we counted the reaction steps

that are needed to convert the two metabolites into each other

based on known (intracellular) metabolic pathways. This analysis

was possible for 74 out of the 339 edges for which both metab-

olites were mappable to KEGG (n = 129) and which were repre-

sented in a KEGG pathway of human metabolism. For 29 out of

the 74 edges, the connected metabolites were also directly

linked in KEGG (i.e., showed a pathway distance of 1); for 22

edges, we observed pathway distances of 2 or 3. A summary

of results is provided in Table S3. In a bootstrapping approach,

in which we generated 1,000 networks with the same topology

but randomized node labeling, a maximum of 6 edges with

pathway distance 1 was found in only one of the 1,000 networks;

we obtained similar results when performing the analogous

analysis of the networks reconstructed from urine metabolites

(Table S4), confirming that GGMs based on the longitudinal Hu-

Met data resemble known metabolic networks.

Using these data-derived metabolic networks, we mapped

temporal changes in the abundances of metabolites by coloring

nodes according to the metabolites’ log2fcs during each chal-

lenge. This mapping allows for a holistic, metabolism-wide over-

view of time-resolved challenge responses (see also showcase

systemic metabolic responses).

A web-based resource for data visualization and
exploration
To facilitate access to data and results from the HuMet study, we

set up the HuMet Repository as a web-based framework holding

the complete HuMet dataset and providing four modules (selec-

tion, time course, statistics, and network) for interactive data

exploration (Figure 1). The user can filter the dataset to form sub-

sets for visualizations and analyses across these modules.

Filtering includes restrictions on specific TPs, challenges, sub-
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jects, metabolomics platforms, and sample types. The user

can also choose between various data transformations,

including data scaling, imputation, and data representation as

log2fcs. Plots generated as part of the different modules are

interactive and can be downloaded along with the underlying

data. Furthermore, the framework allows users to download

the complete data as well as selected subsets and transforma-

tions thereof for further analysis.

The selectionmodule allows users to select from 2,656metab-

olites in the HuMet dataset with sorting and filtering options by

assigned properties, including metabolite classes, metabolo-

mics platform, biofluid, and various metabolite identifiers

(ChEBI,19 KEGG,18 HMDB20) and synonyms. Moreover, metabo-

lites can be selected by specifying pathways of interest using

pathways as defined by either KEGG or the metabolomics plat-

form (‘‘annotated’’). In addition, the user can search for metabo-

lites that show a similar temporal profile to a specified reference

metabolite (see also showcase prior exposure and showcase

platform comparison). Thereby, metabolites can be ranked by

their similarity to the reference using different distancemeasures

(Euclidean, Manhattan, Fréchet) or correlation (Pearson). To

facilitate the comparison of different sets of metabolites, the

user can assign metabolites to different groups (‘‘bags’’) and

toggle between them when using other modules.

In the time course module, users can visualize and compare

temporal trajectories of selected metabolites over the 4 days of

the HuMet study. For each metabolite, the subject-specific tem-

poral profiles are displayed in different colors, using the same

color coding for participants consistently throughout the repos-

itory (Figure 2B). The visualization is adaptive to various data

transformations such as Z scoring, imputation of missing values,

and log2fcs related to challenge baseline. Mean time courses

connecting themean levels of participants at each TP can be dis-

played for multiple metabolites in one plot to facilitate visual

exploration and comparison of temporal changes between

metabolites.

For identifying metabolites whose abundances significantly

changed in response to a challenge or between two user-defined

TPs, the HuMet Repository provides hypothesis testing within

the statistics module. For amenable exploration, all statistical re-

sults are provided in tabular form as well as in interactive volcano

plots.

The networks module allows users to inspect metabolites of

interest in the context of metabolic pathways and reconstructed

metabolic networks. To this end, we provide knowledge-based

and data-derived networks for the metabolites from the two

MS-based metabolomics platforms. For network generation

based on the precalculated pairwise partial correlations between

metabolites, the user can choose from different cutoffs, above

which edges are drawn. For example, fixed partial correlation

values can be chosen as thresholds.21 Alternatively, edges can

be filtered based on the statistical significance of the partial

correlation between the two metabolites, applying different

methods to adjust for multiple testing of edges (false discovery

rate, Bonferroni). These choices lead to various alternatives of

single-fluid networks for plasma and urine. To allow exploring

the metabolic response to the different challenges within these

networks, the user canmap the log2fcs ofmetabolites (in relation



Figure 3. Exploration of metabolites from prior exposure

(A) Workflow to identify metabolites (Metabolon HD4, Biocrates p150) with similar trajectories as the reference plasma metabolite 3-methylhistidine (3-MH), a

dietary marker for meat intake, using the similarity search implemented in the selection module.

(B) Time courses of 3-MH and the 16 plasma metabolites with most similar trajectories (Fréchet distance <0.6) as visualized within the time course module.

(C) Out of the 17 metabolites, 12 are known biomarkers for various food items that have not been provided to participants during the study blocks, indicating

exposure prior to the study.
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to their challenge baselines) onto the metabolite nodes in the

network using red (increase) and blue (decrease) color gradients.

For the generation of the multi-fluid networks based on the Me-

tabolon HD4 plasma and urine datasets, we merged the corre-

sponding single-fluid networks by connecting the same metab-

olites measured in plasma and urine by an additional edge.

Using this approach, changes in urine and plasma metabolites

can be displayed in parallel.

Showcase prior exposure: Identify metabolites with
washout-like temporal profiles
In the first showcase, we seek to identify metabolites that origi-

nate from exposure such as to foods or drugs, to which partici-

pants had no access during the 23 2 days of the study, using the

HuMet Repository. Prior to each of the two blocks in the HuMet

study (Figure 2), all participants ate the same ‘‘chicken with veg-

etables’’ meal (prepared from a packaged frozen instant meal)
containing a complex mixture of dietary ingredients that were

not included in any of the liquid meals provided during the

4-day study phase (e.g., meat or vegetables).

Methylhistamines have been suggested as biomarkers that

reflect chicken meat intake.22,23 In our participants, plasma levels

of 3-methylhistidine exhibited a washout-like temporal profile with

a steady decrease after chicken intake. The profiles showed min-

imal interference with stimuli during the study phase, which is a

prerequisite for a true dietary biomarker (Figure 3). We therefore

chose this metabolite as a starting point for the search of metab-

olites with similar kinetic characteristics, potentially indicating

further prior exposure of the participants. We used the similarity

search option in the selectionmodule to rankmetabolites (Metab-

olon HD4, Biocrates p150) by the distances of their temporal pro-

files to the reference profile of 3-methylhistidine in plasma.

We found S-allylcysteine in plasma to be the metabolite with

the most similar temporal profile, showing a distance (Fréchet)
Cell Reports 43, 114416, August 27, 2024 7



Resource
ll

OPEN ACCESS
of 0.2712 from plasma 3-methylhistidine; 34 additional metabo-

lites had distances less than 0.6, with 16 being plasma metabo-

lites. Out of these 16 plasma metabolites, 12 are metabolites

(or direct derivatives of metabolites) listed in FooDB24 and/or

are linked to food-related exposure in the Exposome-Explorer.25

These 12 metabolites indicate putative exposure to meat, garlic,

bread, coffee, milk, and soy (Table S5). Most of these metabo-

lites were detectable in almost all participants and at most

TPs. In contrast, equol glucuronide was only detected in two in-

dividuals (subjects 1 [6 TPs of the first block] and 8 [all TPs]),

respectively. Equol is generated from daidzein, an isoflavone

that is commonly found in legumes, particularly in soy. Only a

fraction of the human population (�50%) is able to convert daid-

zein into equol (which can then be further sulfated and glucuro-

nated).26,27 The ability to produce equol presumably depends

on the composition of a person’s microbiome and might be

crucial for the health benefits that have been linked to soy isofla-

vones. At least two HuMet participants have this ability, but only

for one of themwas equol glucuronide detected in both blocks of

the study, suggesting that (out of the two) only this person was

exposed to soy (or other daidzein-containing food) before each

of the study blocks.

Inspecting the list of metabolites with similar washout-like tra-

jectories to 3-methylhistidine, we found five metabolites that

have not been reported as dietary biomarkers. Interestingly,

three out of these five metabolites are lipids that contain a C14

fatty acid residue (2-myristoyl-GPC [14:0], dFréchet = 0.5415;

PC aa C32:2 [mainly consisting of PC [14:0_18:2]12], dFréchet =

0.5772; and lysoPC a 14:0, dFréchet = 0.5909). The steady decline

of thesemetabolites over the two blocks, when participants were

only exposed to the highly standardized challenge drinks, sug-

gests that dietary choices (but not acute fasting status or macro-

nutrient composition of the challenge drinks) modulate the levels

of these complex lipids.

Taken together, this use case demonstrates the value of the

similarity search as implemented in the selection module to de-

pict metabolites showing the same dynamic behavior.

Showcase platform comparison: Compare metabolites
across metabolomics platforms
HuMet samples were profiled using a variety of metabolomics

platforms, considering that no single approach can cover all

parts of metabolism in sufficient quality.28 While their coverage

of metabolites is mostly complementary, comparable measure-

ments are available from the Metabolon HD4 platform and the

Biocrates p150 kit for various amino acids, acylcarnitines, and

glycerophospholipids. In this use case, we were interested in

to what extent measures for matching metabolites correlate be-

tween the platforms. This comparison is of particular interest for

matching metabolite pairs where the platforms do not quantify

the exact same analytes due to the different measurement tech-

niques. As an example, the 43matchingmetabolite pairs listed in

Yet et al.29 for Biocrates p150 (t-MS) and a prior version of Me-

tabolon HD4 (nt-MS) include the pair H1 (hexose) (t-MS)/glucose

(nt-MS). While the non-targeted technique measures the (rela-

tive) abundances of glucose, the most abundant hexose in hu-

man blood,30 the targeted assay measures the concentrations

of all hexoses as a sum.
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Out of the 43 metabolite pairs, data on 38 pairs are available in

the HuMet dataset. Overall, we observed a high correlation of

measurements for the investigated metabolite pairs across the

two platforms in HuMet, with a median correlation of 0.75 (Fig-

ure 4; Table S6). Also, glucose (nt-MS) and H1 (hexose) (t-MS)

measurements were highly correlated (r = 0.87), which is in line

with measured plasma hexose consisting mostly of glucose in

humans. Only four pairs showed comparably weak correlations

(r < 0.5) (Figure 4). In particular, the acylcarnitinemeasures butyr-

ylcarnitine (nt-MS)/C4 (butyrylcarnitine) (t-MS) (r = 0.18) and glu-

tarylcarnitine (nt-MS)/C6-OH (C5-DC) (t-MS) (r = 0.18) showed

differences between the platforms. In the first case, the reason

for this difference could be that the Biocrates p150 measure

labeled as C4 (butyrylcarnitine) includes the isobaric isobutyryl-

carnitine, while these two metabolites are measured as two

separate analytes on the Metabolon HD4 platform. Correlation

analysis of metabolite isobutyrylcarnitine (nt-MS)/C4 (butyrylcar-

nitine) (t-MS) (r = 0.82) indicated that C4 (butyrylcarnitine) (t-MS)

and/or its dynamic changes might indeed be dominated by

isobutyrylcarnitine. This is of particular interest as butyrylcarni-

tine and isobutyrylcarnitine derive from two fundamentally

different pathways linked to the degradation of fatty acids and

branched-chain amino acid, respectively. A similar scenario

can be assumed to underlie the low correlations between gluta-

rylcarnitinemeasured onMetabolon HD4 and the analyte labeled

as C6-OH (C5-DC) measuring glutarylcarnitine and hydroxyhex-

anoylcarnitine together using the Biocrates p150 kit.

Taken together, this use case demonstrates the value of the

HuMet Repository for comparing measurements from different

metabolomics platforms and shows how these measurements

can inform each other when time-resolved data are available

for the same participants.

Showcase systemic metabolic responses: Reveal and
compare systemic responses to challenges
In this use case, we seek to answer the following questions: (1)

‘‘which areas of metabolism change after extended fasting

compared to standardized overnight fasting in the reconstructed

metabolic network?’’ and (2) ‘‘how do metabolic responses in

particular pathways compare between three different nutritional

challenges?’’ Using the inferred metabolic networks within the

repository’s networks module, we can visualize and depict

time-dependent responses to metabolic challenges in a meta-

bolism-wide manner.

To get a global view of changes in metabolism after pro-

longed fasting, we chose the multi-fluid network (Metabolon

HD4 plasma and urine) with default cutoffs for the underlying

partial correlation. On this backbone, we mapped statistical re-

sults comparing metabolite levels after extended fasting (36 h;

TP 10 [see Table S7]) with levels after standardized overnight

fasting (12 h; TP 1). In the resulting network, we saw wide-

spread metabolic changes with prominent increases (indicated

by a red color with high saturation and large circle sizes of

metabolite nodes) in various pathways, including a metabolite

cluster containing ketone bodies (and their precursors from

ketogenic amino acid degradation) and a cluster containing

acylcarnitines (Figure 5, left). Further increases were seen in

clusters containing (1) sulfated bile acids (and steroids), in



Figure 4. Comparison of measurements from different platforms

(A) Workflow to explore the concordance of measurements for 38 pairs of matching metabolites from the non-targeted (Metabolon HD4) and targeted (Biocrates

p150) platform (pairs taken from Yet et al.29). Pearson correlations of metabolites (across all time points and all subjects’ individual metabolite curves) are

provided through the similarity search implemented in the module Selection.

(B) Trajectories of the pair with strongest correlation (laurylcarnitine [P, nt-MS]/C12 [dodecanoylcarnitine] [P, t-MS]) with r = 0.95 and the pair with weakest

correlation (butyrylcarnitine [P, nt-MS]/C4 [butyrylcarnitine] [P, t-MS]) with r = 0.18 are shown as displayed within the time course module. In the case of the C4

carnitines, the measurements for the isobaric isobutyrylcarnitine (P, nt-MS), which is added to the time course plot, showed a much stronger correlation with the

C4 measurement from the targeted platform, indicating that C4 (butyrylcarnitine) (P, t-MS) and/or its dynamic changes might be dominated by the isoform

isobutyrylcarnitine.

(C) Overall, the concordance of measurements from the two platforms is high, with a median correlation of measurements of r = 0.75 and only four out of 38 pairs

with correlations below 0.5.
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particular the monohydroxy bile acid derivative taurocholenate

sulfate in blood and urine; (2) nucleotides (xanthine, hypoxan-

thine) and metabolites of the citrate cycle (malate, fumarate),

which also increased during exercise; and (3) dicarboxylic fatty

acids (mainly C10–C18) (indicated by circles in Figure 5B, left).

While most of the metabolites in these clusters were also signif-

icantly higher after overnight fasting (e.g., acylcarnitines), in-

creases in acetoacetate were only observed after prolonged

fasting. Moreover, levels of sebacate (decanedioate) and taur-

ocholenate sulfate were lower after overnight fasting compared

to a fed state (2 h after SLD) but higher after prolonged fasting.
The branched-chain amino acids leucine and isoleucine and

several of their degradation products showed a similar behavior

(Table S8). Most decreases (blue color) were observed in clus-

ters containing xenobiotic metabolites or metabolites that have

been linked to the human gut microbiome (Figure 5).

For comparison of metabolic responses across challenges,

we selected a single-fluid GGM (Metabolon HD4 Plasma, Bio-

crates p150 plasma, and in-house biochemistry, partial correla-

tion R 0.12). Here, we mapped metabolic changes obtained for

the OGTT (60min versus baseline), SLD (60min versus baseline),

and OLTT (60 min versus baseline) and focused on two modules
Cell Reports 43, 114416, August 27, 2024 9



Figure 5. Contextualization of metabolic responses to challenges within reconstructed metabolic networks

(A) Workflow to explore metabolite responses to challenges from a holistic, metabolome-wide perspective. To get an overview of changes after extended fasting

(36 h) compared to overnight fasting (12 h), we select the multi-fluid metabolic network derived from the non-targeted metabolomics data in plasma and urine

provided in the networksmodule (left). For a comparison ofmetabolite changeswithin particular pathways (here: bile acids and amino acids) 60min after ingestion

of the challenge drink, we select the single-fluid network generated based on plasma levels of the non-targeted (Metabolon HD4) and targeted (Biocrates p150)

platform (right). To visualize responses, we map the log2 fold changes and p values resulting from t tests comparing metabolite levels after the respective

challenge with the corresponding baseline levels (statistics module). Color displays the log2 fold change between challenge baseline and chosen time point, with

red indicating an increase in metabolite concentration and blue indicating a decrease. Node size depicts the �log10 p value of changes between challenge

baseline and the chosen time point. Thereby, node size increases with a lower p value.

(B) Coloring and scaling of metabolite nodes according to changes after extended fasting of 36 h (versus overnight fasting [12 h]) shows that various parts of

human metabolism are affected by adaptations to this challenge (left). This includes pathways such as beta-oxidation of fatty acids (indicated by increasing

acylcarnitine levels in blood and urine; see zoom in for box 1) aswell as the generation of ketone bodies (indicated by their increased levels in both fluids; see zoom

in for box 2). Moreover, increases inmetabolite levels are observed in further clusters delineated through circles (i: sulfated bile acids [and steroids]; ii: nucleotides

(legend continued on next page)

10 Cell Reports 43, 114416, August 27, 2024

Resource
ll

OPEN ACCESS



Resource
ll

OPEN ACCESS
that exhibited consistent and different changes across chal-

lenges, respectively (Figure 5, right): (1) a cluster containing

different bile acids consistently increased after 1 h in all three

challenges and (2) a cluster containing various amino acids

that showed considerably different responses between chal-

lenges; the majority of metabolites within this cluster decreased

60 min after glucose ingestion in the OGTT, while they increased

after ingestion of the SLD drink and less extensively also after

ingestion of the lipid-rich OLTT challenge drink. More detailed in-

spection of the bile acid time courses using the statistics module

confirmed that for five (glyco- and taurocholate, glyco- and taur-

ochenodeoxycholate, and taurodeoxycholate) of the bile acids in

the cluster, the observed increases were statistically significant

not only 1 h after ingestion of the lipid-containing SLD and

OLTT challenge drinks but also 1 h after ingestion of glucose in

the OGTT, with even higher fold changes observed after 15

and 30 min. Displaying the individual time courses of these bile

acids across challenges in all participants using the time course

module also showed that relative abundances and maximal fold

changes of these bile acids strongly vary between individuals,

challenge drinks, and even different contexts. When the SLD

challenge drink was ingested ‘‘for lunch’’ 4 h after ingestion of

the OGTT drink (SLD2), the observed maximal log2fcs for the

five bile acids were almost as high as in the OLTT (log2fc =

�3–4); the same maximal log2fcs were seen when the SLD drink

was ingested in the morning at 8 a.m. after prolonged fasting

(SLDr). In contrast, when the SLD drink was provided ‘‘for lunch’’

4 h after the first SLD drink in the morning on day 2 (SLD1), the

maximal fold changes were smaller (log2fc = �2; similar to the

bile acid fold changes after OGTT), as the bile acid levels had

not returned to the morning levels after these 4 h.

Taken together, this use case demonstrates the usefulness of

the HuMet Repository to explore and compare metabolic re-

sponses in the context of metabolic networks and across chal-

lenges and pathways.

DISCUSSION

The HuMet Repository described herein provides an easily

accessible and explorable reference for metabolic responses

to physiological challenges in healthy male individuals. The con-

tained time-resolved metabolomics dataset is wide ranging

regarding its metabolite coverage, with data from multiple

different platforms, together capturing most areas of human

metabolism in blood and urine. In particular, the non-targeted

metabolomics data, which we added to the data that already ex-

isted from the HuMet study, increased the breadth of enclosed

metabolic pathways (expanding from amino acids, glycerophos-

pholipids, and lipoproteins to all major pathways) and their reso-

lution (e.g., through the addition of complex lipid measures with
[xanthine, hypoxanthine] and metabolites of the citrate cycle [malate, fumarate]; ii

(blue color) are seen for various pathways of xenobiotic metabolites, including b

plasmametabolites by changes 60min after ingestion of the challenge drinks (righ

to a lesser extent,. also in response to OGTT. In contrast, a cluster containingmos

less of an effect observed in the latter case (though 65% of the same protein mi

(C) Using the reconstructed metabolic networks helps to get a metabolome-wide

facilitates comparison of effects between them.
resolved fatty acid chains). These extensions enable analyses of

dynamic metabolic responses for metabolites in plasma and

urine, for which the availability of such data has been previously

limited. Thus, these additional data substantially enhance the

comprehensiveness and granularity of time-resolved metabolo-

mic readouts available for exploring human metabolism under

challenge.

To bring the rich dataset to the scientific community, our re-

pository goes beyond the idea of sharing data for reanalysis by

experts according to the Findable, Accessible, Interoperable,

and Reusable principles: by offering interactive exploration

and visualization tools, we enable users to query the data

directly and flexibly while taking the burden of data handling

for these complex, high-dimensional data (15 subjects 3 56

TPs/6 challenges 3 2,656 metabolites/8 platforms 3 4 bio-

fluids) from them. As a consequence, answering ad hoc ques-

tions like ‘‘how robust is the metabolite that I identified as a dis-

ease biomarker in fasting versus non-fasting conditions?’’,

‘‘how do dynamic changes in blood compare to those in

urine for my metabolite of interest?’’, ‘‘how individual is the

metabolic response to exercise among healthy subjects for

this metabolite?’’, and ‘‘which metabolites exhibit the same lon-

gitudinal patterns over a challenge or the complete study dura-

tion?’’ is only a matter of clicks in the HuMet Repository, mak-

ing the data thus more accessible for researchers with various

backgrounds.

In addition to serving as a reference regarding specific metab-

olites of interest, the HuMet Repository facilitates systematic ex-

plorations into metabolic responses across biochemical path-

ways, physiological challenges, and metabolomics platforms

as we demonstrated in the three showcases. First, we identified

metabolites with washout-like trajectories by applying the built-

in function for extracting metabolites with similar temporal pro-

files. Second, we demonstrated how assessing the similarity of

metabolite trajectories can be used to compare readouts from

different metabolomics platforms available for the same samples

in the HuMet Repository. In contrast to previous work, where we

used HuMet data for similar purposes,12,31 we here performed

data analyses solely using the functionality of the HuMet Repos-

itory, without any additional effort for data processing, analysis,

or visualization. Third, we highlighted the value of the reposi-

tory’s data-derived metabolic networks to compare and contex-

tualize statistical results frommetabolome-wide analyses across

six different challenges. Unlike knowledge-based metabolic

networks such as KEGG,18 which typically omit many of the

measured metabolites, the data-derived networks represent

the entire set of metabolites measured in HuMet. In the present

study, we demonstrated that partial correlations calculated from

the HuMet study, encompassing time-resolved data from only

15 individuals, yielded networks in which functionally related
i: dicarboxylic fatty acids [mainly C10–C18]; no zoom ins provided). Decreases

enzoate metabolites (see zoom in for box 3). Coloring the network based on

t) revealed a cluster of bile acids that similarly increased in SLD and OGTT and,

t amino acids showed decreases in OGTT and increases in SLD andOLTT, with

x was ingested with the OLTT drink as with the SLD drink).

overview of dynamic metabolic changes in response to specific challenges and
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metabolites were grouped similarly to those in networks derived

from large cross-sectional data of more than 1,000 individ-

uals.14–16 The networks reconstructed based on HuMet data

are, thus, adequate to provide metabolic context for the global

exploration of challenge-induced temporal changes.

Besides demonstrating the general applicability of the HuMet

Repository, our showcasing analyses also derived concrete bio-

logical hypotheses. In our first case, we identified potential

markers of dietary intake by extracting metabolites that indi-

cated the exposure of our participants prior to the start of the

two study blocks. Most of the metabolites that showed similar

washout-like kinetic patterns as a known marker (3-methylhisti-

dine) of a known prior exposure (meat)23 were dietary biomarkers

of further food items, which were contained in the meal that was

served to every participant at the evening prior to the study

blocks or otherwise consumed before (e.g., metabolites of

meat, garlic/onion, coffee, and soy). Interestingly, our analysis

additionally revealed various phosphatidylcholines containing a

C14:0 saturated fatty acid residue that showed the typical

washout-like kinetic pattern for most participants. These metab-

olites are not listed as dietary biomarkers in FoodDB24 or

Exposome-Explorer25 and are typically considered to be endog-

enous. Nonetheless, our results suggest that dietary choices

strongly influence the blood levels of these metabolites. As

bovine milk fat is rich in C14:032,33 and blood C14 fatty acid

abundance associates with habitual dairy intake,34,35 the steady

decrease of the C14:0 phosphatidylcholines within each of the

two study blocks might reflect the washout of metabolites orig-

inating fromcream,whichwas an ingredient of the served dinner.

On the other hand, considering previous results from Altmaier

et al., who reported an association of phosphatidylcholines

with shorter fatty acid chains (<C20) and higher saturation with

fiber intake,36 the observed effect of constantly decreasing

levels of C14:0 phosphatidylcholines could also be related to

the lack of fiber in the provided challenge drinks.

Results from our second showcase emphasize that the

concordance of measurements from different metabolomics

platforms for the ‘‘same’’ (matching) metabolites can vary de-

pending on sampling time and conditions. On average, we saw

a high correlation of measurements across the investigated me-

tabolites from the targeted Biocrates p150 and the non-targeted

Metabolonplatforms, despite differences inwhat exactly is quan-

tified for matching compounds between the two platforms by

design (e.g., relative abundance of glucose [non-targeted] versus

absolute concentration of all [isobaric] hexoses [targeted]). We

thereby replicated results from previous cross-platform studies,

which indicated that these measures can be used largely inter-

changeably in cross-sectional data.29,37 At a first glance, the

measures labeled with butyrylcarnitine were an exception. In

the time-series data of the HuMet study, we only found a weak

correlation of the targeted butyrylcarnitine analyte (representing

the sum concentrations of isobaric C4 carnitines) with the non-

targeted butyrylcarnitine measure. However, the correlation of

targeted butyrylcarnitine with isobutyrylcarnitine measured as a

separate analyte on the non-targeted platform was strong.

Thus, when dynamically monitoring targeted C4 carnitine con-

centrations over challenges, the concentrations resemble

changes in isobutyrylcarnitine, which is linked to the degradation
12 Cell Reports 43, 114416, August 27, 2024
of branched-chain amino acids, rather than butyrylcarnitine,

which is derived from the beta-oxidation of fatty acids. In

contrast, under overnight fasting conditions in cross-sectional

data of 1,001 subjects, the correlation of targeted and non-tar-

geted butyrylcarnitine measures was strong. Also, the associa-

tion ofmeasured levelswith a genetic variant in theACADS locus,

which encodes an enzyme converting butyrylcarnitine, was iden-

tified independent of the platform.29 Hence, unlike its non-fasting

concentrations, the fasting C4 concentrations in the targeted

analysis indeed reflected the inter-individual differences in butyr-

ylcarnitine levels.

In our third showcase, investigating the effects of prolonged

fasting using the repository’s network visualization and statistics

functionality, we found thatmostmeasuredmetabolites in plasma

and urine were affected by the fasting challenge to some extent.

As expected from the lack of other energy sources, the largest in-

creases could be seen in metabolite clusters containing ketone

bodies (and their precursors) and acylcarnitines, indicating the

burning of fat.38,39We also observed large increases inmetabolite

clusters containing dicarboxylic fatty acids (mainly C10–C18),

indicating fat degradation through peroxisomal fat oxidation.

This process involves microsomal omega-oxidation and is known

to occur during fasting,40 in particular when mitochondrial beta-

oxidation is impaired as, for example, in specific rare monogenic

diseases.41 The produced dicarboxylic acids have been sug-

gested as regulators of beta-oxidation,42 with a potential role in

hepatic lipid accumulation induced by fasting.40 Hepatic lipid

accumulation and steatosis have been linked to not only starva-

tion conditions but also (chronic) excess of fatty acid influx into

liver, as in many cases of obesity and type 2 diabetes.43 While

theHuMet participantswere healthy and non-obese,weobserved

increases in these dicarboxylic acids also when there was an

(acute) excess of fatty acids after ingestion of the high-fat chal-

lenge drink for the OLTT (e.g., octadecanedioate log2fc = 1.45

[fasting] and 1.02 [OLTT]),matching the hypothesis of dicarboxylic

acids being mediators of lipid accumulation. Interestingly, in our

study, we observed increases in dicarboxylic acid levels also after

the PAT (e.g., octadecanedioate log2fc = 0.90 [PAT]), which might

provide an explanation for why prolonged physical exertion

carries the risk of liver damage.44

Another class of metabolites that increased during extended

fasting comprised sulfated bile acid as well as sulfated steroid

derivatives (e.g., taurocholenate sulfate, glycochenodeoxycho-

late sulfate, dehydroepiandrosterone sulfate). All these com-

pounds are products of a sulfation reaction catalyzed by the

enzyme sulfotransferase 2A1; common genetic variants in

the encoding gene SULT2A1 have been reported to influence

the blood levels of these compounds.21,45 Despite various

studies, the role of sulfotransferases in metabolic homeostasis

is not fully understood yet and warrants further research.46

Limitations of the study
While the showcases demonstrate the usefulness of the HuMet

Repository, the data and our explorative approaches also have

their limitations. First, the study was based on the idea of having

a group of participants as similar as possible. This was realized

with only 15 participants, all male, young, and of normal weight,

with only minimal variations in BMI. The small sample size clearly
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restricts the statistical power to detect more subtle changes in

metabolite levels, for example, as expected in response to the

cold stress test. Also, the small size and restriction to young

men lead to a lack of diversity in the study group, which, in turn,

impedes the transferability of results to women or other age

groups. However, the homogeneity of the group allows for

analyzing inter-individual variation in metabolite levels and meta-

bolic responses to the challenges in the absence ofmajor sources

that usually cause variation in metabolite levels, such as sex,47,48

age,49–51 and BMI.52 Second, while the availability of data on six

different challenges for the same participants facilitates compari-

sons across challenges, all participants were exposed to these

challenges in the same preset order. Therefore, we cannot

exclude carry-over effects between challenges or study-specific

overlay with diurnal variation of metabolites. Also, the standard-

ized meals do not reflect the complexity and variety of everyday

diets. As a consequence of the specific design of the study and

its small sample size, the data in the HuMet Repository, while be-

ing representative of normal metabolic dynamics in response to

the specific challenges, cannot be interpreted as representative

of normal metabolic states. Nonetheless, the standardization

and specific block-wise design of the HuMet study enabled the

discovery of metabolites of prior exposure in the washout phase

that are more difficult or impossible to pinpoint in studies that

have only one TP or performed only one challenge under stan-

dardized conditions. Third, the comprehensive coverage of me-

tabolites mainly through non-targeted approaches comes with

the downside that only relative abundances of metabolites are re-

ported, as opposed to absolute concentrations derived by the tar-

geted methods. Consequently, our resource cannot provide

‘‘normal concentration ranges’’ for most measured metabolites,

limiting the repository’s application as a quantitative reference.

Nonetheless, information on the normal timing of challenge re-

sponses or the extent of a change in relation to the variation in

the other challenges or TPs within individuals is less dependent

on the type of quantification, as we confirmed through platform

comparisons. Therein, temporal profiles of absolute and relative

abundances of the same metabolite were highly concordant for

metabolites where bothmeasurements were available. Therefore,

comparisons of timing/relative extent of responses between the

repository and data from separately profiled samples (e.g., of pa-

tients in future studies) will be useful to identify responses that

diverge from normal response patterns in these aspects. Fourth,

asmost data have been acquired from commercial metabolomics

platforms, we do not have the rights to share the raw spectra for

each measurement publicly. However, for various large epidemi-

ological cohorts, cross-sectional datasets are available from the

same metabolomics platforms, which enables the direct cross-

linking of HuMet results to results from metabolome- and

genome-wide association studies.21,53–56 Finally, explorative

data analysis, as supported by our repository, can only be used

for the generation of hypotheses, which need to be followed up

bymore specific and sophisticated data analyses and subsequent

experiments.

Conclusion
In conclusion, the HuMet Repository, freely accessible at https://

humet.org, opens avenues for researchers with different back-
grounds to explore human metabolism under challenge condi-

tions. With its comprehensive coverage of the human metabo-

lome in plasma and urine, its time-resolved metabolite profiles

after six different metabolic challenges, and its interactive anal-

ysis and visualization tools, this repository facilitates explorative

as well as systematic data analysis to identify dynamicmetabolic

responses in a metabolome- and ‘‘challenge-wide’’ fashion.

Without the need to reprocess the data, researchers can

leverage the repository to tackle question beyond those ad-

dressed in this work, e.g., howmuch does the coupling of kinetic

behavior across metabolites differ when comparing responses

between different challenges, and many more options, e.g., for

cross-linking metabolite measures from different analytical plat-

forms or estimating the stability of metabolite levels within indi-

viduals. Moreover, as we used highly standardized challenges

for testing lipid, fasting, or exercise tolerance, they can be

repeated in future studies, for instance, in studies involving

women as well as different age groups and ethnicities. Adding

the corresponding datasets to the repository as they become

available will help to reflect dynamic metabolic changes in

healthy individuals more broadly. Ultimately, data derived from

these standardized challenge tests in patient cohorts could be

directly compared to data in our repository for identifying devia-

tions from the normal, healthy response. Therefore, the HuMet

Repository could help unlock the full potential of standardized

challenge tests and their metabolic readouts to identify meta-

bolic aberrations when they are not yet visible in the rested, un-

perturbed state, thereby enabling new concepts for disease pre-

vention or early diagnosis.
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d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

HuMet study population
The present work is based on samples of the Human Metabolome (HuMet) study conducted at the Human Study Center of the Else-

Kröner-Fresenius Center of Nutritional Medicine at the Technical University Munich. All details on study design, population, and ex-

isting data have been described previously.7 Briefly, 15 healthy male participants were recruited for the study. Participants were

young (mean age of 27.8 years ±2.9), had normal weight (mean body mass index (BMI) of 23.1 kg/m2 ± 1.8), did not take any medi-

cation, and did not show any metabolic abnormalities.

HuMet study design
All participants underwent a series of sixmetabolic challengeswithin two 2-day test blocks (Figure 1). Twenty-four hours prior to each

test block, participants were asked not to consume alcohol or engage in strenuous physical exercise. Participants were providedwith

the same meal (standard size, chicken-based with vegetables (FRoSTA Tiefk€uhlkost GmbH, Hamburg, Germany)) at 7 p.m. one day

prior to each test block. During each study block, participants stayed within the study unit to reduce perturbation by environmental

influences. Samples were collected at up to 56 time points in different intervals (every 15–240min) over the study days depending on

the collected biofluid (plasma, spot urine, exhaled breath condensate samples, breath air) and the particular challenge (Table S7).

Challenges covered extended fasting, ingestion of three different drinks with unique macronutrient compositions, a physical ac-

tivity, and a stress test: (i) The fasting challenge consisted of a 36-h fasting period (from the dinner before block one until 8 a.m. on day

two in the first block). During the challenge, participants drank 2.7 L of mineral water based on a defined drinking schedule. (ii) A stan-

dard liquid diet (SLD) drink was ingested at three occasions: SLDr – for ‘‘breakfast’’ on day two to recover from extended fasting,

SLD1 – for ‘‘lunch’’ on day two, and SLD2 – for ‘‘lunch’’ on day three in the second block. The SLD drink consisted of a defined

fiber-free formula drink (Fresubin Energy Drink Chocolate, Fresenius Kabi, Bad Homburg, Germany), providing one-third of the daily

energy requirement of each participant. (iii) The oral glucose tolerance test (OGTT) on day three (block two) consisted of a 300 mL

solution with mono- and oligosaccharides, equivalent to 75 g glucose after enzymatic cleavage (Dextro O.G.T., Roche Diagnostics,

Mannheim, Germany). (iv) The oral lipid tolerance test (OLTT) on day four combined two parts of the SLD and one part of a fat emul-

sion containing predefined long-chain triglycerides (Calogen, Nutricia, Zoetemeer, Netherlands), while adjusting volumes per partic-

ipant to provide 35 g fat/m2 body surface area. All challenge drinks were served at room temperature for ingestion within 5min. (v) For

the physical activity test (PAT) participants performed a 30 min bicycle ergometer training at a power level corresponding to their

individual anaerobic threshold. (vi) In the cold stress test, participants were triggered by immersing one hand, up to wrist level for

a maximum of 3 min in ice water. For a complete protocol of the challenge procedure and the collection of samples, see Krug et al..7

The ethical committee of the Technische Universität M€unchen approved the HuMet study protocol (#2087/08), which is in corre-

spondence with the Declaration of Helsinki.

METHOD DETAILS

Non-targeted metabolomic profiling
In this study, we acquired non-targeted metabolomics data by profiling plasma and urine samples of the HuMet study on the Metab-

olon HD4 platform using liquid chromatography coupled to mass spectrometry (LC-MS) at Metabolon, Inc. (Durham, NC, USA). This

platform applies four different analytical methods optimized formeasuringmetabolites with different physicochemical properties: (i) a

reverse phase (RP)/ultra-high-performance liquid chromatography (UPLC)-MS/MS method with electrospray ionization (ESI) in pos-

itive mode optimized for hydrophilic compounds, (ii) an RP/UPLC-MS/MS with ESI in positive mode optimized for more hydrophobic

compounds (iii) an RP/UPLC-MS/MS with ESI in negative mode, and (iv) a hydrophilic interaction liquid chromatography (HILIC)/

UPLC-MS/MS with ESI in negative mode. All methods utilized a Waters ACQUITY UPLC and a Thermo Scientific Q-Exactive high

resolution/accurate mass spectrometer (operating at a mass resolution (m/Dm) 35,000) interfaced with a heated electrospray ioni-

zation (HESI-II) source. For methods i – iii, a C18 column from Waters (UPLC BEH C18-2.1 3 100 mm, 1.7 mm) was used, method

iv utilized a HILIC column (Waters UPLC BEH Amide 2.1 3 150 mm, 1.7 mm).

Sample processing for and analytical procedures of the Metabolon HD4 platform have been described in detail previously.10

Briefly, EDTA-plasma and spot urine samples, which were kept at �80�C until analysis, were first thawed. Then, several recovery
18 Cell Reports 43, 114416, August 27, 2024
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standards, whichwere carefully chosen not to interfere with themeasurement of endogenous compounds, were spiked into 100 mL of

every sample to allow chromatographic alignment and to monitor instrument performance. For protein precipitation and metabolite

extraction, samples were mixed with methanol under vigorous shaking for 2 min (Glen Mills GenoGrinder 2000). After centrifugation,

the resulting extracts were split into five portions for each sample: four aliquots for analysis by the different LC-MSmethods and one

aliquot for backup. The extracts were placed briefly on a TurboVap (Zymark) to remove the organic solvent and then stored overnight

under nitrogen. Before LC-MS analysis, the extracts were reconstituted in solvents compatible for theMSmethods (with each recon-

stitution solvent containing a series of standards at fixed concentrations to ensure injection and chromatographic consistency). All

described sample processing steps were automated using a MicroLab STAR system from Hamilton Company (Reno, NV, USA).

For LC-MS analysis by method i (acidic positive ion conditions), the extracts were gradient eluted from a C18 column (see above)

using water and methanol, containing 0.05% perfluoropentanoic acid (PFPA) and 0.1% formic acid (FA). For analysis by method ii

(acidic positive ion conditions), the extracts were gradient eluted from the same C18 column using methanol, acetonitrile, and water,

containing 0.05% PFPA and 0.01% FA. For analysis by method iii (basic negative ion conditions), the extracts were gradient eluted

from a separate C18 column usingmethanol andwater with 6.5mMammonium bicarbonate at pH 8. For analysis bymethod iv (basic

negative ion conditions), the extracts were gradient eluted from a HILIC column using a gradient consisting of water and acetonitrile

with 10 mM ammonium formate at pH 10.8. The MS analysis alternated between full scans (covering 70–1000 m/z) and data-depen-

dent MSn scans using dynamic exclusion.

Peak identification and alignment from the recorded spectra, were performed usingMetabolon’s in-house hardware and software.

Metabolites were identified by comparison of the experimental spectra to entries in Metabolon’s in-house library, which was

collected from the measurement of commercially available purified standards (�3,300 at time of analysis) or recurrent spectra

from either named compounds (or classes), for which no authenticated standard was available (marked by a tag next to the metab-

olite name in Table S1), or from structurally unnamed biochemicals. Note that, for the present study, only the results frommeasuring

named metabolites were purchased from Metabolon. The area-under-the-curve (AUC) of the peaks indicated as the quantification

ions in the library entries were used to quantify metabolites. To account for differences in solute concentrations, raw peak AUC values

of metabolite in urine were normalized by osmolality. Raw peak AUC values (plasma) and osmolality-normalized peak AUC

values (urine) of each metabolite were additionally normalized to account for instrument inter-day tuning differences by dividing

the values of each metabolite at each run day by the median of values for the metabolite on this day (i.e., setting the run day medians

to one). Before data release, a series of manual curation procedures were carried out at Metabolon to remove metabolite signals

representing system artifacts, mis-assignments, and background noise and to confirm the consistency of peak identification and

quantification among the various samples. In cases where compounds were detected by more than one of the four analytical

methods, the abundance of the compoundwas reported using the AUC from themethod that showed the highestmeasurement qual-

ity according to the aforementioned quality control. This work was based on proprietary visualization and interpretation software.

As the focus of the HuMet study was on the dynamic changes of metabolite levels within individuals, samples from the same in-

dividual were measured on the same run day (plate) to the extent possible, leading to a run day design where the plasma samples of

two participants were analyzed on three different run days while assigning samples of block 1 (days 1 and 2), samples of day 3 (block

2), and samples of day 4 (block 2) to the same run day, respectively. Within run days the order of samples was randomized. Due to the

lower number of urine samples, the samples from all time points of two participants weremeasured on the same run day. Plasma and

urine samples of subject 4 were measured in duplicates; for this subject, we used the mean of both measurements. Several quality

control (QC) samples, which underwent the same sample processing as the HuMet samples, were measured spaced evenly among

the experimental samples: Ultra-pure water samples served as process blanks; pooled matrix samples (CMTRX) generated from all

HuMet samples (only for urine samples) and aliquots of a pool of well-characterized human plasma (MTRX4) (both for plasma and

urine runs) served as technical replicates to assess process variability across run days of the analysis. Relative standard deviation

of CMTRX (urine) and MTRX4 (plasma) measurements are provided in Table S1.

As a result of the analyses of 833 plasma and 240 urine samples on the Metabolon HD4 platform, relative abundances (normalized

peak AUCs) are available for a total of 595 plasma and 619 urine metabolites. These metabolites were assigned to eight chemical

classes termed super-pathways (amino acids, carbohydrates, cofactors and vitamins, energy, lipids, nucleotides, peptides, xenobi-

otics), each being divided into two or more sub-pathways, resulting in a total of 78 and 68 sub-pathways for the plasma and urine

metabolites, respectively (Table S1).

Lipidomic profiling
Lipid concentrations in HuMet plasma samples of four participants were analyzed on the Lipidyzer platform of AB Sciex Pte. Ltd.

(Framingham,MA, USA) byMetabolon Inc., Durham, NC, USA. Sampleswere kept at�80�Cuntil analysis. The protocol of lipid quan-

tification using this platform has been described in detail elsewhere.12 In brief, after thawing, lipids were extracted from the plasma

samples with dichloromethane and methanol following a modified Bligh-Dyer extraction. For analysis, the lower, organic phase,

which included internal standards, was used and concentrated under nitrogen. Extracts were reconstituted with 0.25 mL of dichlor-

omethane:methanol (50:50) containing 10 mM ammonium acetate and placed in vials for infusion-MS analysis on a Sciex 5500

QTRAP equipped with a SelexION differential ion mobility spectrometry (DMS) cell, which allows separation of different (lyso)phos-

pholipids [(lyso)phosphatidylcholines ((L)PCs), -ethanolamines ((L)PEs), -inositols (PIs)] and sphingomyelins (SMs). Extracts were

analyzed using multiple reaction monitoring (MRM) in two sequential flow injection analysis (FIA) runs, alternating between positive
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and negative polarity. Free fatty acids (FFAs), tri- and diacyglycerols (TAGs, DAGs), ceramides (CERs), lactosyl-, hexosyl-, and dihy-

droceramides (LCERs, HCERs, DCERs), and cholesterylesters (CEs) were measured using separation through the DMS cell. Lipids

were quantified relative to appropriate stable isotope labeled internal standards. Concentrations are provided in mmol/l. The Lipidyzer

platform allowed for absolute quantification of 965 lipids distributed over 14 lipid classes: (CE, TAG, DAG, FFA, PC, PE, PI, LPC, LPE,

SM, CER, HCER, LCER, DCER).

Integrating previous HuMet metabolomics data
The HuMet study samples were previously profiled on three different ‘‘in-house’’ and three different vendor-based platforms. For

integration into our HuMet Repository, these data were used as published and provided in Krug et al..7

Measured metabolites from these six platforms and the analytical methods used were described in detail in Krug et al.7 and are

only briefly summarized here: (i) ‘‘In-house biochemistry’’: Standard biochemistry assays were used to assess blood levels of

glucose, lactate, insulin, and non-esterified fatty acids (NEFA) in 840 plasma samples (15 subjects x 56 time points). Venous

plasma glucose and lactate concentrations were profiled using an enzymatic amperometric technique, insulin was measured

by ELISA, NEFA were quantified in plasma by an enzymatic colorimetric method. All assays were performed at the Technische

Universität M€unchen. (ii) ‘‘In-house FTICR-MS’’: Flow injection electrospray ionization ion cyclotron resonance Fourier transform

mass spectrometry (FTICR-MS) measurements were performed at Helmholtz Zentrum M€unchen. A total of 201 mass spectral fea-

tures from volatile compounds were reported in 55 breath condensates samples (5 subjects x 11 time points of the first block). (iii)

‘‘In-house PTR-MS’’: Proton transfer reaction mass spectrometry (PTR-MS) was used to profile 341 breath air samples (11 sub-

jects x 31 time points). Analyses were performed by researchers from Helmholtz Zentrum M€unchen and yielded 106 mass spectral

features of volatile compounds. (iv) ‘‘Biocrates p150’’: AbsoluteIDQ p150 kits from Biocrates Life sciences AG, Innsbruck, were

used to perform flow injection analysis mass spectrometry (FIA-MS) of 840 plasma samples (15 subjects x 56 time points), yielding

quantities for 132 blood metabolites after quality control. (v) ‘‘numares’’/‘‘Chenomx’’: NMR spectra of 810 plasma samples (15 sub-

jects x 54 time points) and 195 urine samples (15 subjects x 13 time points) were determined by numares (formerly LipoFit Analytic

GmbH, Regensburg, Germany). For plasma samples, a total of 28 metabolites were identified by the company based on these

spectra. For urine samples, only the levels of six metabolites were extracted from the spectra (at Helmholtz Zentrum M€unchen)

using the software Chenomx NMR suite 7.0.

All data were used as preprocessed and provided in Krug et al.,7 unless stated otherwise in the following.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data preprocessing and transformations
Platform-specific quality control and normalization steps depend on the analytical method and are described in the respective par-

agraphs on data acquisition. Note that the platform-specific normalization steps taken to account for instrument drifts or inter-day

tuning differences might not be sufficient to avoid all effects of batch-wise measurements on the results of downstream data ana-

lyses, in particular when data from multiple platforms are combined.

All quality controlled and normalized metabolomics data were forwarded to integration into the HuMet Repository. Thereby,

metabolite names and abbreviations were kept as provided by the specific platforms. Metabolite identifiers within the repository

contain the platform specific name, information on the fluid, in which they were measured (P: plasma; U: urine; BA: breath air;

BC: breath condensate), and information on the platform (nt-ms: Metabolon HD4; t-ms: Biocrates p150; Lipidyzer: Lipidyzer;

NMR: numares/Chenomx; PTRMS: In-house PTR-MS; ICR: In-house FTICR-MS; chem.: In-house biochemistry). Namedmetabolites

were assigned to the eight different metabolite classes (‘‘super-pathways’’) as used for the Metabolon HD4 platform and to ‘‘sub-

pathways’’ according to the categories given by the platforms. We manually annotated metabolites with links to compounds in

knowledge-based platforms, including ChEBI,19 KEGG,18 PubChem,63 and HMDB.20 Through the ChEBI crosslinks, synonyms for

metabolite names were incorporated.

For samples, information on the fluid, the subject (1–15), and the time point (1–56) (Table S7) are used for identification (some

breath air measurement were between two time points as defined for plasma/urine; they are denoted by 10.5, 11.5, 27.5, 39.5;

for the six NMR urine metabolites (ChenomX), a sample from an additional time point (57; day 4: 7 p.m.) was measured).

The following preprocessing steps and transformations were applied to all metabolomics data.

Manual curation

To identify and remove outliers/implausible values, we systematically filtered single data points whose log2-transformed values were

outside themean ± 4 times the standard deviation window for the particular metabolite and time point, while omitting data points from

measurements within the first 30 min of a study challenge (to avoid deletion of biologically meaningful challenged-induced concen-

tration peaks of subjects). As a result, we identified 163 outlier data points, of which 92 data points were excluded after manual in-

spection. This cleaned dataset is integrated into our repository and can be downloaded from the website.

Data transformations

In addition to the original concentration or relative abundance values, we provide the data after further transformations for display in

the Time Course module: (i) z-scores based on the log2-transformed concentrations/relative abundances to facilitate comparisons

across metabolites and platforms, (ii) log2 fold changes (block) calculated between the time points within each block relative to the
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first time point of the respective block, and (iii) log2 fold changes (challenge) calculated between the time points in a specific challenge

and the challenge baseline (see Table S7).

Imputation

Someof the downstreamstatistical analyses used in theHuMet Repository, such as network inferencewithGGM, require a full dataset

without missing values. Before imputation, the manually curated dataset was filtered for metabolites with less than 30%missingness

(n = 493) across all samples measured on the particular platform (Table S1). Based on the filtered dataset, we imputedmissing values

using fourdifferent imputationmethods: (i)Machine learningalgorithmmissForest (ntree=1500,mtry=22),which is implemented in the

R package missForest (version 1.4). The algorithm is based on a random forest approach and imputes missing values by iteratively

(maximum iterations = 10) predictingmissing values using the available data.58,64 (ii) Predictivemeanmatching (PMM) using the paral-

lelizedmice function futuremice (method = ’’2lonly.pmm’’, m= 5) implementedwithin theRpackagemice (version 3.15.0). Themethod

facilitates temporarily consistent longitudinal imputation with PMM.59 (iii) Subject- and study block-specific linear imputation in cases

where data points preceding and succeeding amissing valuewere available. Here,weused the approx function from thebasicRpack-

age stats (version 4.2.3) facilitating the estimation of missing values based on linear trends. (iv) K nearest neighbor (KNN) based impu-

tation usingmt_pre_impute_knn (k = 10, method = ‘‘knn.obs.euc.sel’’) from the R packagemaplet60 (version. 1.1.2). The method uses

the KNN algorithm, pre-selecting a subset of metabolites correlated with the target metabolite with missingness.65

Statistical analysis/functionality
Metabolite time course similarity

We provide several distance measures (Fréchet, Euclidean, Manhattan) and Pearson correlation to rank metabolites according to

their similarity in temporal profiles. All measures are calculated based on z-scored data and depend on user-selected settings

such as the choices of subjects and time-range. The distance/correlation between the temporal curves of two metabolites is calcu-

lated within each subject first; subsequently, we calculate the average distance/correlation across all chosen subjects. We addition-

ally provide Fréchet distance and Pearson correlation calculated based on the mean metabolite trajectories (mean Z score over all

participants at each time point). The Fréchet distance (on average trajectories) is set to default within the similarity tool. It uses a win-

dow approach to search for the smallest distance between curves in a defined time frame. This time frame is defined as follows:

Maximum of +/� 30 min within all challenges except the extended fasting. Within the extended fasting challenge, we allow for com-

parison of time-points within a range of +/� 120 min.

We used the dist function implemented within the R package proxy (version 0.4–23) to calculate the Euclidean and Manhattan dis-

tances. The R package stats (version 4.2.3) was used to calculate the Pearson correlation. To calculate the Fréchet distance we used

the distFrechet function implementedwithin the R package kmlShape (version 0.9.5), a parallelized version of the distFrechet function

of the R package longitudinalData.

Paired t-tests

We use paired t-tests to test for significant changes in metabolite levels between two time points based on the log2-transformed

imputed or non-imputed (selectable by the user) concentrations/relative abundances, using the function t.test implemented in the

R package stats (version 4.2.3). To adjust for multiple testing, we offer corrections based on the false discovery rate (FDR) by

Benjamini-Hochberg66 (q < 0.05) or Bonferroni (p < 0.05/(n metabolites *n time points)). The levels of adjustment are reactive to the number

of metabolites and time points submitted to statistical analysis. The user can select the time range and the option whether only the

last time point or all time points within the range are compared to the first time point. Results are visualized within a volcano plot by

using the function plot_ly of the R package plotly (version 4.9.1). Each data point within the volcano plot can be colored by super-

pathway or metabolomics platforms.

Power calculation

Weperformed a power calculation to estimate the number of participants that would have been needed to detect metabolic changes

in response to the cold stress test at the Bonferroni-corrected significance threshold (a = 0.05/2656 = 1.88e-5) with a power of 80%.

We based the calculation on the effect expected for cortisol as cortisol levels (in saliva) have been shown to respond to a cold stress

test in previous studies.13 As effect size in plasma, we used the Hedges corrected version of Cohen’s d (dcorrected = d * (nsubjects - 2)/

(nsubjects - 1.25))
67 calculated based on the change in cortisol plasma levels (log2-transformed) after 15 min in our study (p-value =

0.012). For power calculation, the pwr.t.test function of the pwr R package (version 1.3.0) was used. Under these assumptions,

58 (57.23) participants would have been needed to detect the change with 80% power at the selected a.

Network generation

Knowledge-based networks were constructed based on the annotated super- and sub-pathway structure of metabolites. This struc-

ture provides a quick overview of available metabolites from different platforms.

Network inference of Gaussian Graphical Models (GGMs) is based on partial correlations of metabolite concentrations/abun-

dances (single fluid, imputed and log2-transformed data). These models have previously demonstrated to reconstruct biological

pathways from cross-sectional metabolomics data derived from Biocrates and Metabolon platforms.14 To calculate partial correla-

tions for the HuMet datasets we used the shrinkage estimator approach ‘‘GeneNet’’, which is available within the R packageGeneNet

(version 1.2.14), choosing the ‘‘dynamic’’ method for estimation. This method relies on the function dyn.pcor implemented within the

R package longitudinal (version 1.1.12), which takes the longitudinal data structure with repeated measurements from the same

participant into account.17 If both dynamic partial correlation and Pearson correlation between two metabolites were statistically
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significant at a 5% significance threshold, pairwise metabolite connections were integrated into the network. Thereby, the user can

choose between Bonferroni or FDR correction for multiple testing or restrict edges in the displayed network to those greater than

several pre-defined dynamic partial correlation values.

Using this approach, we inferred and provide multiple single fluid networks based on one or more plasma or urine datasets from

different platforms. For the generation of the multi-fluid network based on the plasma and urine datasets from the Metabolon HD4

platform, we merged the corresponding single fluid networks by connecting the same metabolites measured in plasma and urine by

an additional edge, closely following the procedures reported in Do et al. for creating an overlaid network.15

ADDITIONAL RESOURCES

Implementation of the web-based repository
The HuMet Repository is written in R57 using shiny, an R package that enables setting up web-based graphical user interfaces (GUIs)

while allowing to execute R code on the backend,62 and supporting packages. All R packages used for building the interactive HuMet

Repository are listed in the key resources table.

The repository loads the preprocessed data, metabolite information, sample information upon session start. Thereafter, the repos-

itory is reactive to the user’s choices of options. These include exclusion of data points due to selected time points, subjects, and

platforms. The repository visualizes the chosen data in interactive plots that, e.g., provide additional information via hover-over func-

tionality, allow for zooming, and data-dependent coloring of data points.

The datasets for this study can be found in the Download section of the HuMet Repository: https://humet.org.

Data from the non-targeted metabolomics platform is available at the MetaboLights Database: http://www.ebi.ac.uk/metabolights/

MTBLS89.
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