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ABSTRACT
Growing evidence shows that the lung is an organ prone to injury by
diabetes mellitus. However, the molecular mechanisms of these
pulmonary complications have not yet been characterized
comprehensively. To systematically study the effects of insulin
deficiency and hyperglycaemia on the lung, we combined proteomics
and lipidomicswith quantitative histomorphological analyses to compare
lung tissue samples from a clinically relevant pig model for mutant INS
gene-induced diabetes of youth (MIDY) with samples from wild-type
littermate controls. Among others, the level of pulmonary surfactant-
associated protein A (SFTPA1), a biomarker of lung injury, was
moderately elevated. Furthermore, key proteins related to humoral
immune response and extracellular matrix organization were
significantly altered in abundance. Importantly, a lipoxygenase
pathway was dysregulated as indicated by 2.5-fold reduction of
polyunsaturated fatty acid lipoxygenase ALOX15 levels, associated
with corresponding changes in the levels of lipids influenced by this
enzyme. Our multi-omics study points to an involvement of reduced
ALOX15 levels and an associated lack of eicosanoid switching as
mechanisms contributing to a proinflammatory milieu in the lungs of
subjects with diabetes mellitus.
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INTRODUCTION
Diabetes mellitus alongside its associated complications has emerged
as a global health problem, the prevalence of which has increased over
the past decades. Diabetes causes profound long-term molecular

effects on multiple tissues and organs. Traditionally, the chronic
complications of diabetes are classified as macrovascular and
microvascular complications (Vithian and Hurel, 2010; Hinkel
et al., 2017; Kleinwort et al., 2017). The rich vascularization of the
lungs and the abundance of connective tissue suggests a susceptibility
to diabetic microvascular damage (Mameli et al., 2021). The
pathophysiology of pulmonary symptoms in diabetes is complex
and thus far not fully understood. In addition, pulmonary damage is
mostly subclinical and therefore difficult to detect (Mameli et al.,
2021; Hsia and Raskin, 2007). Multiple studies have pointed to
various pulmonary complications in diabetes (reviewed by Mameli
et al., 2021; Kolahian et al., 2019; Rajasurya et al., 2020). In
particular, an increased susceptibility to respiratory infections is
frequently observed in patients with diabetes. As the respiratory tract is
constantly exposed to pathogens, defence mechanisms in the lung are
crucial. Higher hospitalization and mortality rates were observed in
patients with diabetes with viral or bacterial infections such as
influenza (Klekotka et al., 2015) and COVID-19 (Lim et al., 2021).
Additionally, diabetes significantly increases mortality rates in
patients with idiopathic pulmonary fibrosis (Hyldgaard et al., 2014).
Furthermore, individuals with diabetes are at increased risk to develop
further pulmonary conditions such as asthma, pulmonary fibrosis and
chronic obstructive pulmonary disease (COPD) (Ehrlich et al., 2010).

Thus far, the research has been mainly focused on epidemiological
associations between diabetes and impaired lung function. However,
for prevention and intervention strategies, it is crucial to understand
underlying molecular mechanisms. Several rodent models have been
established and provided valuable insights into the onset and
progression of diabetes (King, 2012). Streptozotocin (STZ)-induced
β-cell injury in rodents is commonly used as a model of type 1 diabetes
(Furman, 2021). However, the confounding effects of STZ, especially
on the immune system (Muller et al., 2011), complicate the
interpretation of the findings. Furthermore, rodent models frequently
display lower clinical relevance due to fundamental physiological
differences from humans. In this context, porcine models, which better
reflect the human system, are becoming increasingly important in
diabetes research to bridge the gap between proof-of-concept studies in
rodents and clinical trials (Renner et al., 2020). The pig is a valuable
model in the context of respiratory medicine, as porcine and human
lungs share many anatomical, histological, biochemical and
physiological characteristics (Judge et al., 2014). Furthermore,
functional similarities of the porcine host defence proteins with their
human counterparts make the pig an excellent model to study the
pathogenesis of respiratory inflammation (Rogers et al., 2008). We
thus investigated lung samples from INSC94Y transgenic pigs, a tailored
large animal model for mutant INS gene-induced diabetes of youth
(MIDY), characterized by impaired insulin secretion, β-cell loss, and
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chronic hyperglycaemia. MIDY pigs exhibit a stable diabetic
phenotype without further manipulation because of a clinically
relevant impairment of β-cells (Renner et al., 2013). Furthermore,
MIDY pigs develop diabetes-related alterations in various tissues
including the myocardium (Hinkel et al., 2017), retina (Kleinwort
et al., 2017), immune cells (Giese et al., 2020), liver (Backman et al.,
2019) and adipose tissue (Renner et al., 2020; Flenkenthaler et al.,
2021).
In the present study, proteomics and targeted analysis of relevant

lipid molecules were performed on lung tissue samples from the
Munich MIDY pig biobank (Blutke et al., 2017a) to systematically
address pulmonary changes in response to chronic insulin deficiency
and hyperglycaemia. Additional immunohistochemical and
quantitative morphological analyses were carried out to localize
differentially abundant key molecules in their pathophysiological
context.

RESULTS
Overview of proteome differences
To investigate the molecular effects of chronic insulin deficiency
and hyperglycaemia on the lung tissue proteome, we performed a
label-free liquid chromatography (LC)-tandem mass spectrometry
(MS/MS) analysis of lung samples fromMIDY and wild-type (WT)
animals. Using data-independent acquisition (DIA) (Fig. 1A), we
identified 45,411 distinct peptides from 5465 protein groups with
high confidence (false discovery rate <0.01) (Tables S1 and S2).
The dataset has been submitted to the ProteomeXchange
Consortium via the PRIDE partner repository (PXD038014).
Quantitative analysis using the MS-EmpiRe workflow (Ammar
et al., 2019) detected 265 proteins changed in abundance between
MIDY and WT samples with Benjamini–Hochberg-corrected
P-value ≤0.05 (Table S3), out of which 61 proteins were changed
in abundance by at least 1.5-fold (Fig. 1B).

Fig. 1. Quantitative proteome analysis
of lung tissue from WT and MIDY pigs.
(A) Experimental design. Lung tissue
proteomes from the MIDY and WT
animals were analysed using a multi-
injection gas-phase fractionation (GPF)
data-independent acquisition (DIA) as
described previously (Pino et al., 2020;
Demichev et al., 2020). (B) Volcano plot
visualization of proteome abundance
changes between MIDY and WT samples.
Protein abundance changes with
Benjamini–Hochberg-corrected P-value
≤0.05 and fold change ≥1.50 in the MIDY
lung are coloured in red and blue for
downregulation and upregulation,
respectively. (C) Abundance change of
proteins that are part of the extracellular
matrix according to Naba et al. (2012).
The colours of the circles correspond to
the log2(fold change) of proteins (red
indicates downregulation and blue
indicates upregulation) and the sizes of
the circles indicate the significance of the
protein abundance change. FDR, false
discovery rate. (D) Pre-ranked enrichment
analysis using STRING with gene sets
according to Gene Ontology (GO)
biological process databases was used to
reveal processes enriched in the top
(downregulated) or bottom (upregulated)
of a ranked list of genes. Significantly
enriched GO biological processes
(FDR<0.05) were summarized with
REVIGO by grouping semantically similar
ontology terms. Processes related to
downregulated proteins (left column),
upregulated proteins (right column) and
simultaneously related to more and less
abundant proteins (middle column) are
shown. The sizes of the circles indicate
the corresponding numbers of the
quantified proteins (referred genes
mapped in the figure) associated with the
pathway, and colours indicate the
significance of enrichment. Fold
enrichment represents the magnitude of
overrepresentation.
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The protein with the highest abundance increase (3.6-fold) in
MIDY lungs was ethylmalonyl-CoA decarboxylase 1 (ECHDC1).
Likewise, the levels of other proteins involved in lipid catabolic
processes, such as oestrogen sulfotransferase (SULT1E1), fatty
acid-binding protein 4 (FABP4), apolipoprotein A4 (APOA4) and
carboxylic ester hydrolase (CES1), were elevated. Furthermore,
members of the small leucine-rich proteoglycan (SLRP) family
were more abundant in MIDY versus WT samples. The most
prominent was asporin (ASPN) with a 1.9-fold increase.
Additionally, correlation analysis revealed a significant correlation
between the levels of SLRP proteins (Fig. S1). Pulmonary
surfactant-associated protein A (SFTPA1) was also elevated
in MIDY lungs, albeit the abundance change was moderate
(Benjamini–Hochberg-corrected P-value=0.005,∼1.5-fold increase).
Among the most prominently reduced proteins in MIDY

lungs were carboxypeptidase M (CPM, 2.7-fold decrease) and
polyunsaturated fatty acid (PUFA) lipoxygenase ALOX15
(ALOX15, 2.6-fold decrease). Several members of the complement
and coagulation cascades were also reduced, of which complement
component C6 (C6) was the most pronounced with a 1.8-fold
decrease. A large fraction of differentially abundant proteins inMIDY
compared to WT pigs were extracellular matrix (ECM) proteins. We
classified these proteins into the following groups: secreted factors,
proteoglycans, ECM regulators, ECM glycoproteins, ECM-affiliated
proteins and collagens (Fig. 1C). Similarly, proteins involved in the
biological processes and pathways related to insulin homeostasis are
visualized in Fig. S2.
Furthermore, to functionally characterize proteome alterations

between MIDY and WT lungs, a pre-ranked gene set enrichment
analysis using STRING was performed. The detailed results of the
enrichment analysis are provided in Table S4 and are visualized in
Fig. 1D. Gene sets, such as ‘acute-phase response’, ‘regulation of
humoral immune response’, ‘blood coagulation’, ‘regulation of
phagocytosis’, ‘platelet degranulation’, ‘cell killing’ and ‘humoral
immune response’, were enriched among the proteins decreased in
abundance, whereas proteins related to ‘keratan sulphate biosynthetic
process’, ‘cornification’, ‘glycosaminoglycan biosynthetic process’
and ‘intermediate filament cytoskeleton organization’ were enriched
among the upregulated proteins. An enrichment of proteins related
to ‘lipid storage’, ‘mucopolysaccharide metabolic process’ and
‘aminoglycan metabolic process’ was simultaneously found in the
sets of more and less abundant proteins.

Protein localization studies and quantitative stereology
In lung tissue sections of MIDY and WT pigs, ALOX15
immunoreactivity was present in mononuclear cells within alveolar
walls and inside the vascular lumina (Fig. 2A,B). Confirming the
significantly reduced ALOX15 protein levels in theMIDY lung tissue
identified by proteomic analysis, quantitative stereological analysis
revealed a significantly decreased volume density of ALOX15-
positive cells within the lung tissue (Fig. 2C). The volume density of
interstitial connective tissue in the lung tissue (excluding air-filled
spaces) of MIDY pigs was slightly but not significantly increased
(P=0.19) compared to that of WT animals (Fig. S3).

Overview of lipidome differences
To clarify if the markedly reduced levels of ALOX15 in the MIDY
animals affect the total level of eicosanoids, we used mass
spectrometry-based targeted lipidomics and compared eicosanoid
levels fromMIDYandWT lungs. The results are shown in Table S5.
A global correlation map of all quantified eicosanoids is shown in
Fig. 3A and Table S6. Hierarchical clustering revealed several
clusters of molecules that share the same biosynthetic pathway and
show a similar regulation trend across animals. Hierarchical
clustering revealed four homogenous regions, of which one,
consisting of lipids produced mainly by a lipoxygenase (LOX)
pathway, was particularly interesting. Magnification of this cluster
(Fig. 3A, right inset) shows a heatmap of lipids with strong
correlation to each other, and some of these correlations remained
significant after adjusting for all pairwise comparisons using the
Benjamini–Hochberg method. Focusing on the hypothesis of
eicosanoid co-regulation in the MIDY lung, we visualized highly
correlated (|ρ|>0.8) lipids as a network (Fig. 3B,C). The community
detection algorithm revealed several densely populated
subnetworks. To visualize whether distinct communities contain
lipids that share the same biosynthetic pathway, we coloured the
nodes according to the substrate (Fig. 3B) and enzyme (Fig. 3C). In
agreement with Fig. 3A, dense clusters with strong associations
across biomolecule classes were apparent. Fig. 3C further shows a
network for the selected community with significantly (ρ>0.8 and
Benjamini–Hochberg-corrected P-value <0.05) correlated lipids.
Fig. 3D shows the trend of reduced eicosanoid levels in MIDY
compared to WT lungs from the selected cluster (cluster 1 in
Fig. 3A, cluster 2 in Fig. 3C). Next, principal component analysis
(PCA) was performed on the entire dataset (Fig. 4A), which showed

Fig. 2. Analysis of ALOX15 in lung sections of WT and MIDY pigs. (A,B) Immunohistochemical detection of ALOX15 in paraffin lung sections of WT (A)
and MIDY pigs (B). Histological landmarks [alveoli (a), blood vessels (v) and bronchioli (b)] are indicated. ALOX15-positive cells (dark brown) are present
within alveolar septae (arrowheads) and inside vascular lumina. Chromogen: DAB; nuclear counterstain: haemalum. Scale bars: 100 µm. (C) Volume
densities of ALOX15-positive cells within the lung of WT and MIDY pigs. Statistical significance of the difference was assessed using the Mann–Whitney
U-test. The bar diagrams show means and standard deviations.
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moderate separation between samples fromMIDY andWT animals.
A volcano plot shows the abundance change of each quantified
eicosanoid (Fig. 4B). Furthermore, some of the PUFA precursors in
a free state were quantified (Fig. 4C; Table S8).

Multi-omics data integration
For multi-omics data integration, co-inertia analysis (CIA) (Meng et al.,
2014) was used. Graphical representation of samples (Fig. 5A) and
variables (Fig. 5B) on a lower-dimensional space allows interpretation

Fig. 3. Correlation analysis of eicosanoid levels from WT and MIDY lungs. (A) Global correlation map of eicosanoid levels on the left with an inset of the
selected cluster (1) on the right. The correlation was estimated using the non-parametric Spearman rank correlation coefficient. Red and blue patches in the
correlation map indicate positive and negative correlations, respectively. Columns and rows of the heatmap are annotated for each lipid, based on the
substrates and enzymes involved in their production. The regulation column indicates the abundance change of eicosanoids in MIDY versus WT lungs. The
correlation map was partitioned into homogenous regions using the k-means method (k=4). The correlation map on the right is labelled with an asterisk
according to the significance (P-value) of the correlation after multiple testing correction for all pairwise comparisons using the Benjamini–Hochberg method.
*P<0.05; **P<0.01; ***P<0.001. (B,C) Correlation between eicosanoid levels shown as a network. Each node corresponds to a single lipid and edges are
drawn between highly correlated (|ρ|>0.8) molecules. Nodes with dense connections were grouped using the random walk-based community detection
algorithm (coloured drawings around the group of nodes). The networks with nodes are coloured based on a substrate (B) and enzyme (C), with an inset of
the selected community network (2) (right) that was filtered for the significant correlations (Benjamini–Hochberg-corrected P-value <0.05). The edge
thickness in the right cluster (2) corresponds to the magnitude of the correlation (ρ) and the size of the node to the number of its adjacent edges. AA,
arachidonic acid; COX, cyclooxygenase; CYP, cytochrome P450; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; LA, linoleic acid; LOX,
lipoxygenase; NE, non-enzymatic. (D) Eicosanoid levels from the selected clusters (cluster 1 in panel A, cluster 2 in panel B) in MIDY versus WT lungs.
Statistical significance of the difference was assessed using two-tailed unpaired Welch’s t-test. The bar diagrams show means and standard deviations.
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of global variance structure and identification of the most informative
biomolecules across datasets. CIA of the proteome (circle) and lipidome
(square) revealed a significant relationship (RV coefficient=0.78, 500
permutations, P=0.041). The corresponding score plot shows the
proteins and lipids responsible for partitioning MIDY and WT samples
on the CIA plot. Although it does not display clear clusters, the CIA
showed trends towards separation of MIDY and WT samples.

DISCUSSION
To reveal biological processes and pathways altered by insulin
deficiency in the lung and to identify molecular key drivers of these
alterations, a multi-omics analysis combining in-depth DIA
proteomics, and quantitative readouts of relevant lipid molecules
was performed.
The crucial lipid–protein mixture that reduces alveolar surface

tension and facilitates breathing is the pulmonary surfactant (Milad
and Morissette, 2021), which covers the entire alveolar surface of
the lungs (Zuo et al., 2008). Defects in the stimulation of pulmonary
surfactant production have been observed in various medical
conditions such as COPD (Obeidat et al., 2017) and idiopathic
pulmonary fibrosis (Beike et al., 2019). These defects might also be
contributing factors to airway dysfunction in diabetes (Foster et al.,
2010). Surfactant proteins leak from the alveolar space into the
bloodstream, when the alveolar–capillary barrier is damaged, which
makes them useful biomarkers for lung injury (López-Cano et al.,
2022). We detected a ∼50% increase of the pulmonary surfactant-
associated protein A (SFTPA1, also known as SP-A) in MIDY
compared to WT pig lungs (Benjamini–Hochberg-adjusted P-value

<0.005). SP-A is the major protein component of the surfactant and
regulates surfactant phospholipid synthesis, secretion and recycling
(Khubchandani and Snyder, 2001). Insulin is known to inhibit
expression of SP-A in the lung (Rucka et al., 2013; Miakotina et al.,
2002); therefore, increased abundance of SP-A in our study is in line
with insulin deficiency in MIDY pigs. The clinical relevance of our
finding is supported by a randomized population-based study
revealing elevated circulating SP-A levels in the blood of patients
with glucose intolerance and diabetes (Fernández-Real et al., 2008).
SP-A levels were also elevated in the lung of obese diabetic rats
compared to lean nondiabetic controls (Foster et al., 2010). The
observed increased abundance of SP-A in the MIDY model may
reflect the diabetes-associated impairment of pulmonary diffusing
capacity reported in children and adolescents with type 1 diabetes
(Mameli et al., 2021).

Besides pulmonary surfactant, the composition and function of lung
ECM also become markedly deranged due to pathological tissue
remodelling in diabetes mellitus (Zhou et al., 2018). Excessive
production of ECM components and nonenzymatic glycation of ECM
proteins due to hyperglycaemia lead to matrix stiffening, remodelling
the lung tissue structure and promoting pulmonary fibrosis. Secreted
factors such as transforming growth factor β1 (TGFB1) and connective
tissue growth factor (CTGF, also known as CCN2) are the notorious
pro-fibrotic agents involved in the initiation and progression of
pulmonary fibrosis (Tam et al., 2021). Elevated levels of TGFB1 were
found in the lungs of STZ-induced diabetic rats and were associated
with pulmonary fibrosis (Talakatta et al., 2018). However, in the
MIDY lung, the abundance of TGFB1 was not increased, and CTGF

Fig. 4. Eicosanoid levels in lung tissue
from WT and MIDY pigs.
(A) Unsupervised principal component
analysis (PCA) based on log-transformed
lipid levels from MIDY (animal identifiers:
737, 739, 740 and 744) and WT (animal
identifiers: 736, 738, 741, 743 and 745)
animals. The first two principal
components (PCs) explained 67.4% of
the total variance. (B) Volcano plot of
quantified eicosanoid levels obtained from
the univariate statistics showing log2(fold
change) and P-values determined by
two-tailed unpaired Welch’s t-test.
(C) Polyunsaturated fatty acid precursor
levels in a free state from MIDY and WT
lungs. Statistical significance of the
difference was assessed using two-tailed
unpaired Welch’s t-test. The bar diagrams
show means and standard deviations. AA,
arachidonic acid; ALA, α-linolenic acid;
DGLA, dihomo-γ-linolenic acid; DHA,
docosahexaenoic acid; EPA,
eicosapentaenoic acid.
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was even reduced by 1.7-fold (Benjamini–Hochberg-corrected P-
value=0.01). The absence of a pro-fibrotic environment in the MIDY
lung might be related to the elevated levels of SLRPs, which modulate
the expression and activity of TGFB1 and CTGF and could therefore
potentially protect the tissue against their deleterious effects (Nastase
et al., 2014). Furthermore, SLRP levels were correlated significantly
and, together, SLRPs could counteract the vicious cycle observed
previously in the diabetic lung, being characterized by elevated
production of the pro-fibrotic growth factors and increased matrix
deposition. In line with this, analysis of histological lung tissue
sections fromMIDYandWTpigs did not reveal evidence of fibrosis in
the MIDY lung. The levels of different members of SLRPs were also
elevated in other diabetic conditions such as human diabetic
nephropathy (Schaefer et al., 2001), diabetic foot ulceration
(Theocharidis et al., 2022), type 2 diabetes and obesity (Bolton
et al., 2012). In the case-cohort study, decorin (DCN) – one of the best
characterized SLRPs – was selected as one of the most important
biomarkers for type 2 diabetes prediction (Thorand et al., 2021).
Furthermore, the occurrence of sterile inflammation, characterized by a
low-grade inflammatory response, is considered to contribute to
pulmonary complications in hyperglycaemic conditions. Reduced
complement system activity and humoral immunity associated with a
reduced response of specialized immune cells increase the risk of
infections in patients with diabetes (Muller et al., 2005). In line with
this, gene set enrichment analysis of proteomics data from the MIDY
lung revealed proteins related to the regulation of the humoral immune
response to be the most overrepresented in the set of downregulated
proteins (among others, serpin family A members, complement and
coagulation proteins). In line with this, a proteomics study of human
type 1 diabetes serum revealed dysregulation of proteins involved in
innate immune responses and in the activation of the complement
cascade (Zhang et al., 2013). Taken together, the humoral immune
response appears to be compromised in the MIDY lung, potentially
worsening the defence response.
A particularly novel and interesting finding of this investigation is a

prominent, 2.5-fold downregulation of PUFA lipoxygenase ALOX15
in the MIDY lung. Alterations in ALOX15 regulation have been
observed in various cardiovascular, renal, neurological and metabolic
disorders (reviewed by Singh and Rao, 2019). Although the existence

of ALOX15 orthologues has been known for several decades, their
biological role is still under discussion. Like other lipoxygenases,
ALOX15 is involved in the metabolism of PUFAs to form
biologically active lipid mediators. The physiological substrates of
ALOX15 are linoleic acid (LA), α-linolenic acid (ALA), γ-linolenic
acid (GLA), arachidonic acid (AA), eicosapentaenoic acid (EPA) and
docosahexaenoic acid (DHA). In the lung, ALOX15 products can
stimulate or resolve inflammation and stimulate tissue repair (Abrial
et al., 2015). A recent review highlighted the importance of ALOX15
in the formation of key lipid mediators to terminate inflammation
during lung cancer in humans (Tian et al., 2017). The strong
downregulation of ALOX15 in the MIDY lung appears to be
indicative of a disturbed immune response. Besides, leukotriene A(4)
hydrolase (LTA4H) was moderately elevated in the MIDY lung.
LTA4H converts leukotriene A4 (LTA4) to leukotriene B4 (LTB4)
and therefore plays an important role in the generation of pro-
inflammatory leukotrienes. A shift from leukotriene to lipoxin
production, also known as eicosanoid class switching, is necessary
to resolve inflammation and to prevent the progression to chronic
inflammation (Ringholz et al., 2014). The inverse regulation of
LTA4H and ALOX15 therefore possibly indicates the unbalanced
production of pro-inflammatory lipid mediators. This agrees with the
observed dysregulation of proteins related to the humoral immune
response in the MIDY lung discussed above. Furthermore, the
lipidomics dataset showed a trend of lower levels of lipoxygenase
products in the MIDY lung, which is concordant with the strongly
reduced protein levels of ALOX15. Eicosanoid levels derived
from the lipoxygenase pathway were strongly correlated, suggesting
an orchestrated co-regulation of these molecules. The most
pronounced changes in the levels of these molecules were
downregulation of 14-hydroxydocosahexaenoic acid (14-HDHA)
and 12-hydroxyeicosatetraenoic acid (12-HETE). 12-HETE, which
can be produced by ALOX15, is known to have pro- and anti-
inflammatory effects (Snodgrass and Brüne, 2019). 14-HDHA, which
was reduced by ∼2.2-fold, is produced through the ALOX15-
catalyzed oxygenation of DHA and is the key precursor of maresin, an
anti-inflammatory lipid mediator (Snodgrass and Brüne, 2019). Taken
together, strongly reduced ALOX15 and associated eicosanoid levels
reflect imbalanced production of pro- and anti-inflammatory

Fig. 5. Omics data integration. (A,B) Multiple co-inertia analysis of lipidome and proteome data from the MIDY (animal identifiers: 737, 739, 740 and 744)
and WT (animal identifiers: 736, 738, 741, 743 and 745) lungs showing the first two components in the sample (A) and variable (B) space. Circles and
squares represent the proteome and lipidome data of a given animal, respectively. Short lines in the sample space (A) indicate a higher cross-omics
correlation. The RV coefficient (RV=0.78, 500 permutations, P=0.04) shows the correlation of two datasets. An RV value close to 1 indicates a strong
correlation. Proteins and lipids with high scores in component 1 and component 2 are labelled in a variable space (B).
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mediators in the MIDY lung and provide molecular insights into the
impoverished ability of inflammation resolution as a hallmark of
diabetic lung disease.
In conclusion, this is the first multi-omics characterization of lung

tissue in a clinically relevant large-animal model of insulin-deficient
diabetesmellitus. The fact that – for logistic reasons – only female pigs
could be maintained for 2 years represents a limitation of this study.
Another limitation of the study is the relatively small group size, which
may explain why some of the findings are only trends close to the
significance threshold. However, the combination ofmultiple layers of
molecular information with rigorous statistical and bioinformatic
approaches revealed previously unreported functional consequences
of insulin deficiency for the lungs. To rule out the possibility that the
proteome differences found betweenMIDYandWT samples could be
due to different levels of blood contamination, we compared the
concentrations of the of haemoglobin subunit β (HBB) in the samples
(Fig. S4). The fact that these did not differ between the two groups
argues against a systematic bias of the results by different levels of
blood contamination. The generated datasets further provide an
important resource for future studies on the progression of pulmonary
complications and other associated comorbidities in diabetes mellitus.
In particular, it will be interesting to see if the molecular alterations
observed in lung tissue of MIDY pigs are reflected in samples from
patients with severe insulin-deficient diabetes or other forms of
diabetes. Furthermore, MIDY pigs provide an interesting model for
testing if diabetes treatments, e.g. insulin replacement therapies or
SGLT2 (also known as SLC5A2) inhibitors, can revert the observed
pulmonary alterations.

MATERIALS AND METHODS
Biological samples
Samples were taken from female German Landrace-Swabian-Hall crossbred
pigs. Female MIDY pigs (hemizygous INSC94Y transgenic; n=4) were
maintained with suboptimal insulin treatment for 2 years (fasting plasma
glucose levels >250 mg/dl), together with female WT littermates (n=5). At the
age of 2 years, all pigs were sacrificed for generation of an extensive biobank
collection (the ‘Munich MIDY Pig Biobank’) of representative tissue samples
from a broad spectrum of different organs and tissues (Blutke et al., 2017).
Overnight fasted pigs were anesthetized by intramuscular injection of ketamine
(Ursotamin®, Serumwerk Bernburg) and azaperone (Stresnil®, Elanco Animal
Health), followed by intravenous application of ketamine and xylazine (2%
Xylazin, Serumwerk Bernburg). Animals were then euthanized under
anaesthesia by intravenous injection of T61® (Intervet) and immediately
subjected to necropsy. WT and MIDY pigs were euthanized in alternate order.
After death, the carcasses were suspended at the hind legs and the head was
dissected to achieve maximal exsanguination. Necropsy, collection and
processing of representative tissue samples were performed according to
established standard sampling protocols for porcine biomedical models
(Albl et al., 2016). Representative samples of fresh lung tissue were
systematically randomly sampled, excised, subdivided and differentially
processed for different downstream analyses (Blutke et al., 2017). For
molecular profiling (proteomic) analyses, tissue samples were shock frozen on
dry ice and then stored at −80°C until further investigation. For histology,
immunohistochemistry and quantitative histomorphological analyses, tissue
samples were routinely processed for paraffin histology (Blutke et al., 2017).
All experiments were performed according to the German AnimalWelfare Act
and approved by the Government of Upper Bavaria, following the ARRIVE
guidelines and Directive 2010/63/EU for animal experiments.

Proteomics
Sample preparation
Frozen lung tissue samples werewashed briefly in ice-cold phosphate-buffered
saline (PBS) supplemented with protease inhibitors (Roche Diagnostics,
Mannheim, Germany). Samples were snap frozen in liquid nitrogen and
transferred into prechilled tubes and cryo-pulverized in a CP02 Automated Dry

Pulverizer (Covaris, Woburn, MA, USA) using an impact level of five
according to the manufacturer’s instructions. Powdered tissuewas lysed in 8 M
urea/0.5 M NH4HCO3 supplemented with protease inhibitors (Roche
Diagnostics) by ultrasonication (18 cycles of 10 s) using a Sonopuls
HD3200 (Bandelin, Berlin, Germany). Pierce 660 nm Protein Assay
(Thermo Fisher Scientific, Rockford, IL, USA) was used for protein
quantification. 20 µl of lysate containing 50 µg of protein was processed for
digestion. Briefly, disulfide bonds were reduced [45 mM dithiothreitol/20 mM
tris(2-carboxyethyl) phosphine, 30 min, 56°C] and cysteine residues were
alkylated (100 mM iodoacetamide, 30 min, room temperature), followed by
quenching of excess iodoacetamide with dithiothreitol (90 mM, 15 min, room
temperature). Proteins were then digested sequentially, firstly with Lys-C
(FUJIFILM Wako Chemicals Europe GmbH, Neuss, Germany) for 4 h (1:50
enzyme to protein ratio) and subsequently with modified porcine trypsin
(Promega,Madison,WI, USA) for 16 h at 37°C (1:50 enzyme to protein ratio).
Peptides were then desalted using a Sep Pak C18 cartridge (Waters, Milford,
MA, USA) according to the manufacturer’s instructions. The SepPak eluents
were dried before analysis using a vacuum centrifuge.

Nano-LC-MS/MS analysis
1 μg of the digest was injected on an UltiMate 3000 nano-LC system coupled
online to a Q-Exactive HF-X instrument (Thermo Fisher Scientific) operated in
the DIA mode. Peptides were transferred to a PepMap 100 C18 trap column
(100 µm×2 cm, 5 µM particles, Thermo Fisher Scientific) and separated on an
analytical column (PepMap RSLC C18, 75 µm×50 cm, 2 µm particles,
Thermo Fisher Scientific) at 250 nl/min with an 80-min gradient of 5-20%
of solvent B, followed by a 9-min increase to 40% solvent B. After the gradient,
the columnwaswashedwith 85% solvent B for 9 min, followed bya 10-min re-
equilibration with 3% solvent B. Solvent A consisted of 0.1% formic acid in
water and solvent B of 0.1% formic acid in acetonitrile. The Q-Exactive HF-X
instrument was configured to acquire 50×12 m/z-wide (in the range of 400-
1000 m/z) precursor isolation window DIA spectra [15,000 resolution;
automatic gain control (AGC) target, 1×106; maximum ion injection time
(IIT), 20 ms; nominal collision energy (NCE), 27%] as described previously
(Pino et al., 2020; Shashikadze et al., 2023) using a staggered window pattern
(Amodei et al., 2019) with window placements optimized by Skyline software
(v. 21.1) (MacLean et al., 2010). Precursor spectra (in the range of 390-
1010 m/z; 60,000 resolution; AGC target, 1×106; maximum IIT, 60 ms;
+3H assumed charge state) were interspersed among every 50 ms/ms
spectra. Chromatogram libraries using gas-phase fractionation (Searle et al.,
2018) were built using the same LC settings. Six injections of pooled digest
were performed with 25×4 m/z-wide DIA (30,000 resolution; AGC target,
1×106; maximum IIT, 55 ms; NCE, 27%; +3H assumed charge state) using
a staggered window pattern with window placements optimized by Skyline
software (v. 21.1) (i.e. 400.43-502.48, 500.48-602.52, 600.52-702.57, 700.57-
802.61, 800.61-902.66 and 900.66-1002.70), producing 300×2 m/z-wide
windows spanning from 400 to 1000 m/z after deconvolution. Table S9
contains the actual windowing schemes.

Identification, quantification and bioinformatics
Raw data processing was carried out using DIA-NN (v1.8) (Demichev et al.,
2020). Identification was based on predicted spectral libraries generated by the
built-in deep-learning-based spectra and retention time predictor in DIA-NN
and further constrained by experimental data from project-specific gas-phase
fractionation-based libraries (also generated by DIA-NN). For all searches, the
Sus scrofa protein database (UniProt Reference Proteome, taxonomy 9823,
proteome ID UP000008227, last modified 16 June 2021, 49,792 entries)
alongside the MaxQuant contaminants fasta file (Tyanova et al., 2016) were
used. The enzyme for digestion was set to trypsin and one missed cleavagewas
allowed. Only peptides with a charge state of +2, +3 and +4 were considered.
Cysteine carbamidomethylationwas set as a fixedmodification. The precursors
were filtered at 1% false discovery rate. Retention time correction was
performed automatically by DIA-NN and the quantification strategy was set to
‘Robust LC’ (high accuracy mode). Similarly, mass tolerance was determined
automatically byDIA-NN as described previously (Demichev et al., 2020) and
was set to 8 ppm and 20 ppm for MS1 and MS2, respectively. The top six
fragments (based on their reference library intensities) were used to calculate
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raw intensities for precursors. The ‘Genes’ column was used to count unique
proteins (as gene products were identified and quantified using proteotypic
peptides only). All other settings were left as default. Table S10 contains
detailed description of DIA-NN parameters used in this study. Themain output
containing precursor level data from DIA-NN was used for the downstream
analysis in R (https://www.r-project.org/) using custom scripts. Briefly, the
output was filtered at 1% false discovery rate, using experiment-wide q-values
for protein groups and both experiment-wide and run-specific q-values for
precursors. Non-proteotypic peptides, peptides with a low signal quality and
peptides derived from potential contaminants were excluded from further
analysis. Precursor intensities for different charge states were aggregated to the
peptide level by taking the sum of intensities. Peptide intensities were
normalized and proteins with at least two unique peptides detected in at least
three biological replicates of each condition were tested for differential
abundance using the MS-EmpiRe algorithm (Ammar et al., 2019). The
STRING-pre-ranked gene set enrichment analysis (Szklarczyk et al., 2019) was
used to reveal biological pathways associated with differentially abundant
proteins between MIDY and WT samples. Signed log-transformed P-values
were used as ranking metrics and the false discovery rate was controlled at 5%.
To minimize redundancy, significant Gene Ontology (GO) biological
processes were grouped into similar ontological terms with REVIGO (Supek
et al., 2011) at an allowed similarity of 0.7.

Targeted lipidomics
Sample preparation for analysis of PUFA-derived lipid mediators and
metabolites
An antioxidant cocktail consisting of 0.2 mg/ml butylated hydroxytoluene
(CAS 128-37-0; Merck, Darmstadt, Germany), 100 µM indomethacin (CAS
53-86-1; Merck) and 100 µM TPPU (CAS 1222780-33-7; Merck) was
added to 10-30 mg of the thawed tissue sample to protect the sample from
oxidation during sample preparation. Additionally, a deuterated internal
standard mix consisting of 14,15-DHET-d11, 15-HETE-d8, 20-HETE-d6,
8,9, EET-d11, 9,10-DiHOME-d4, 12(13)-EpOME-d4, 13-HODE-d4, PGB2-
d4 and LTB4-d4 (100 pg each; Cayman Chemical, Ann Arbor, USA) was
spiked in. Methanol and sodium hydroxide were added for protein
precipitation and alkaline hydrolysis at 60°C for 30 min. After solid-phase
extraction, the eluate was evaporated (Rivera et al., 2004) to obtain a solid
residue which was dissolved in 100 µl methanol/water (60:40 v/v). The
residues were analysed using an Agilent 1290 HPLC system with binary
pump, multi-sampler and column thermostat with a Zorbax Eclipse plus C-
18, 2.1×150 mm, 1.8 µm column using a gradient solvent system of aqueous
acetic acid (0.05%) and 50:50 acetonitrile/methanol. The flow rate was set at
0.3 ml/min and the injection volume was 20 µl. The HPLC was coupled
with an Agilent 6495 triple quadrupole mass spectrometer (Agilent
Technologies, Santa Clara, USA) with an electrospray ionization source.
Analysis was performed with multiple reaction monitoring (MRM) in
negative mode with at least two mass transitions for each compound. All
oxylipins were individually calibrated using authentic standards purchased
from Cayman Chemical in relation to the deuterated standard. Certified
MaxSpec® quality was used if available. If not, the uncertified standards
have been adapted to MaxSpec® standards of similar compounds.

Sample preparation for analysis of PUFAs
All compounds were purchased from Cayman Chemicals.

Preparation of tissue samples and quality controls
Porcine lung tissue samples were weighted into homogenization tubes with
ceramic beads (1.4 mm) (Bertin P000933-LYSK0A tubes). To each 1 mg of
frozen porcine lung tissue, 3 μl of a cooled mixture (4°C) of ethanol/phosphate
buffer (85:15, v/v) was added. Tissue samples were homogenized using a
Precellys® 24 homogenizer (PEQLABBiotechnologyGmbH,Germany) three
times for 30 s at 5500 rpm and 4°C, with 30 s pause intervals to ensure
constant temperature. 30 µl (equivalent to 10 mg) of the lung homogenates
were transferred into a 1.5 ml Eppendorf tube. Quality-control pool samples
were prepared in triplicates by taking out 20 µl from each study sample. The
pool sample was subsequently mixed and 30 µl was transferred into 1.5 ml
Eppendorf tubes.

Quality-control reference samples were prepared in triplicates in 1.5 ml
Eppendorf tubes by mixing 5 µl of the standard mixture consisting of AA,
ALA, LA, dihomo-γ-linolenic acid (DGLA), DHA and EPA (300 ng/ml)
with 45 µl of water. Blank (triplicate) and zero (single) samples were
prepared by transferring 30 µl of ethanol/phosphate buffer (85:15, v/v) into
1.5 ml Eppendorf tubes. Calibrators were prepared in 1.5 ml Eppendorf
tubes by successive dilutions (factor 3) in water/methanol (50:50, v/v) of the
calibration mixture consisting of AA, ALA, LA, DGLA, DHA and EPA
(2000 ng/ml) to reach nine calibrator points (cal.): 666.67 ng/ml (cal. 09) to
0.102 ng/ml (cal. 01). 30 µl of each calibrator point was then transferred to a
new 1.5 ml Eppendorf tube.

Every tube was pre-cooled in wet ice before starting sample preparation
and kept on wet ice all along the extraction procedure.

For accurate quantification, 10 µl of the internal standard mixture
consisting of AA-d5, DHA-d5 and EPA-d5 (ISTD mixture) (50 ng/ml)
was added to the samples, except the zero sample.

Extraction procedure
For lipid extraction, 150 µl of cold methanol (−20°C) was added to the
samples, followed by incubation for 10 min with vortexing every 3 min.
Protein precipitation was performed by centrifugation of the samples at
10,000 g for 15 min at 4°C. The supernatant (around 150 µl) was transferred to
a 1 ml Nunc 96-well polypropylene plate (Thermo Fisher Scientific), and the
volumewas adjusted with water to reach 1 ml (final methanol concentration of
15%) and mixed. Solid-phase extraction was then performed with a Strata-X
Micro 96-well plate, 33 µm, 2 ml (Phenomenex), using a positive pressure-96
processor (Waters). After solid-phase extraction plate conditioning with two
0.5 ml methanol washes and then two 0.5 ml water washes, 2×0.5 ml of each
sample were loaded on the SPE plate. After rinsing twice with 0.5 ml 10%
methanol in water (v/v), the analytes were eluted twice with 100 µl methanol
into a new 1 ml 96-well plate. Samples were transferred to a select-a-vial
96-well plate with 300 µl glass inserts (Analytical Services) and evaporated to
dryness at 30°C with nitrogen gas. Analytes were resuspended with 30 µl 50%
methanol in water (v/v), vortexed, and centrifuged for a few seconds at 1000 g
before direct injection into the analytical system.

LC-MS/MS analysis
All samples were measured with an Exion UHPLC-system coupled to a
QTRAP 6500+ mass spectrometer (SCIEX, Darmstadt, Germany) operated
with Analyst 1.6.3. Chromatographic separation was achieved using a
Kinetex C18 reversed phase column (1.7 μm, 100×2.1 mm, Phenomenex)
with a SecurityGuard Ultra Cartridge C18 (Phenomenex) precolumn, heated
at 40°C. Mobile phases A [water:acetonitrile (70:30, v/v)+100 µl acetic acid
(Honeywell Fluka, 15655660)] and B [acetonitrile/isopropanol (50:50,
v/v)] were used in a gradient program with an isocratic flow rate of
500 µl/min as follows: 0% B at 0 min, 70% B at 6.5 min, 100% B at
7.8 min, 100% B at 9.5 min, and 0% B at 11 min. The autosampler
was operated at 4°C with an injection volume of 10 µl of sample.

The coupled mass spectrometer was equipped with an electrospray
ionization Turbo-VTM source set to negative mode. Source parameters were
optimized to the following values: source temperature, 500°C; curtain gas
flow, 40 psi; ion spray voltage,−4000 V; ion source gas 1, 50 psi; ion source
gas 2, 40 psi. Metabolites were analysed via scheduled MRM (sMRM) with
nitrogen as the collision gas. All MRM transitions were optimized for each
compound, as well as the source parameters such as declustering potential,
collision energy, cell exit potential and entrance potential. The sMRM
detection window was set to 60 s. Acquisition time was about 8.5 min.

SciexOS software v2.2.0.5738 (SCIEX)was finally used for peak detection,
integration and quantitation of compounds (MQ4 algorithm). For
quantification, a weighted linear regression was calculated from extracted
calibrator samples for every compound using the area ratio between the analyte
and its internal standard. The values on the x-axis (ratio of the actual analyte
concentration and the actual calibrator concentration) were weighted by 1/x.

Bioinformatics
PCA was performed to discover natural grouping existing in the data. PCA
was built on log-transformed data using the prcomp function from the R
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package ‘stats’ (https://www.R-project.org/). To reveal eicosanoid
subclasses with a similar regulation pattern, correlation analysis with
rank-based approach (Spearman correlation) was used. The significance of
correlation (P-value) was corrected for all pairwise comparisons with the
Benjamini–Hochberg procedure using the R package ‘psych’ (https://cran.r-
project.org/package=psych). The correlation matrix was first subjected to
hierarchical clustering using complete linkage clustering as the clustering
method and the Spearman correlation as the distance measure (Gu et al.,
2016). The resulting heatmap was partitioned into four different clusters
using the k-means algorithm. A correlation matrix was also visualized as a
network using the R package ‘igraph’ (https://igraph.org/). Community
detection was performed using the walktrap algorithm, which attempts to
find densely populated subnetworks by random walks (Pons and Latapy,
2006). Focusing on similarities between proteomics and lipidomics data,
CIA was performed using the R package ‘omicade4’ (Meng et al., 2014) to
assess global measures for the co-variability of two datasets. The similarity
between the two datasets was evaluated with the parameter RV, which is a
multivariate extension of the Pearson correlation coefficient. The
significance of the RV coefficient was assessed with a permutation test
consisting of 500 iterations.

Histopathology, immunohistochemistry and quantitative
morphological analyses
For qualitative and quantitative histomorphological analyses, paraffin
sections stained with Haematoxylin and Eosin or Masson’s trichrome
stain (connective tissue stain) were examined. Immunohistochemical
detection of ALOX15 was performed using the following antibodies:
mouse monoclonal anti-ALOX15 (clone OTI7H6, #TATA504358,
Origene, 1:150), followed by biotinylated goat-anti-mouse secondary
antibody (#115-065-146, Jackson ImmunoResearch, 1:500) and
horseradish peroxidase-labelled avidin-biotin complex (#PK-6100, Vector
Laboratories). Immunoreactivity was visualized using 3,3′-diaminobenzidine
tetrahydrochloride dihydrate (DAB). Sections stained with buffer instead of
the primary antibody were used as the negative control. The volume density of
ALOX15-positively labelled cells within the lung [VV(ALOX15-positive cells/lung)]
was determined following the principle of Delesse (Howard and Reed, 2004)
and calculated as the sum of cross-sectional areas of ALOX15-positive cell
profiles, divided by the sum of cross-sectional areas of lung tissue
(excluding air-filled spaces) in 48±2 systematically randomly sampled
section areas per case. ALOX15-positive area densities were determined
by differential point counting, using an automated stereology system
(VIS-Visiopharm Integrator System v3.4.1.0 with newCAST software,
Visiopharm A/S, Denmark), as previously described (Backman et al.,
2019; Howard and Reed, 2004). In each case, >100,000 points were
counted. The volume density of interstitial connective tissue within the lung
[VV(interstitial connective tissue/lung)], was determined analogously in Masson
trichrome-stained lung tissue sections (counting >10,000 points per case).
All quantitative morphological analyses were performed in a masked
manner, i.e. without knowing the affiliation of the examined animals.
Statistical significance of the difference in the volume density of ALOX15-
positively labelled cells and volume density of interstitial connective tissue
in the lung between MIDY and WT samples were evaluated using two-
sample Mann–Whitney U-test.

Statistical analysis
During analysis, all samples were processed in parallel to avoid possible bias
related to different storage times. Histology and immunohistochemistry
were performed on lung tissue samples taken from exactly the same
locations as the proteomic and lipidomic analysis samples. All statistical
analyses were performed in R. Samples were analysed with a DIA method
with MS1 spectra interspersed every 50 ms/ms scans. Identification was
performed using DIA-NN (Demichev et al., 2020) and its built-in deep
learning-based spectra and retention time predictor alongside project-
specific narrow-window gas-phase fractionation-based library. A false
discovery ate cut-off of 1% was applied on precursor and protein levels. The
MS-EmpiRe workflow (Ammar et al., 2019) followed by a Benjamini–
Hochberg multiple testing correction was used to reveal differentially

abundant proteins. Correlation between selected variables was evaluated
using Spearman correlation and the resulting P-values were corrected for all
pairwise comparisons using the Benjamini–Hochberg method.
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