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Abstract
Motivation: Quantitative dynamical models facilitate the understanding of biological processes and the prediction of their dynamics. The parameters 
of these models are commonly estimated from experimental data. Yet, experimental data generated from different techniques do not provide direct 
information about the state of the system but a nonlinear (monotonic) transformation of it. For such semi-quantitative data, when this transformation 
is unknown, it is not apparent how the model simulations and the experimental data can be compared.
Results: We propose a versatile spline-based approach for the integration of a broad spectrum of semi-quantitative data into parameter estima-
tion. We derive analytical formulas for the gradients of the hierarchical objective function and show that this substantially increases the estima-
tion efficiency. Subsequently, we demonstrate that the method allows for the reliable discovery of unknown measurement transformations. 
Furthermore, we show that this approach can significantly improve the parameter inference based on semi-quantitative data in comparison to 
available methods.
Availability and implementation: Modelers can easily apply our method by using our implementation in the open-source Python Parameter 
EStimation TOolbox (pyPESTO) available at https://github.com/ICB-DCM/pyPESTO.

1 Introduction
The use of mechanistic mathematical models has greatly con-
tributed to the understanding of biological processes at the 
cellular (Kitano 2002, Sch€oberl et al. 2009), patient (Fey 
et al. 2015, Hass et al. 2017) and population level (Giordano 
et al. 2020, Zhao and Chen 2020). In particular, mechanistic 
ordinary differential equation (ODE) models are used for a 
broad spectrum of applications, ranging from cellular signal-
ing, metabolism, and gene regulation over pharmacokinetics 
and -dynamics to the spread of diseases. However, ODE 
models often contain parameters that cannot be measured di-
rectly. Instead, the parameters have to be estimated from ex-
perimental data (Mitra and Hlavacek 2019). This is 
commonly achieved by numerical optimization of an objec-
tive function, which quantifies how well the model simula-
tions fit the given experimental data, such as the 
likelihood function.

The experimental data used for parameter estimation are 
collected using a broad spectrum of experimental techniques. 
For example, early studies in the field of systems biology 
employed well-calibrated Western blot experiments and per-
formed an in-depth assessment of the mapping of concentra-
tion to measured intensities (Kreutz et al. 2007). In this case, 
the data were ensured to fall within the linear regime of the 
experimental technique, and often even absolute quantifica-
tion was performed. However, many, even state–of–the–art, 
measurement techniques do not ensure a linear relationship 
between the abundance of the biochemical quantities of inter-
est and the measured output (Fig. 1). Well-known examples 

include fluorescence microscopy data such as F€orster reso-
nance energy transfer (FRET) data (Birtwistle et al. 2011), 
optical density (OD) measurement (Stevenson et al. 2016) 
and imaging data for certain stainings (Pargett et al. 2014). In 
addition, many experimental techniques suffer from lower 
limits of detection and/or saturation effects.

Quantitative data are easy to use for the parameterization 
of ODE models and the same holds for data that are collected 
in the linear regime of measurement devices. This is show-
cased in a large number of published articles [see, e.g. (Hass 
et al. 2019) for a collection of models and datasets]. In fact, 
there are custom methods for experimental data for which a 
linear mapping with unknown scaling and offset parameters 
can be assumed (Loos et al. 2018, Schmiester et al. 2019). If 
the linearity assumption is not fulfilled, it is usually assumed 
that the mapping from biochemical quantities of interest to 
measured output is monotone. This monotonicity ensures 
that the ordering is preserved and allows the use of 
approaches for ordinal data, such as the optimal scaling 
method (Shepard 1962). For ODE models, this approach has 
recently been accelerated by using a reformulation of the op-
timization problem (Schmiester et al. 2020) and gradient in-
formation (Schmiester et al. 2021b). However, in this 
approach, all quantitative information is discarded and the 
defined objective function is not based on probabilistic 
grounds, disallowing any uncertainty analysis.

In this manuscript, we introduce a spline-based approach 
to use semi-quantitative data—which are obtained using an 
experimental technique with a nonlinear but monotone 
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mapping—for parameter estimation. We assume that the 
measurement mappings are increasing monotonically. This is 
frequently observed in experiments: values with a larger mea-
surement value are assumed to correspond to larger biochem-
ical quantities of interest. The method reconstructs the 
unknown mapping function using a statistically coherent for-
mulation that facilitates uncertainty analysis. We demon-
strate the credibility of the proposed approach as a tool for 
uncovering measurement mapping shapes. To illustrate the 
parameter inference capabilities of the method, we bench-
mark its performance with a collection of published models. 
Furthermore, we derive formulas for the analytical calcula-
tion of the gradients of the objective function in hierarchical 
optimization. To evaluate this optimization framework, we 
compare its efficiency with alternative approaches.

2 Materials and methods
2.1 Mechanistic modeling of biological systems
We consider models of biological processes based on systems 
of ODEs: 

_xðt; θÞ ¼ f ðxðt; θÞ; θ; tÞ; xðt0; θÞ ¼ x0ðθÞ (1) 

in which the temporal evolution of the state variables xðt; θÞ 2
Rnx is determined by the vector field f : Rnx ×Rnθ ×Rþ ! Rnx 

with the unknown mechanistic model parameters θ 2 Rnx . State 
variables can, e.g. describe protein concentrations at the level of 
cellular processes or groups of individuals at the level of popula-
tion modeling. The parameters θ usually consist of kinetic rate 
constants and initial species conditions. In cellular models, often 
not all metabolites are measurable, or in some cases only the 
sum of concentrations of multiple metabolites can be observed. 
These measured properties of a model are its observables, 
denoted as y 2 Rny , 

y ¼ hðx; θÞ; ~y ¼ yþ ε with ε � Nð0; σÞ; (2) 

in which h : Rnx ×Rnθ ! Rny denotes the observation map 
which models the dependence of the observables on the 
model state variables and unknown mechanistic parameters, 
σ 2 Rnt

þ is a noise parameter, and ~y 2 Rny are noise-corrupted 
measurements. The dimensionalities of the state, parameter, 
and observable vector are denoted by nx, nθ, and ny, respec-
tively. The number of time points is denoted by nt.

2.1.1 Linear semi-quantitative (relative) observables
Most measurement techniques provide only relative informa-
tion on the biochemical quantity of interest. In this case, to 
obtain values comparable to the measured quantities, those 
observables need to be rescaled by scaling factors a and off-
sets b. This is the case, for instance, for well-calibrated 
Western blot measurements, where the modeled protein con-
centrations have to be rescaled to be comparable to the opti-
cal density measurements. Most often, an additive Gaussian 
distributed noise model is assumed. Then the full relationship 
between measured and biochemical quantities of a relative 
observable is given by: 

~zik ¼ aihiðxðtk; θÞ; θÞ þbi
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

:¼giðhiðxðtk;θÞÞ

þ εik; (3) 

with εik � Nð0; σ2
ikÞ; giðxÞ ¼ ai � xþbi 

in which i is the observable index, k is the time index, and gi :

R! R is a scaled and offset (affine) measurement mapping 
from the ith observable, hiðxðtk; θÞÞ, to its measurement. The 
scaling factors, offsets, and noise parameters of the ith ob-
servable are denoted as ai 2 R, bi 2 R, and σi 2 Rnt

þ , respec-
tively. These parameters are often unknown and need to be 

Figure 1. A nonlinear measurement mapping. (Biochemical system) True values of a biochemical quantity of interest fðti ; yiÞg
4
i¼1. (Measurement process) 

A measurement process can introduce unknown nonlinear data mappings (dashed blue line). In that case, a mapping function transforms the biochemical 
quantities fyig

4
i¼1 and yields nonlinearly mapped measured quantities fzi ¼ gðyiÞg

4
i¼1. (Measurement output) The measurement quantities fzig

4
i¼1 are 

corrupted by noise, resulting in a noise-corrupted dataset D ¼ fðti ; ~z iÞg
4
i¼1
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estimated along with all other unknown parameters of 
the model.

2.1.2 Nonlinear semi-quantitative observables
In some cases, the measurement process induces a nonlinear 
mapping between the biochemical quantities of interest and 
the measured quantities. A common example is FRET meas-
urements, which will be further investigated in the Section 3. 
Assuming an additive Gaussian distributed noise model the 
relationship is given by: 

~zik ¼ giðhiðxðtk; θÞ; θÞÞ þ εik; (4) 

with εik � Nð0; σ2
ikÞ

in which gi : R! R is a nonlinear measurement mapping 
from the ith observable, hiðxðtk; θÞÞ, to its measurement. The 
form and parameterization of nonlinear measurement map-
pings giðhiðx; θÞÞ are application-dependent. We provide 
examples in the Section 3. Measurement mappings are often 
unknown and need to be modeled in some way.

As this study considers the data-driven uncovering of mea-
surement mappings, we select a class of approximations. 
Specifically, we consider the approximation of measurement 
mappings giðhiðx; θÞÞ with monotone piecewise linear splines 
si : R×Rni

ξ ! R, in which i is the observable index. For the 
simplicity of further calculation, we parameterize the splines 
using the differences between the heights of neighboring 
spline knots fξijg

ni
ξ

j¼1: 

siðx; ξiÞ :¼

x
ci1
� ξ1; x≤ ci1

x − ciðj − 1Þ

Δi
c

ξijþ
Xj − 1

l¼1
ξil; ciðj − 1Þ ≤x≤ cij

ξini
ξ
; x> cini

ξ

8
>>>><

>>>>:

(5) 

in which fcijg
ni

ξ
j¼1 are the knot bases, and ni

ξ is the number of 
spline knots for the ith observable. Since gi is monotone, we 
constrain the spline parameters to be positive ξi;j ≥ 0 for all 
j ¼ 1; . . . ;ni

ξ. We regularized the spline by adding a penalty 

term to the objective function to promote linearity (Fig. 2B), 
which greatly improved the convergence of the estimation. 
For details on the definition of the spline, the distribution of 
the knot bases, and spline regularization, we refer to the first 
section of the supplementary materials.

The spline allows us to link the measured and biochemical 
quantities of the nonlinear monotone observable: 

~zik ¼ siðhiðxðtk; θÞ; θÞ; ξiÞþ εik; (6) 

with εik � Nð0; σ2
ikÞ:

The model dataset D ¼ ffðtk;~zikÞg
nt
k¼1g

ny

i¼1 consists of observa-
tions of all model observables at time-points ftkg

nt
k¼1. We de-

note the dataset of the ith observable as Di ¼ fðtk;~zikÞg
nt
k¼1.

2.2 Parameter estimation
For a dataset D consisting of independent observations of 
quantitative, linear semi-quantitative, and/or nonlinear semi- 
quantitative observables, the negative log-likelihood objective 
function is commonly defined as: 

Jðθ;ψÞ ¼
Xny

i¼1

Jiðθ; ψ iÞ ¼
Xny

i¼1

− logLDiðθ; ψ iÞ (7) 

in which ψ i are the observable parameters of the ith observ-
able: for a relative observable these are scaling ai and offset 
bi, while for a nonlinear semi-quantitative observable they 
are the spline parameters ξi. Minimizing the objective func-
tion, we obtain the maximum likelihood estimate 
(MLE): θ�;ψ� ¼ argmin

θ;ψ
Jðθ;ψÞ.

2.2.1 Hierarchical optimization problem and 
analytical gradients
The objective function minimization can be executed jointly 
in all mechanistic parameters θ and observable parameters ψ. 
However, this leads to a high-dimensional optimization prob-
lem and long computation times. Alternatively, the optimiza-
tion problem can be separated hierarchically (Fig. 2A): 

True non-linear mapping

Spline mapping

M
ea

su
re

d 
qu

an
tit

y

Biochemical quantity

Semi-quantitative data

Stopping criteria
ful lled?

Calculate objective 
and gradient

Update mechanistic
parameters

Simulate
model

Starting point

End Yes

No

Inner problem 
Optimize the

spline mapping

Spline regularization

A B

Figure 2. Illustration of the spline estimation approach. (A) Model mechanistic parameters θ are iteratively updated during parameter estimation. For each 
vector of trial parameters, the model is simulated to obtain the simulation y. Then, the spline parameters ξ� are optimized and used to calculate the 
objective function J and its gradient rθJ. These are then passed on to obtain the next trial parameter vector, or the optimization is halted. (B) The spline 
(green) enables mapping of the simulation of the model y (biochemical quantities) to the measurement axis. This allows for the definition of a likelihood 
objective function. In the inner problem, this objective function is minimized with respect to the spline parameters to obtain optimal spline parameters ξ�. 
The spline is additionally regularized by the distance to the linear mapping (orange)
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min
θ

Jðθ;ψ�ðθÞÞ (8) 

s:t: fψ�i ðθÞ ¼ argmin
ψ i

Jiðθ; ψ iÞ for i ¼ 1; . . . ;ny: (9) 

In the outer optimization problem (8), we estimate the mech-
anistic parameters θ, and in the inner optimization problems 
(9) we estimate the observable parameters ψ i of each observ-
able. For nonlinear semi-quantitative observables, the inner 
problem is additionally constrained by the positivity of spline 
parameters. Since the objective function can be additively 
separated into components fJig

ny

i¼1 depending on the observ-
able parameters of a single observable ψ i, the inner optimiza-
tion problem is a set of ny small inner optimization problems 
(9). For relative observables, the inner problems (9) can be 
solved analytically (Schmiester et al. 2019). For nonlinear 
semi-quantitative observables, they still need to be numeri-
cally minimized, but the inner problems are convex and thus 
easy to minimize. Second, the gradient of the objective func-
tion can be calculated analytically. We formulate and prove 
the two statements above in Theorems 1 and 2 of the supple-
mentary materials.

2.3 Confidence region of a parameter vector θ
Here, we define what it means for a parameter vector to lie in 
a confidence region of a certain significance. We do this using 
the likelihood-ratio test in which we define the corresponding 
test statistic as 

ΛðθÞ ¼ − 2 log
LDðθÞ

supθfLDðθÞg

 !

¼ 2ðJðθÞ−Jðθ�ÞÞ: (10) 

In the asymptotic case of a large number of data points, the 
test statistic converges to a chi-square distribution χ2

df with 
df ¼ nθ degrees of freedom [see T€onsing et al. (2023) for 
more details]. Then we define the confidence region of signifi-
cance α as 

CRα ¼ fθjΛðθÞ≤Δαg (11) 

in which Δα is the αth percentile of the χ2
nθ 

distribution.

2.4 Scalability and complexity of the 
proposed method
The inner optimization objective functions Jiðθ; ψ iÞ for semi- 
quantitative observables are convex and self-concordant. 
Thus, their numerical optimization using barrier methods 
scales mostly with the number of inequality constraints in the 
inner problem (Boyd and Vandenberghe 2004), i.e. with the 
number of spline parameters ξi of the spline mapping (5). In 
most applications, this number should be set to a small value 
(5–10), as this already provides sufficient modeling capacity 
for most nonlinear measurement mappings and also reduces 
overfitting. Therefore, in larger ODE systems, the optimiza-
tion of inner problems for semi-quantitative observables con-
stitutes a small part of computational complexity and the 
proposed method scales linearly in the number of semi- 
quantitative observables.

2.5 Benchmark models
For the evaluation of the proposed method, we consider one 
exemplary model and four published models that were previ-
ously developed and calibrated for different biological 

systems (Table 1). As the published models originally did not 
contain nonlinear semi-quantitative observables, we gener-
ated synthetic data at the same time points, chose nonlinear 
monotone measurement mappings, applied them to the 
observables, and corrupted them with the same type of noise 
as in the original model. For details on the synthetic data gen-
eration, chosen nonlinear measurement mappings, and model 
structure, we refer to the second section of the supplemen-
tary material.

3 Results
3.1 The proposed method uncovers measurement 
mapping for FRET probe activation
To illustrate an application of the proposed method, we have 
applied it to a FRET probe activation model introduced by 
Birtwistle et al. (2011). In general, the transition of inactive 
FRET probes P to an active state P� can be represented by the 
scheme in Fig. 3A. The quantity of interest in this model is 
the ratio of activated probes to total probes P�=PTOT. The 
most common way to measure this value is through a mea-
surement technique called ratiometric imaging. Cells are ex-
posed to excitation light from the donor channel, and then 
fluorescence emission is divided into donor and acceptor 
channels. The output of ratiometric imaging, R, is the inten-
sity in the acceptor channel, IA, divided by the intensity in the 
donor channel, ID. Previous studies have shown that this 
measured R value can have a highly nonlinear relationship to 
the fraction of active FRET probes (Birtwistle et al. 
2011) (Fig. 3A).

One approach of modeling this nonlinear mapping is to pa-
rameterize a function of a similar shape and to estimate its 
parameters. For FRET probe activation it has been shown 
that the relation between state variables and measurement is 
of the form: 

gðP�Þ ¼ α �
P�

PTOT − P�
þ β (12) 

with experiment- and probe-specific parameters α and β. 
However, this requires prior knowledge of the shape of the 
measurement mapping. Without such prior knowledge, the 
measurement mapping has to be inferred. A simple and easy- 
to-implement approach is to assume that the mapping is lin-
ear. This linear approximation can be sufficiently correct if 
the measurement region is locally linear. For highly nonlinear 
measurement mappings, this is not true, so one has to resort 
to more flexible approaches such as spline estimation.

To evaluate how well the three modeling approaches can 
recover the true measurement mapping, we performed 1000 
local optimizations for each and chose the best measurement 
mapping estimates in the 95% confidence region (Fig. 3B). 

Table 1. Benchmark models.a

Model nx nθ ny jDj Reference

T1 2 4 1 12 Birtwistle et al. (2011)
M1 8 6 3 48 Boehm et al. (2014)
M2 7 9 1 23 Rahman et al. (2016)
M3 8 18 1 58 Elowitz and 

Leibler (2000)
M4 14 18 8 205 Raia et al. (2011)

a By jDj we denote the cardinality of the dataset.
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We found that the reconstruction using spline estimation 
agrees well with the true measurement mapping. Indeed, it 
yields similar results to using parametric representations with 
unknown parameters. In contrast, a linear model for the mea-
surement mapping proved to be insufficiently flexible and 
resulted in biased reconstruction of the measurement mapping.

Overall, our assessment revealed that, unlike a simple lin-
ear approximation for the measurement mapping, a spline- 
based approximation enables the reconstruction of nonlinear 
mappings as observed for FRET probe activation.

3.2 The spline estimation approach as a tool for 
uncovering measurement mapping shapes
In the previous subsection, we have shown that the estimation 
of an unknown measurement mapping using a spline can yield 
results similar to the estimation of a parametric representation. 
Yet, we only considered a point estimate and did not assess the 

reliability of the reconstruction. To determine whether the pro-
posed approach provided statistically coherent estimates, we 
considered model M1 with measurement mappings of various 
shapes across observables (Fig. 4A–C). Using the resulting data-
set, we performed a multi-start optimization (103 runs) to ob-
tain optimal parameters and Markov chain Monte Carlo 
sampling using an adaptive Metropolis-Hastings algorithm (105 

iterations). The resulting chain was thinned by a factor of 500. 
We computed the optimal spline for each of the remaining sam-
ples and, with them, constructed the credibility intervals of the 
optimal spline mappings.

The inspection of the results confirmed that the optimal 
splines are qualitatively similar to the measurement mappings 
used for data generation. Furthermore, more importantly, the 
measurement mappings used for data generation lie within 
the credibility intervals. This showcases the reliability of the 
method as a tool for discovering curve shapes of unknown 
measurement mappings.

A B

Figure 3. A model of FRET probe activation. (A) A forward enzyme catalyzes the activation of inactive FRET probes P, and a reverse enzyme catalyzes the 
conversion of an active probe P� into the inactive state. Active probe concentration can be observed via ratiometric imaging. The measurement mapping 
of this process is highly nonlinear. fAA and fAD are fractions of the acceptor and donor emissions that the acceptor channel captures, respectively. fDD is 
the fraction of donor emissions that the donor channel captures. (B) Comparison of the estimation of the measurement mapping using a linear function, 
proposed spline mapping, and parameterization of the true mapping. For all three models, we performed 1000 local optimizations. Depicted are the 
estimated mappings closest to the true mapping of starts with mechanistic parameters in the 95% confidence region. We show the synthetic noise- 
corrupted data used in all model optimizations in blue squares

Figure 4. Credibility intervals of the estimated spline mappings. MCMC sampling of the model M1. The model contains different synthetic nonlinear 
measurement mappings for each of its observables (dashed blue). Splines were estimated for each 500th sample of the MCMC run with which we 
constructed the credibility intervals of the estimated spline mappings (light green). For visibility, we show only each 20th estimated spline (dark green)
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3.3 Hierarchical optimization and analytical 
gradients increase the estimation efficiency
As the method provides reliable estimates for the mappings, 
we turn to the assessment of the computational cost, which is 
of high practical relevance. Here, we also wanted to evaluate 
the impact of (i) reformulation as a hierarchical problem and 
(ii) the availability of analytical gradients. For this assess-
ment, we considered the published models M1 to M4 with 
synthetic data with a range of different measurement map-
pings, as detailed in the second section of the supplementary 
material. For all models, we performed 1000 local optimiza-
tions with equal start points across approaches. We then de-
termined the overall computational cost, the number of 
function evaluations, and the number of converged starts per 
computation time.

We found that in general, the proposed hierarchical ap-
proach with analytical gradients achieves the best perfor-
mance (Fig. 5). This appears to be mostly related to a 
reduction in the computation time, respectively, the number 

of function evaluations (Fig. 5A and B), while the number of 
converged starts remains rather similar (Fig. 5C). The num-
ber of converged starts per computation time is, for the hier-
archical approach with analytical gradients, at least twice as 
high for the other approaches (Fig. 5D). Interestingly, a hier-
archical approach without gradient information does not per-
form well, and is worse than the nonhierarchical approach 
with gradient information for all models.

For the proposed hierarchical approach with analytical 
gradients, the number of converged starts per CPU hour was 
on average � 7:96. As the spread between models was large, 
this finding clearly suggests that the approach is computa-
tionally tractable.

3.4 Spline approach improves the parameter 
inference of models with unknown 
measurement mappings
Our proposed method provides reliable estimates of measure-
ment mappings. Here, we examine whether this leads to good 

A

B

C

D

Figure 5. Evaluation of the gradient-based nonhierarchical, gradient-free hierarchical, and gradient-based hierarchical estimation approaches. Models M1– 
M4 are shown from left to right. (A) Comparisons of computation time. (B) Comparisons of the number of function evaluations. (C) Comparisons of the 
number of converged starts. Converged starts are defined as the starts with estimated mechanistic parameters within the 95% confidence region. (D) 
Comparison of the number of converged starts per CPU hour
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estimates of the mechanistic model parameters. Apart from 
spline estimation, a generally applicable approach to the inte-
gration of semi-quantitative data into parameter estimation is 
linear estimation of measurement mappings. Thus, we com-
pare the parameter inference of these two approaches in a re-
alistic setting. In addition, for reference, we include the 
approach of discarding data with unknown measurement 
mappings. We performed 1000 local optimizations for the 
application examples M1–M4. We evaluated the impact of 
an increasing number of unknown measurement mappings 
by turning quantitative observables into semi-quantitative 
observables. As a parameter inference metric, we use the 
mean L2 distance of the estimated to the true mechanistic 
parameters normalized by the number of mechanistic param-
eters. For details of the study setting, we refer to the fourth 
section of the supplementary materials.

The spline estimation outperforms other approaches 
(Fig. 6). In general, linear estimation has a stronger bias than 
variance. We observe this primarily for model M4, as the lin-
ear estimation has the smallest standard deviation between 
approaches (Fig. 6D). In some cases, this even causes the lin-
ear estimation to perform worse than the approach of dis-
carding data with unknown mappings. In contrast, the higher 
flexibility of the spline estimation allows for the general 

attainment of better parameter estimates. This is the case 
even for model M4 with eight unknown measurement map-
pings, for which the spline estimation adds seven times more 
parameters than the linear estimation. For a small number of 
unknown measurement mappings, the spline estimation can 
perform almost equally well as the model with completely 
known measurement mappings. This showcases that the pro-
posed method yields good estimates of the mechanistic model 
parameters, especially when the number of unknown mea-
surement mappings is low.

4 Discussion
Semi-quantitative measurements represent a large portion of the 
available data that can be used to estimate unknown mechanis-
tic parameters of ODE models. Among others, examples include 
spatial protein expression assays important in developmental bi-
ology, such as chemical staining, fluorescent expression, and im-
munohistochemistry (Brooks et al. 2012). When these are well- 
controlled, they are expected to linearly transform the true con-
centration into an image intensity. However, this is not always 
true: in the case of nonadequate procedural care, hard-to- 
control outer factors, or insufficient knowledge of the entire ex-
perimental system, the transformation function may not be 

Figure 6. Evaluation of parameter inference across the number of unknown measurement mappings for linear and spline estimation. The parameter 
inference is measured by the L2 distance of the estimated to the true mechanistic model parameters. On the x-axis of each plot, we mark the model 
variant with a certain number of unknown measurement mappings, ranging from 0 to the number of model observables. The distance for each model 
variant is normalized by the number of mechanistic parameters and averaged across combinations of known-unknown observables. The best-case 
scenario for each model M1–M4 is the case of completely known measurement mappings (blue). We compare the distance to the true parameters for 
the linear (orange) and spline (green) approach for each number of unknown measurement mappings. The approach of discarding the data of observables 
with unknown measurement mappings (purple) is depicted for reference. This approach is not feasible for the model variants with a maximum number of 
unknown measurement mappings, as that would involve the removal of all data, so we denote this with N/A
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available and can take on a nonlinear form. Here, we address 
this challenge by introducing a spline-based method for the esti-
mation of unknown nonlinear mappings. The approach can be 
applied to models with quantitative data for which it is unclear 
whether the data are truly linear (Fig. 7). Depending on the esti-
mated optimal splines, the data can be deemed to be quantita-
tive, relative, censored, or semi-quantitative, so that an 
appropriate method can be used. If the estimated optimal spline 
is nonlinear, one can choose to estimate a parameterized func-
tion of a similar shape, or continue using the optimal splines as 
the measurement mapping. In this way, the method allows for 
the integration of data previously usable only as qualitative. 
Furthermore, it can give a clearer understanding of the underly-
ing experimental procedures.

However, one has to be conservative with the number of 
observables chosen for spline estimation, as it can lead to a 
large expansion of the parameter space dimension. We evalu-
ated the reliability of this process using an example, showing 
consistent qualitative measurement mapping shapes. An obvi-
ous extension of this approach is the inclusion of symbolic 
function identification from the estimated optimal splines. 
This would constitute an automatic parameterization of the 
unknown measurement mappings.

To increase the method’s efficiency, we employed a hierarchi-
cal gradient-based optimization approach. We evaluated its per-
formance and compared it with alternative approaches for four 
published models with differences in their complexity. This 
revealed a higher computational efficiency across all models, 
allowing for faster estimation of parameters for a given model. 
Further optimization acceleration could be achieved by includ-
ing adjoint sensitivity analysis (ASA) (Kokotovic and Heller 
1967, Fr€ohlich et al. 2017). Although our inner problem is not 
solved exactly, in Theorem 2 of the supplementary, we show 
that its gradient contribution is still zero. Thus, existing ASA 
software implementations from Schmiester et al. (2019) can be 
used, since the gradient computation is the same as in hierarchi-
cal optimization with an exactly solved inner problem. 

Complementary to this, the derivation of second-order deriva-
tives could further improve the method’s convergence and, with 
it, its computational efficiency.

The proposed method employs piecewise linear splines to es-
timate general nonlinear mappings. This was the simplest first- 
pass option, but, as they are not smooth, they had unavoidable 
approximation errors. Therefore, it is valuable to explore alter-
native smooth and flexible parameterized functions. 
Furthermore, they should retain the convexity of the inner opti-
mization problems and the possibility of analytical gradient cal-
culation. Interesting candidates are the scaled cumulative 
distribution functions (CDFs) of the beta distribution. They are 
monotone by definition, parameterized by only three parame-
ters, and with promising flexibility to be able to model most 
types of measurement nonlinear mappings.

The models for which the method was developed are based 
on ODE systems primarily because of their widespread preva-
lence. However, the method can be used more generally. It 
requires only the model simulations, sensitivities, and the def-
inition of the objective function as a negative log-likelihood. 
Thus, any model that satisfies these constraints can be incor-
porated to integrate semi-quantitative data into its estimation 
of parameters.

In conclusion, we developed and implemented an easy-to-use, 
computationally efficient framework to uncover unknown non-
linear measurement mappings and to integrate semi- 
quantitative data into the parameter estimation of ODE models. 
The approach has a user-friendly implementation in the open- 
source Python Parameter Estimation TOolbox (pyPESTO). As 
it is agnostic to the structure of the underlying dynamical model, 
the method can be applied to models from different research 
fields, such as physics and engineering.
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Figure 7. Diagram of application of the spline method to data with possible nonlinear measurement mappings. Estimated optimal splines are depicted in 
green. Each arrow from the central square is a possible outcome of the nonlinear mapping estimation
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