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A B S T R A C T   

Iterative phase retrieval is based on minimising a loss function as a measure of the consistency of an initial guess 
and underlying experimental data. Under ideal experimental conditions, real data contains Poissonian noise due 
to counting statistics. In this work, we use the Wirtinger Flow concept in combination with four common loss 
functions, being the L 1 loss, the mean-squared error (MSE), the amplitude loss and the Poisson loss. Since only 
the latter reflects the counting statistics as an asymmetric Poisson distribution correctly, our simulation study 
focuses on two main cases. Firstly, high-dose momentum-resolved scanning transmission electron microscopy 
(STEM) of an MoS2 monolayer is considered for phase retrieval. In this case, it is found that the four losses 
perform differently with respect to chemical sensitivity and frequency transfer, which we interprete in terms of 
the substantially different signal level in the bright and dark field part of diffraction patterns. Remedies are 
discussed using further simulations, addressing the use of virtual ring detectors for the dark field, or restricting 
loss calculation to the bright field. Secondly, a dose series is presented down to 100 electrons per diffraction 
pattern. It is found that all losses yield qualitatively reasonable structural data in the phase, whereas only MSE 
and Poisson loss range at the correct amplitude level. Chemical contrast is, in general, reliably obtained using the 
Poisson concept, which also provides the most continuous spatial frequency transfer as to the reconstructed 
object transmission function.   

1. Introduction 

Contemporary electron ptychography involves a large and still 
growing spectrum of methods to solve the phase retrieval problem using 
measured diffraction patterns in scanning transmission electron micro-
scopy (STEM). Recent examples are the spatial resolution record in the 
field of TEM where reconstructed phase gratings exhibit real-space de-
tails at the scale of lattice vibrational amplitudes (Chen et al., 2021), the 
correction of probe positions (Thibault et al., 2009; Hurst et al., 2010), 
the recovery of the electron probe (Maiden and Maiden, 2009) or 
including spatial coherence (Thibault and Menzel, 2013) and inverse 
frozen phonon multislice, which allows the tracking of atomic positions 
with picometer resolution in a ferroelectric (Diederichs et al., 2024). 
Whereas inverse multislice approaches have extended the applicability 

of ptychography to thick specimens, also the quantitative imaging of the 
atomic structure of 2D materials remains challenging. In this respect, 
both first moment STEM (Waddell and Chapman, 1979; Müller et al., 
2014) and ptychography based on the projection assumption (Roden-
burg et al., 1993; Rodenburg and Bates, 1655; McCallum and Roden-
burg, 1992; Rodenburg and Faulkner, 2004; Maiden and Maiden, 2009) 
are applicable (Hofer and Pennycook, 2023; Müller-Caspary et al., 2018; 
Hofer et al., 2023), and both methods achieved a precision and accuracy 
such that the view into bonding effects becomes feasible (Martinez et al., 
2023). In this respect, ptychography is becoming particularly attractive 
due to its capability of deconvolving probe and object transmission 
function. On the other hand, 2D materials can sometimes be very 
dose-sensitive. Since the propagation of noise through ptychographic 
reconstructions is complex, elucidating the dependence of reconstructed 
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object transmission functions on the invested dose in a 4D-STEM 
experiment and on the ptychographic reconstruction settings is of cen-
tral importance. 

The noise model for an ideal diffraction pattern recording is known 
as Poisson shot noise due to the counting process during the detection of 
single electrons. In practice, further noise contributions are potentially 
present, for example from the electron source or electronics, which will 
be ignored in this study, where the ideal experimental setup is consid-
ered to explore the ultimate limits set solely by Poissonian noise. Many 
ptychography algorithms assume no specific noise model such as the 
single-side-band (SSB) reconstruction (Rodenburg et al., 1993) or 
Wigner distribution deconvolution (WDD) (Rodenburg and Bates, 1655; 
McCallum and Rodenburg, 1992). Other approaches feature a flexible 
choice of the noise statistics (Candes et al., 2015), or presume Gaussian 
white noise implicitly or explicitly, as, e.g., many iterative algorithms 
(Zhou et al., 2020; Lee et al., 2023). In particular, for measurements with 
more than five electrons per single pixel the Gaussian noise becomes a 
good approximation to the Poisson noise because the root-mean-square 
difference between both starts to become flat (Thompson, 2001). 
Therefore, the difference between both noise models is especially 
interesting for low-dose experiments, not only being relevant for the 
field of 2D materials, but also for imaging weakly scattering specimens 
such as covalent/metal-organic frameworks (COFs/MOFs) and proteins. 
Apart from that, even high-dose experiments may lead to diffraction 
patterns where the detection of more than five electrons per pixel is 
unlikely in the dark field. Because high-angle scattering is chemically 
sensitive, including respective solid angles in the reconstruction is 
favourable, such that the choice of the noise model is expected to make a 
difference in the reconstructed phases. 

Importantly, gradient-based algorithms employing Wirtinger gradi-
ents such as the Wirtinger flow (WF) (Candes et al., 2015) are based on 
minimising a loss function, which can be chosen freely and, therefore, 
allow flexibility as to the noise distribution. It was found that the nor-
malised root mean square error was around 11 % for the Gaussian loss 
function and around 8 % for the Poisson loss using WF in a computa-
tional study with a Gaussian sensing matrix (Li et al., 2022). The same 
work also showed that the Poisson loss function needs fewer measure-
ments to reach the same or better performance than the Gaussian loss 
function. Moreover, WF using a Poissonian loss converges faster, as has 
been demonstrated for simulations in light optics using Fourier pty-
chography (Bian et al., 2016; Yeh et al., 2015). 

Here, we present a systematic study of the impact of counting noise 
in 4D-STEM diffraction patterns on ptychographic reconstructions of a 
2D MoS2 monolayer employing the WF concept. We evaluate four 
different loss functions, namely the L 1 loss, the L 2 loss (also known as 
mean square error, MSE), the amplitude and Poissonian loss for simu-
lated data using the phase gratings of simulations performed with 
electron energies of 300 keV and 60 keV as known ground truths. The 
focus lies on the 300 keV case because the knock-on damage, and thus 
dose sensitivity, becomes more significant than at 60 keV. Besides 
drawing general conclusions about using different loss functions, this 
work is thus relevant in practice when 2D materials are studied with 
comparably high incident electron energies, e.g., due to the currently 
better performing electron optics. In these cases, the dose should be as 
low as possible. Characteristics of the reconstructed amplitudes and 
phases of the object transmission function are worked out in both real 
and diffraction space in dependence on electron dose and focus. Special 
attention is drawn to cases which evaluate the Ronchigram region only, 
as well as both the Ronchigram and the dark field, the latter challenging 
reconstruction algorithms by involving signals with high and low counts 
simultaneously. In that respect, concepts such as partitioned and virtual 
dark field detectors are investigated as a remedy to improve the stability 
of the inversion and to exploit not only structural but also chemical 
contrast. To begin with, Sec. 2 introduces the theoretical background of 
WF-based object retrieval and the various loss functions. Section 3 
summarises the used methods including simulation parameters, before 

results are presented in Sec. 4. The paper closes with a discussion and 
central conclusions. 

2. Theory 

Ptychography aims to solve the phase retrieval problem and there-
fore tries to recover the object transmission function (OTF) o(r) and the 
probe a(r, R) from a set of measured intensities in diffraction space. r is 
the real space coordinate and R the coordinate of the scan position. Ψ(r, 
R) is the specimen exit wave function for scan position R. For STEM, the 
measured far-field diffraction pattern recorded at probe position R reads 

I(k,R) =
⃒
⃒F r[Ψ(r,R)]|

2
=

⃒
⃒F r[a(r − R)o(r)]|2, (1)  

with the assumption that the exit wave is given by a multiplication of o 
(r) and a(r, R) in real space. This means that multiple scattering and 
propagation inside the specimen can be neglected. 

Different loss functions are used to compare the forward simulated 
intensities ̂Ii with the measured intensities Ii, where i is the index for the 
current scan position. According to the negative log-likelihood function, 
a measurement corrupted by Poisson noise shall be optimised by the loss 
function (Bian et al., 2016) 

L P =
∑

i
Î i − Ii ln( Î i + ϵ) , (2)  

where ϵ ∈ R>0 is a small positive number to avoid divergence of the 
natural logarithm. Depending on the starting value, the logarithm can 
diverge, and the Poisson loss can be difficult to handle for experimental 
data. Therefore, it is often assumed that the guessed OTF is a good 
approximation of the underlying true OTF (ô ≈ o). In this case, a Taylor 

expansion of Equation 2 can be performed for the variable 
̅̅̅̅

Î i

√

around 
̅̅
I

√
i for each i. Ignoring all constant terms and scaling constants, the so- 

called amplitude loss function can be derived (Thibault and 
Guizar-Sicairos, 2012; Konijnenberg et al., 2018), 

L A =
∑

i

( ̅̅̅̅

Î i

√

−
̅̅̅
Ii

√ )2
. (3)  

Recently, Melnyk has discussed in detail that the (extended) ptycho-
graphic iterative engine (PIE/ePIE) (Rodenburg and Faulkner, 2004; 
Maiden and Maiden, 2009) can be seen as a particular case of stochastic 
gradient descent using the L A loss instead of intensities (Melnyk, 2023). 

Using the negative log-likelihood function (Thibault and 
Guizar-Sicairos, 2012) and assuming that the noise model can be 
approximated by Gaussian white noise, the loss function for the mean 
squared error (MSE) can be derived 

L MSE =
∑

i
(̂I i − Ii)

2
, (4)  

which is also known as intensity or L 2 loss. The assumption of Gaussian 
white noise means that the standard deviation is constant over all pixels. 
As a consequence, the Gaussian loss has the same weight for the whole 
dynamic range, which is different from the amplitude or the Poisson loss 
functions, whose weights scale with the square root of the measured 
intensities because the standard deviation σi =

̅̅̅
Ii

√
is not constant (Yeh 

et al., 2015). 
In literature, the L 1 loss 

L 1 =
∑

i
∣̂I i − Ii∣ (5)  

is frequently used (Zhao et al., 2023; Zhou et al., 2023; Jiang et al., 2018; 
Zhang et al., 2019,2021). Therefore, the L 1 loss is included as the fourth 
criterion in our subsequent comparison. The difference to the MSE loss is 
the linear instead of the quadratic consideration of the difference, which 
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mainly affects outliers in a different manner. 
The challenge is to determine o(r) using a set of measurements as in 

eq. (1). This problem can be solved, for example, by iteratively using the 
gradient descent method with the introduced loss functions to optimise 
the initial guess of the OTF ô (Cauchy et al., 1847; Courant, 1943) 

ô(t+1)
(r) = ô(t)

(r) − μ∇ô∗L (̂I(k,R), I(k,R)) . (6)  

Here, μ is the step size, ∇ô∗ the gradient with respect to the complex 
conjugate of ô, L the loss function, ̂I the intensities calculated from the 
specimen guess ô(t) and t the index of the current iteration. One iteration 
stands for an update employing all scan positions. 

The gradients of L 1 (Jiang et al., 2018), L MSE (Candes et al., 2015), 
L A (Thibault and Guizar-Sicairos, 2012) and L P (Thibault and 
Guizar-Sicairos, 2012) are given by: 

∇ô∗L 1 =
∑

i
∇ô∗ Î i

(
1
2

Î i − Ii

|̂I i − Ii|

)

, (7)  

∇ô∗L MSE = 2
∑

i
∇ô∗ Î i (̂I i − Ii), (8)  

∇ô∗L A =
∑

i
∇ô∗ Î i

(

1 −

̅̅
I

√
i
̅̅̅̅

Î i

√

)

, (9)  

∇ô∗L P =
∑

i
∇ô∗ Î i

(

1 −
Ii

Î i + ϵ

)

. (10)  

Note again the divergence for ̂Ii→0 and ϵ = 0. Finally, the gradient of the 
inner differentiation, being the same for all four loss functions, reads 

∇ô∗ Î i(x) = a∗(r − R)⋅F − 1(F r[Ψ(r,R)]⋅x). (11)  

3. Methods 

An MoS2 monolayer is considered as a test sample for the simula-
tions. A supercell of 18 × 10 unit cells (Fig. 1 a) was generated, each 
with a dimension of 3.19 Å × 5.53 Å. The supercell was centred in a 
larger, square simulation box which had a size of 72.6 Å × 72.6 Å 
sampled with 2048 × 2048 pixels. In the forward direction, the multi-
slice approach (Cowley and Moodie, 1957) was used with one slice per 
atomic layer, amounting to three slices in total. 

The scan consists of 128 × 128 scan positions with a STEM pixel size 
of 0.25λ α− 1 = 27.3 pm, where λ is the electron wavelength and α the 
convergence semi-angle in rad. This STEM pixel size fulfils the Nyquist 
theorem for frequencies up to twice the bright field (BF) aperture radius 
at in-focus conditions without additional aberrations (Rodenburg et al., 
1993). The STEM simulations were performed with an acceleration 
voltage of 60 kV and 300 kV, respectively, at in-focus conditions as well 

Fig. 1. MoS2 structure and dose effects on diffraction patterns. a) Projection of one unit cell of MoS2. b) - d) Full diffraction patterns that are used for the 
reconstructions. The cases are given in the labels, and the maximal probability/count number for the shown pattern is given in each quadrant. In the mathematical 
positive sense from the top left given in electrons per diffraction pattern: infinite, high 106 , medium 104 and low 102. 
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as with an under-focus of 25 nm. The convergence semi-angle was 
chosen to 18 mrad and 44.5 mrad for 300 kV and 60 kV, respectively. 
Thus, the maximum spatial frequency transfers were identical in both 
settings. 

As a basis for the reconstruction, the 4D data set in eq. (1) was 
created by the central patch of 256 × 256 pixels only which has been cut 
from the full simulated diffraction patterns of the forward simulation 
with size 2048 × 2048. Note that the total probability that an electron 
hits the central, cropped part is then smaller than one which has been 
taken into account properly when finite doses have been added to the 
data. This mimics both the sampling and array size of contemporary 
pixelated diffraction cameras, and the fact that real recordings are 
incomplete in that electrons scattered beyond the solid angle covered by 
the detector are lost in experiments. Here, this corresponds to a 
maximum spatial frequency of 1.749 Å− 1 which equals cutoff angles of 
34.4 and 85.2 mrad for 300 and 60 keV electrons, respectively. To ac-
count for the Poisson shot noise, 106, 104 and 102 electrons were 
distributed on each diffraction pattern for the high-, medium- and low- 
dose case using the Poisson distribution, which results in 1.34 × 107 

e− ∕Å2, 1.34 × 105 e− ∕Å2 and 1.34 × 103 e− ∕Å2 for 300 kV. The 
diffraction pattern of the first scan point is exemplarily shown in Fig. 1 b- 
d for the different forward simulations. No additional noise sources were 
assumed so as to deal with an ideal experiment being only limited by 
counting statistics. 

A single-slice model was assumed for the reconstructions, and the 
Wirtinger Flow (WF) (Candes et al., 2015) was used with different loss 
functions. In experiments, the probe can, in principle, be retrieved at 
high dose even in a damaged specimen area. For this case, we found that 
the defocus converges from an initialised value of 0 Å to − 100 ± 5 Å for 
all loss functions in our simulation study where the true defocus of −
100 Å was known. A parameterised probe has been used (Diederichs 
et al., 2024) for this reconstruction, as well as a specimen thickness of 
5.88 Å. The use of a parameterised probe avoids scaling ambiguities 
between the reconstructed specimen and the reconstructed probe as 
described in refs. (Fannjiang and Chen, 2020; Li et al., 2016), because 
the amplitude of the probe is fixed. Due to the accurate probe retrieval, 
e.g., from high-dose data, we assume the probe being known in the 
following and focus on the effect of the dose and the loss concepts on the 
reconstruction of the specimen. Vacuum was used as the initial guess for 
the initialisation and ϵ = 10− 4 for the Poisson loss function. The losses 
have been calculated by using the full available diffraction patterns of 
256 × 256 pixels, however, the reciprocal space of the reconstructions 
extended up to eight times larger spatial frequencies to allow for 
super-resolution. The update step size was constant and set such that the 
amplitude change of the specimen in the first epoch was between 1 ×
10− 3 and 5 × 10− 2. We made this choice to avoid the additional 
complexity of variable step size, which allows for faster convergence. To 
ensure convergence and to avoid overshoots we monitored the loss for 
every epoch. For all cases, 100 iterations were performed. The results 
are shown for the last iteration. 

A normalisation is needed to compare the forward simulation, which 
calculates the probability distribution on the detector, with the (simu-
lated) measurements, which count the electrons on the detector. The 
only tested loss function not invariant under scaling is the Poisson loss in 
eq. (2). To obtain a diffraction pattern ̂I being quantitatively comparable 
to the measurement I, each diffraction pattern obtained during the 
reconstruction process via the forward simulation employing the current 
object guess ô is first cut to the size of the detector to match the di-
mensions of the recordings, and then multiplied by the number of 
electrons in the recording I. To assure conservation of the number of 
electrons in a setup where only a part ̂I of a model diffraction pattern is 
used, the number of electrons is multiplied by the total probability 
divided by the probability landing on the detector. 

Four virtual detector geometries are tested for an acceleration 
voltage of 300 kV and the high-dose case. First, the whole pixelated 

detector is used to calculate the loss. Second, the BF disk is used in 
combination with 64 virtual ring detectors for the dark field (DF). The 
aim is to avoid the sparsity of the electron counts in the dark field and to 
reduce the dynamic range by reducing the difference between the BF 
and the DF due to the integration. The number of iterations was 
increased to 600 because the reconstructions converge more slowly and 
for the first 100 iterations only the BF was used. Third, only the pixels 
inside the BF disk are used as input for the loss functions to test whether 
the dynamic range between BF and DF is responsible for the differences 
in the reconstructions, or if the differences can also be seen for the pixels 
inside the BF for the high-dose case. As has been shown by Yang et al. 
(Yang et al., 2015), substantial binning of the detector does not affect the 
quality of the reconstruction for in-focus measurements significantly. 
Therefore, we tested a binning of the detector from 256 × 256 down to 
32 × 32 for the reconstruction with the L P loss for the high- and 
low-dose case, as a fourth detector geometry. 

The projected potential scaled by the relativistic constant is used as 
the ground truth. The global phase to the ground truth is minimised 
before the comparisons. All computations were performed with an in- 
house written software package (Diederichs et al., 2024) that is based 
on the PyTorch library (Paszke et al., 2019). 

4. Results 

4.1. Gradient characteristics of different losses 

Before considering explicit reconstructions for different loss func-
tions, we shed light on their update characteristics during the optimi-
sation according to eq. (6). In particular, the Fourier-transform with 
respect to the specimen coordinate r reads 

F r
[
ô(t+1)

(r)
]
= F r

[
ô(t)

(r)
]

− μF r[∇ôL (̂I(k,R), I(k,R)) ]
(12)  

and shows that the reconstructed spatial frequencies directly depend on 
the spatial frequencies of the gradient. Consequently, one expects that 
the different loss functions from sec. 2 update the Fourier coefficients of 
the object function ̂o in a significantly different manner. The effect of the 
chosen loss function on the gradient can be seen in Figs. 2 and 3, cor-
responding to a scan position on an Mo atom and for an interstitial scan 
point in the centre of the hexagon, respectively. For illustration pur-
poses, only the high-dose case is considered here, and the gradient after 
10 iterations (Yeh et al., 2015) has exemplarily been chosen. Note the 
linear scaling in the left half and the logarithmic plot in the right half. 
The circles represent single and twice the Ronchigram radius. All data is 
normalised for visualisation, with the lower left quadrant normalised 
such that only spatial frequencies above 2 ⋅ α are taken into account. 

Considering the gradients for the probe position on Mo in Fig. 2 first, 
the L 1 and L MSE losses lead to similar updates of spatial frequencies, 
concentrated to the BF disc and faintly extending beyond 2 ⋅ α. In 
contrast, L A and L P promote a broad spatial frequency band that is 
maximum at the BF radius and extends to twice the BF radius and 
slightly beyond as well. Whereas all gradients have spatial frequencies 
above twice the BF radius, as shown in the lower left quadrant of each 
panel, the high frequencies are strongly suppressed in the case of L MSE 
and are negligible compared to the frequencies within the BF disc, as 
seen in panel (b). A quantitative evaluation shows that the suppression 
of high spatial frequencies is lower for L 1. Considering L A and L P, the 
gradients extend significantly further in Fourier space than the L 1 or 
L MSE counterpart, again looking at the lower left quadrants of Fig. 2 (a- 
d). 

Although the power spectra of the gradients naturally look different 
for the STEM probe positioned in the centre of a hexagon of the MoS2 
lattice in Fig. 3, some of the conclusions from Fig. 2 still hold. The L MSE 
loss is the most compact one in Fourier space not reaching beyond 2 ⋅ α, 
the L 1, L A and L P losses update spatial frequencies partly 

M.L. Leidl et al.                                                                                                                                                                                                                                 



Micron 185 (2024) 103688

5

significantly beyond 3 ⋅ α. Among these, L P implies the most homo-
geneous characteristics in Fourier space and best reflects the sixfold 
symmetry of the scan site. A faint three-fold symmetry can be observed 
in Fig. 2, too, recognizable mostly for the gradient of the Poisson loss in 
(d). Of course, exploring the tenth iteration and considering only two 
scan points is a case study of limited generalisability. Nevertheless, the 
respective guesses of the OTFs, which are used to calculate the gradients, 
vary significantly between the loss functions. Up to here, studies took 
place at the high-dose limit, such that the observed different charac-
teristics are rather fundamental and not related to dose effects, which 
will be elucidated next. 

4.2. Reconstruction overview 

In the following subsections, we study the impacts of various pa-
rameters and settings on reconstructions of an MoS2 monolayer from 4D- 
STEM data in a recurrent systematic manner. We show the reconstructed 
amplitudes and phases for the four losses in figure parts (a) and (b). 
Figure parts (c) always depict the power spectra of the reconstructed 
OTFs, and (d) shows line profile averages across Mo-S2 pairs obtained in 
the reconstructed phases so as to explore the presence of chemical 

sensitivity. We first address the pixel-wise calculation of the losses 
employing the full diffraction patterns. Even for the high-dose case 
considered here, this includes both the high intensities in the BF and 
rather low ones in the DF. The sparsity of the latter motivate the second 
and third studies, in which the DF is treated as annular rings or fully 
neglected, respectively. Different focus settings are discussed. Finally, 
reconstructions for a low dose case are assessed. 

4.3. Reconstructions on a pixelated basis 

The comparison of reconstructions in which the loss has been 
calculated pixel-wise from the full diffraction pattern of 256 × 256 pixel 
size is shown in Fig. 4. An acceleration voltage of 300 kV was used with 
probe settings at in-focus conditions, and the high-dose case was applied 
to generate Poisson noise within the 4D-STEM data. The amplitudes 
obtained from the L 1 and L MSE loss functions on the one hand, and 
from the L A and L P losses on the other hand are similar, as seen in 
panel (a). Fig. 4 b demonstrates that all loss concepts yield reliable 
phases that represent the structure excellently. It is to note that the 
dynamic range is nearly a factor of two larger for the L P loss. This is also 
obvious in the power spectra in Fig. 4 c, where the Poisson-based 

Fig. 2. Spatial frequency characteristics of the gradient for an on-atom probe. Power spectra of the gradient after 10 iterations corresponding to a probe on an 
Mo atom for the different loss functions as noted in the caption. The left half is scaled linearly, the right adopts a logarithmic scale. The inner ring indicates the bright 
field (BF) radius α, the outer ring twice the BF radius. Because the absolute value of the gradient only becomes meaningful in combination with the learning rate, the 
shown gradients are separately normalised for the left and right half to show values between 0 and 1. The lower left corner shows an enhancement of frequencies 
outside twice the bright field (BF) radius α and is normalised separately. 
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solution yields the highest spatial frequencies. Moreover, L P is the only 
loss which does not pronounce frequencies within a disc with twice the 
BF radius. The power spectrum of the L MSE decays the fastest with 
increasing frequencies, followed by L 1. The disk marking twice the BF 
radius can be seen for L MSE. The amplitude and Poisson loss functions 
show reflections up to twice the frequency recorded by the detector. 

Chemical contrast between molybdenum and the two sulphur atoms 
is only visible in the amplitude for all loss functions and in the phase for 
L A and L P, which is most obvious in the line profiles of the phases in 
Fig. 4 (d). The peaks of the Poisson loss function are around 1/3 and for 
the other loss functions around 1/4 of the peak height of the ground 
truth. 

Except for minor differences, the results for an acceleration voltage 
of 60 kV, in-focus conditions and the high dose setting in Fig. 5 are 
similar to the 300 kV reconstructions. A faint difference in the phases of 
L 1 and L MSE can be noticed. In general, the Poisson loss yields the 
clearest fingerprint of chemical contrast in the phase as in Fig. 4, 
whereas the phase difference between the Mo and S2 site is higher for 
60 keV electrons. 

In summary, the Poisson loss performs best for a pixel-wise loss 
calculation using both bright and dark field data, followed by the 

amplitude loss. The L 1 criterion still yields significant spatial fre-
quencies beyond twice the convergence semi-angle, which appears as a 
limit for the L MSE in the present case. 

4.4. Reconstructions augmented with annular dark field detectors 

From counting statistics, one expects the Poisson loss to make a 
difference when signals are low. Although the preceding section 
considered the high-dose case, the DF exhibits a rather sparse distribu-
tion of single electron events according to Fig. 1. This could be one 
explanation for the better performance of L P above. On the other hand, 
the intensity distribution in the DF is usually much smoother compared 
to the Ronchigram, such that the dominant information is rather gained 
from the modulus of the momentum than from its direction. Conse-
quently, it is now studied how well a hybrid model performs in which 
the BF contributes to the losses pixel-wise, the DF in ring-wise integrated 
manner. 

Assuming an acceleration voltage of 300 kV and using the pixelated 
BF disc in combination with 64 virtual ring detectors for the dark field, 
the reconstructions in Fig. 6 are obtained. Compared to the full pixelated 
detector, the differences between the loss functions become smaller. The 

Fig. 3. Spatial frequency characteristics of the gradient for an interstitial probe. Power spectra of the gradient after 10 iterations corresponding to a probe at an 
interstitial position in the centre of the hexagon for the different loss functions as noted in the caption. The left half is scaled linearly, the right adopts a logarithmic 
scale. The inner ring indicates the bright field (BF) radius α, the outer ring twice the BF radius. Because the absolute value of the gradient only becomes meaningful in 
combination with the learning rate, the shown gradients are separately normalised for the left and right half to show values between 0 and 1. The lower left corner 
shows an enhancement of frequencies outside twice the bright field (BF) radius α and is normalised separately. 
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line profile of the phase in panel (d) shows that the peak heights of L 1, 
L MSE and L P are similar and all reconstructions show the chemical 
contrast faintly. In contrast to the full pixelated case, the amplitude loss 
function shows significantly higher peaks and nearly no chemical 
contrast. 

Figure 6 c shows the similarities also in the power spectra with a 
slightly faster decay for the MSE loss for the high frequencies. Interest-
ingly, the power spectra of the reconstructions performed with the L 1 
and L MSE losses now contain spatial frequencies substantially above 
twice the BF radius while the power spectra obtained with L A and L P 
decay slightly faster. A reason for this observation might be the artificial 
introduction of isotropy in the DF via rings compared to the anisotropic 
frequencies measured by a square detector. In fact, the Poisson result got 
even slightly worse in terms of the maximum phase difference, being 
0.84 rad in Fig. 4 b and 0.8 rad in Fig. 6 b. This indicates that the Poisson 
loss is not reliant on reducing the sparsity of counts via integrating over 
solid angles in which count rates are low, whereas L 1 and L MSE profit 

significantly. 

4.5. Reconstructions using the Ronchigram only 

The investigations above point towards a dependence of re-
constructions using different loss concepts on how the DF intensity is 
treated. We thus turn towards the high-count regime and study to which 
extent reconstructions differ among the different losses calculated pixel- 
wise from the BF region only. The results are shown in Fig. 7 for identical 
settings as before, i.e., 300 keV electrons and in-focus conditions. 
Indeed, the reconstructions for the different loss functions become 
nearly identical as to amplitudes, phases and spatial frequency charac-
teristics. The chemical contrast can only be seen in the amplitude. The 
differences in the power spectra also become negligible, however, all 
reconstructions show only frequencies up to twice the BF radius. 

We interpreted the different outcomes of the loss functions in the 
previous sections as originating from the high dynamic range in the 

Fig. 4. Reconstruction on pixelated basis at high dose (300 keV). The data shows results for in-focus STEM with a dose per diffraction pattern of 106 electrons. 
The loss function for each quarter starting from the top left in a clockwise direction: L 1, L MSE, L A and L P. Panels show reconstructed (a) amplitudes, (b) phases, (c) 
OTF power spectra and (d) average of eight line profiles of the phase with the ground truth as a black dashed line. Numbers indicate minimum and maximum of the 
colourscale. For the power spectra the minimum is zero in all cases and the indicated ring shows frequencies corresponding to α. The line profiles are shifted by 0.5, 
1.0, 1.5 and 2.0 for a better distinctness. 
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experimental diffraction patterns containing BF and DF. The BF exhibits 
only weak intensity modulations for thin monolayer specimens consid-
ered here, which could explain the identical outcomes among all four 
losses. Therefore, it is interesting to analyse BF data with more structure 
in the Ronchigram, which we introduced by an under-focus of 25 nm as 
exemplarily shown in Fig. 1 c. Defocusing increases the measured dy-
namic range as seen from the broadening of the second peak in Fig. 8 and 
is a frequently used experimental setting for phase retrieval. Figure 9 
shows the reconstructions for the defocused scan. The results are com-
parable to the case without a defocused probe with small differences in 
the amplitude, which demonstrates that, for high-dose settings, all four 
loss functions yield the same OTFs if only the Ronchigram is evaluated. 

4.6. Reconstructions at medium and low doses 

After working out the inherent and loss function characteristics 
irrespective of the recorded dose, we now shed light on the practical 
aspects. In particular, the strategy of solely pixel-wise loss calculation 

using the whole diffraction space from sec. 4.3 is applied while the dose 
is lowered. 

The medium dose level of 104 electrons per diffraction pattern leads 
to the reconstructions shown in Fig. 10. Compared to the high-dose case 
in Fig. 4, fewer electron counts affect all reconstructions significantly, 
except the Poisson result. The L 1 reacts on counting noise by over-
estimating the amplitude in Fig. 10 a, L P underestimates it and L MSE 
yields a noisy amplitude distribution, however, being one on average. 
Moreover, the atomic structure becomes less pronounced, although still 
resolved qualitatively in all cases with regards to the phase in Fig. 10 b. 
Chemical contrast appears only in the result based on the Poisson loss, as 
is obvious from the line profiles in Fig. 10 d. Note that the dynamic range 
of the phase is identical to the high dose case for L P although the dose 
was reduced by two orders of magnitude. 

In the power spectra in Fig. 10 c, the L 1 and L MSE loss only show 
meaningful frequencies up to twice the BF radius, meaning that the 
resolution obtainable by L 1 decreased with the dose. The amplitude 
and Poisson losses maintain their broad frequency transfer band far 

Fig. 5. Reconstruction on pixelated basis at high dose (60 keV). The data shows results for in-focus STEM with a dose per diffraction pattern of 106 electrons. The 
loss function for each quarter starting from the top left in a clockwise direction: L 1, L MSE, L A and L P. Panels show reconstructed (a) amplitudes, (b) phases, (c) 
OTF power spectra and (d) average of eight line profiles of the phase with the ground truth as a black dashed line. Numbers indicate minimum and maximum of the 
colourscale. For the power spectra the minimum is zero in all cases and the indicated ring shows frequencies corresponding to α. The line profiles are shifted by 0.5, 
1.0, 1.5 and 2.0 for a better distinctness. 
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beyond twice the BF radius, whereas the amplitude loss tends to pro-
nounce noise within the 2 ⋅ α frequency band as a limited dose effect. Of 
course also the L P based power spectrum gets noisier, but the noise 
distribution is continuous and thus more realistic up to the highest 
reconstructed spatial frequencies. 

Decreasing the dose further by another factor of 100 results in the 
reconstructions compiled in Fig. 11. This low-dose case with 102 elec-
trons per diffraction pattern shows a dramatic underestimation of the 
mean amplitude for the L 1 and L A losses. Meanwhile, the MSE and 
Poisson loss function’s mean amplitude stays around one. However, no 
meaningful structural contrast is remaining in any of the amplitude 
distributions in Fig. 11 a. Nevertheless, slight phase contrast remains 
visible for L 1 and L A in Fig. 11 b. For the MSE and Poisson loss, the 
phase contrast is highest but lower than for the high-dose cases. None of 
the loss functions shows reliable chemical contrast between Mo and S in 
the phase anymore, as seen in Fig. 11 d. 

The L 1 and amplitude loss functions show only the first reflections 

in the power spectra in Fig. 11 c. In contrast, L MSE and L P show re-
flections up to twice the BF radius. However, the reflections start to fade 
in the noisy background. The Poisson loss function shows the highest 
values above twice the BF radius, but no further structural reflections 
there. Thus, only high-frequency noise is reconstructed for frequencies 
larger than twice the BF radius, and also the L P norm tends to pro-
nounce noise within the 2 ⋅ α radius now. Comparing with the medium 
dose in in Fig. 10 c, the Poisson-based reconstruction becomes the most 
promising one. Although it picks the noise with frequencies well beyond 
2 ⋅ α at low doses, it will be the first approach among those considered 
here, which will be able to reconstruct true spatial frequencies of 
structural origin above the noise level there. 

Figure 11 e-h shows the reconstruction using the Poisson loss L P for 
the high- and low-dose case, whereas the detector has been binned down 
to 32 × 32 pixels. Compared to the 256 × 256 detector, the amplitude 
contrast appears weaker in panel e with random contrast between the 
atom types. On the contrary, the reconstructed phase in panel f depicts 

Fig. 6. Reconstruction based on pixelated BF and 64 DF rings at high dose (300 keV). The data shows results for in-focus STEM with a dose per diffraction 
pattern of 106 electrons. The loss function for each quarter starting from the top left in a clockwise direction: L 1, L MSE, L A and L P. Panels show reconstructed (a) 
amplitudes, (b) phases, (c) OTF power spectra and (d) average of eight line profiles of the phase with the ground truth as a black dashed line. Numbers indicate 
minimum and maximum of the colourscale. For the power spectra the minimum is zero in all cases and the indicated ring shows frequencies corresponding to α. The 
line profiles are shifted by 0.5, 1.0, 1.5 and 2.0 for a better distinctness. 
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the atomic structure clearly. Compared to the low-dose case in Fig. 11 b, 
the atomic peaks in Fig. 11 f are sharper, although the atoms are partly 
elongated in random directions. In the power spectrum in Fig. 11 g, the 
high-frequency peaks have a slightly better signal-to-noise ratio than in 
panel c, and the disc edge at twice the maximum bright field radius is no 
longer visible for the low-dose case. The line profile in panel h shows 
slightly broader peaks for the high-dose case and slightly higher peaks 
for the low-dose case than for the 256 × 256 detector. Thus, at in-focus 
conditions, a small number of detector pixels is indeed sufficient (Yang 
et al., 2015) and can partly even improve the reconstruction. 

In Fig. 12, the low-dose case with 102 electrons per diffraction 
pattern is shown for an acceleration voltage of 60 kV. Observations 
similar to the 300 keV case in Fig. 11 are made. The reconstructions with 
L 1 and L A show an underestimation of the mean amplitude while the 
reconstructions with L MSE and the L P show slightly lower values than 
in the high-dose case. The phases in panel b are rather comparable with 
higher peaks for the reconstruction with L A and L P. In the power 

Fig. 7. Reconstruction restricted to the pixelated BF at high dose (300 keV). The data shows results for in-focus STEM with a dose per diffraction pattern of 106 

electrons. The loss function for each quarter starting from the top left in a clockwise direction: L 1, L MSE, L A and L P. Panels show reconstructed (a) amplitudes, (b) 
phases, (c) OTF power spectra and (d) average of eight line profiles of the phase with the ground truth as a black dashed line. Numbers indicate minimum and 
maximum of the colourscale. For the power spectra the minimum is zero in all cases and the indicated ring shows frequencies corresponding to α. The line profiles are 
shifted by 0.5, 1.0, 1.5 and 2.0 for a better distinctness. 

Fig. 8. Effect of focus on dynamic range. Distribution of electron counts for 
the full simulated 4D-STEM scan for 300 kV using an in-focus setting and an 
under-focus of 25 nm. The first peak of both distributions shows the dark field 
counts and the second, broader peak the bright field counts. 
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spectrum, the disk containing the noisy background has a larger radius 
than for 300 keV. An exception is found for the reconstruction with L P, 
where a smooth decay of the Fourier coefficients with increasing spatial 
frequencies can be observed. The reflections corresponding to the crystal 
lattice show a better signal-to-noise ratio than in the 300 keV case, 
especially at higher frequencies. The average line profile of the phase 
shows an inverted contrast between the atom types for the re-
constructions with L MSE and L P. However, the difference is statistically 
not significant. 

5. Discussion 

The amplitude and Poisson losses lead to a more homogeneous fre-
quency update over the whole frequency space than L 1 and L MSE as to 
the gradient according to Figs. 2 and Figs. 3. Concerning reconstructions 
of the atomic lattice, the intensity difference between the bright and 
dark field matters significantly concerning the decision which loss 

function to take. Whereas a pixel-wise comparison of the full diffraction 
pattern including bright and dark field intensity works reliably for the 
Poisson loss, the results of the other loss functions can be stabilised by 
using virtual ring detectors for the dark field. For the MoS2 monolayer 
studied here, this resulted in a mean electron count of 102 electrons for 
the inner and 26 for the outermost ring, such that, e.g., Gaussian sta-
tistics applies. The difference between the loss functions disappears 
besides minor differences in the amplitude and loss of chemical sensi-
tivity if the reconstruction is limited to the pixels of the BF disc. Intro-
ducing more features into the BF disc by defocusing the electron probe, 
the variation of the number of electrons per pixel is too small to cause 
significant differences between the loss functions, which is beneficial for 
applications. Note that constant differences between the loss functions 
are compensated by the learning rate. 

The chemical contrast between the two sulphur and the molybdenum 
atoms is small. As a result, the difference can only be seen in the 
amplitude for all loss functions in the high-dose case. Here, the 

Fig. 9. Reconstruction using BF data with 25 nm defocus at high dose (300 keV). The data shows results for in-focus STEM with a dose per diffraction pattern of 
106 electrons. The loss function for each quarter starting from the top left in a clockwise direction: L 1, L MSE, L A and L P. Panels show reconstructed (a) amplitudes, 
(b) phases, (c) OTF power spectra and (d) average of eight line profiles of the phase with the ground truth as a black dashed line. Numbers indicate minimum and 
maximum of the colourscale. For the power spectra the minimum is zero in all cases and the indicated ring shows frequencies corresponding to α. The line profiles are 
shifted by 0.5, 1.0, 1.5 and 2.0 for a better distinctness. 
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amplitude of the OTF accounts for the scattering beyond the used de-
tector. Only the amplitude and Poisson loss show the chemical contrast 
in the phase and only the Poisson loss for the medium dose. Introducing 
virtual rings in the dark field reduces the difference of the measured 
electrons between the bright field and the rings in the dark field. As a 
result, the frequency transfer of the different loss functions becomes 
similar. 

A reduction of the dose reduces the reconstruction quality of the L 1 
and amplitude loss significantly (Figs. 10 to Figs. 12), which is strongly 
reflected in the deviation of the mean amplitude from one. This problem 
does not appear for the MSE and Poisson losses or the high-dose case. In 
general, our observations are consistent with the weightings due to the 
standard deviation assumed for the different numbers of electrons per 
pixel. The results are in agreement with the findings of Yeh et al., who 
show a flatter frequency transfer of the gradients for the amplitude and 
Poisson loss functions compared to the MSE loss (Yeh et al., 2015). They 
used Fourier ptychography for light optics and also discussed the 

different standard deviations as a cause. 
The findings as to the amplitude loss might become relevant to 

interpret phase retrieval results at low dose obtained with the ePIE al-
gorithm (Maiden and Maiden, 2009) because it has been shown that 
ePIE basically exploits the amplitude loss function (Godard et al., 2012; 
Melnyk, 2023; Konijnenberg et al., 2018). Finally, the impact of the 
choice of a respective loss function can also be reduced by using 
momentum-based update schemes such as Adam (Kingma and Ba, 2014; 
Diederichs et al., 2024) instead of the gradient descent applied in the 
present paper. 

6. Summary and Conclusion 

For iterative phase retrieval, the Wirtinger Flow approach provides 
sufficient freedom to choose the loss function as an estimator to mini-
mise the difference between the model and experiment in a flexible 
manner. The loss function, in combination with the evaluated solid 

Fig. 10. Reconstruction on pixelated basis at medium dose (300 keV). The data shows results for in-focus STEM with a dose per diffraction pattern of 104 

electrons. The loss function for each quarter starting from the top left in a clockwise direction: L 1, L MSE, L A and L P. Panels show reconstructed (a) amplitudes, (b) 
phases, (c) OTF power spectra and (d) average of eight line profiles of the phase with the ground truth as a black dashed line. Numbers indicate minimum and 
maximum of the colourscale. For the power spectra the minimum is zero in all cases and the indicated ring shows frequencies corresponding to α. The line profiles are 
shifted by 0.5, 1.0, 1.5 and 2.0 for a better distinctness. 
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Fig. 11. Reconstruction on pixelated basis at low dose (300 keV). The data shows results for in-focus STEM with a dose per diffraction pattern of 102 electrons. 
The loss function for each quarter starting from the top left in a clockwise direction: L 1, L MSE, L A and L P. Panels show reconstructed (a) amplitudes, (b) phases, (c) 
OTF power spectra and (d) average of eight line profiles of the phase with the ground truth as a black dashed line. Numbers indicate minimum and maximum of the 
colourscale. For the power spectra, the minimum is zero in all cases, and the indicated ring shows frequencies corresponding to α. The line profiles are shifted by 0.5, 
1.0, 1.5 and 2.0 for a better distinctness. (e)-(h) Results obtained for a binning of the detector from 256 × 256 pixels down to 32 × 32 for L P. Left: High-dose case. 
Right: Low-dose case. 
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angle, can have a decisive impact on the outcome. In particular, using 
the Poisson loss appears robust against such settings and limited dose 
effects, in contrast to the amplitude, L 1 loss and mean-squared error. To 
a certain extent, integrating the sparse dark field counts within virtual 
ring detectors can stabilise their results such that the number of counts 
varies less across the detector. 
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The loss function for each quarter starting from the top left in a clockwise direction: L 1, L MSE, L A and L P. Panels show reconstructed (a) amplitudes, (b) phases, (c) 
OTF power spectra and (d) average of eight line profiles of the phase with the ground truth as a black dashed line. Numbers indicate minimum and maximum of the 
colourscale. For the power spectra, the minimum is zero in all cases, and the indicated ring shows frequencies corresponding to α. The line profiles are shifted by 0.5, 
1.0, 1.5 and 2.0 for a better distinctness. 
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