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Abstract 

We present an updated overview of the AiZynthFinder package for retrosynthesis planning. Since the first version 
was released in 2020, we have added a substantial number of new features based on user feedback. Feature 
enhancements include policies for filter reactions, support for any one‑step retrosynthesis model, a scoring 
framework and several additional search algorithms. To exemplify the typical use‑cases of the software and highlight 
some learnings, we perform a large‑scale analysis on several hundred thousand target molecules from diverse 
sources. This analysis looks at for instance route shape, stock usage and exploitation of reaction space, and points 
out strengths and weaknesses of our retrosynthesis approach. The software is released as open‑source for educational 
purposes as well as to provide a reference implementation of the core algorithms for synthesis prediction. We hope 
that releasing the software as open‑source will further facilitate innovation in developing novel methods for synthetic 
route prediction. AiZynthFinder is a fast, robust and extensible open‑source software and can be downloaded 
from https:// github. com/ Molec ularAI/ aizyn thfin der.
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Introduction
Over the course of decades, the scientific community 
has grappled with the challenge of identifying the 
optimal sequence of chemical reaction steps capable of 
transforming a set of commercially available starting 
material into a desired chemical compound [1]. Solving 

this complex process entails searching through an 
extensive range of possible chemical transformations 
aimed at forming the target molecules. The increase 
in structural complexity of molecules poses further 
challenges by exponentially amplifying the time and 
effort required to explore solutions within a wide array of 
theoretically possible transformations [2]. The emergence 
of computer-aided synthesis planning (CASP) has greatly 
empowered chemists, serving as an invaluable tool in 
the realm of retrosynthetic planning [1]. At the core of 
this methodology lies the pioneering work of E. J. Corey, 
who formalized the process of retrosynthetic analysis, 
a method by which a target molecular compound is 
recursively decomposed into simpler, purchasable 
precursors [3].

Recent advancements in machine learning techniques, 
as well as the domain of deep neural networks and 
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artificial intelligence (AI), have brought about substantial 
enhancements in predicting synthetic pathways, 
minimizing human intervention [4]. Two primary 
methodologies are commonly employed for neural 
network-guided one-step retrosynthesis to model the 
reverse reaction: template-based methods, and template-
free methods [5]. In template-based retrosynthetic 
methods, a set of predefined molecular transformations 
are applied to the target molecule. These template rules 
are obtained either from experts as manually handwritten 
rules or by mining reaction databases [6]. The initial 
exploration into neural network guided template-based 
methods were pioneered by Segler and Waller [7]. The 
neural network predicts the most appropriate template 
to use based on a representation of the target molecule. 
On application of the predicted template, a set of 
precursors are generated and subsequently, this process 
is recursively employed to construct a retrosynthetic tree 
[8]. In the template-free methods, the reaction prediction 
task is often conceptualized as a sequence-to-sequence 
prediction problem. Here, the primary aim is to establish 
a mapping between a text sequence representing the 
reactants to a text sequence that represents the product, 
or conversely [9]. These text sequences can be achieved 
by using standardized notations like the Simplified 
Molecular-Input Line-Entry System (SMILES). The 
Molecular Transformer and the Chemformer are well-
known template-free models that perform retrosynthesis 
as well as forward synthesis prediction [10–13]. For 
an extensive overview and classification of available 
retrosynthesis models, we recommend a recent review 
[14].

Numerous tools and platforms have been developed 
that offer retrosynthesis planning and other CASP 
solutions. Some of these tools are free for registered users 
like Chemical.AI [15] and IBM RXN [16], whereas other 
tools [17–22] are commercially available. A select few are 
entirely open source, including the AiZynthFinder tool 
from AstraZeneca [23], the ASKCOS suite of programs 
from MIT [1], LillyMol from Eli Lilly and Company [24], 
and Syntheseus from Microsoft [25]. We believe that 
open-source implementations would play a valuable role 
in advancing research within the field of computational 
chemistry. Therefore, we presented the AiZynthFinder 
tool in 2020 with the vision of contributing to scientific 
research and continuous development [23]. Apart 
from being used internally [26], the tool has seen a 
considerable uptake in the community, not at least shown 
by more than 200 citations (according to Google Scholar 
in May 2024). A few of the applications of AiZynthFinder 
is worth pointing out: a popular one has been to use 
retrosynthesis software output as ground-truth data for 
fast synthesizeability scores [27, 28]. Another use-case 

has been to use the single-step retrosynthesis model and 
combine it with biocatalysis models as in the RetroBioCat 
software [29]. Dolfus et  al. used AiZynthFinder to 
generate routes that are then modified in a forward pass 
to generate compound libraries [30, 31]. Furthermore, it 
has been used to benchmark retrosynthesis algorithms 
[32, 33] and the output of AiZynthFinder can be read 
by LinChemIn [34] to facilitate comparison with other 
tools. On the more lightweighted side, a Twitter bot was 
integrated with AiZynthFinder to generate images of 
synthesis routes [35].

In this work, we describe the latest major release,   
version  4.0, of AiZynthFinder. This new iteration 
incorporates substantial code improvements, novel 
features and expanded capabilities, all designed to 
address the evolving needs and challenges faced by 
the synthetic chemistry community, and particularly 
the medicinal chemists in AstraZeneca drug discovery 
projects. We provide descriptions of new features such 
as a policy to filter reactions during the tree search, 
additional expansion policies, multiple search algorithms, 
and route clustering and scoring functionalities. We will 
also provide an analysis of retrosynthesis experiments 
to illustrate typical use-cases of AiZynthFinder, offering 
an insight into the strengths and weaknesses of the tool. 
We will conclude by pointing out some outstanding 
challenges that we face when applying AiZynthFinder in 
drug discovery.

Implementation
The AiZynthFinder is a Python-based platform, 
supporting Python 3.9 up to 3.11. In the tradition 
of open-source software development, we provide 
distribution of this new version along with all previous 
versions on GitHub under the MIT license [23, 36]. In 
addition to being available on GitHub, AiZynthFinder is 
also distributed through the Python Package Index (PyPI) 
[37], allowing convenient access and installation of the 
software. As the software is dependent on multiple free 
Python packages, dependency management has been 
facilitated using Poetry [38].

Before we offer insight into the newly implemented 
features and structure, we provide a concise overview 
of the previously implemented algorithm [23]: The 
retrosynthesis process is carried out by taking an 
input target molecule to decompose into purchasable 
precursors. The default search algorithm used is the 
Monte Carlo tree search (MCTS) [39] that together 
with a neural network-based policy is used to predict 
routes [40]. This is accomplished by iteratively expanding 
promising nodes in the tree search by applying reaction 
templates. As the tree reaches its maximum depth or if 
all molecules represented by a node are found in a given 
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stock collection, a score is computed for the route and the 
resulting precursors. This process is iteratively repeated 
until it reaches the maximum number of iterations, or a 
specified time limit [23]. The AiZynthFinder retains this 
as its foundational algorithm, with an introduction to 
multiple features aimed at enhancing the flexibility of the 
retrosynthesis process.

Since 2020, significant research and implementation 
have been focused on introducing and expanding new 
features aimed at enhancing the software. We provide a 
concise overview of the main features introduced during 
this period, alongside the revised structure of the package 
that can be seen in Fig.  1. The functionalities within 
the sub-packages play an integral role in the overall 
execution of the algorithm by the top-level modules. 
The chem sub-package is responsible for managing 
molecules and reactions, using RDKit [41] routines. 
Functionalities pertaining to configuration input, filter 
and expansion strategies, scoring and stocks are provided 
within the context sub-package. The search sub-
package holds the tools for employing different search 
algorithms beyond MCTS on the target molecule, 
while the analysis sub-package handles the analysis 
of the tree search results and efficient management of 
collections of synthetic routes. The tools and utils 
sub-packages provide general tools and functionalities 
applicable across all sub-packages, including data 
downloading, logging, file management, and more. 
The reactiontree module combines some of these 
features to construct a reaction tree representing a single 
synthetic route. All these sub-packages collectively 
contribute to the functionality of the aizynthfinder 
module, enabling the complete retrosynthesis process. 
This retrosynthesis process can be executed through 
user interfaces like the graphical user interface (GUI) 
and command-line interface (CLI), using functions and 
routines provided in the interfaces sub-package. 

The sub-package training from the previous structure 
of the AiZynthFinder package [23] has been moved to 
AiZynthTrain [42] for building and training expansion 
models.

Context: filter and expansion policies, scoring and stock
The sub-package context comprises three key  sub-
package—policy, scoring and stock. The policy package 
contains two different functionalities, a filter policy to 
remove unrealistic reactions and an expansion policy 
to suggest new reactions. The default filter policy, as 
proposed by Segler et  al. [7], utilizes a trained neural 
network model that classifies reactions as being feasible 
or infeasible. Any infeasible reactions are immediately 
removed from the tree search. Additionally, the codebase 
is adaptable to facilitate the integration of additional 
filter strategies. For instance, based on a user suggestion 
we added a filter that removes expansions where the 
number of reactants does not match what is expected 
from the template. The context sub-package also 
includes expansion policy mechanisms, whereby the 
functionality encompasses the use of expansion strategies 
to generate chemical transformations from a given target 
molecule, expanding it into simple precursor molecules. 
Notably, two available expansion mechanisms used in the 
retrosynthesis process are the template-based expansion 
and the SMILES-based (or template-free) expansion. In 
the template-based expansion, a trained neural network 
is used for recommending the most probable templates 
for application to the target molecule. This process yields 
a sorted list of the most probable reaction templates 
that can be applied, along with their corresponding 
probabilities [23].

Additionally, we have introduced the ModelZoo [43, 44] 
package that can be downloaded from Github (https:// 
github. com/ PTorr enPer aire/ model smatt er_ model zoo) as 
a plug-in to our software, offering users the flexibility to 
employ any expansion strategies, whereby the SMILES 
representation of the target molecule is broken down 
into simple precursors. This feature offers the possibility 
of applying the most suitable contemporary single-step 
retrosynthesis model complementing the multi-step 
retrosynthetic process. The ModelZoo currently supports 
models such as the Chemformer [12, 13], MHNreact [45] 
and LocalRetro [46]. Furthermore, we have implemented 
the functionality of incorporating multiple expansion 
strategies simultaneously. This mechanism provides 
the option to either obtain a consolidated list of highly 
probable reaction templates and their associated 
probabilities obtained from all the provided expansion 
strategies or solely from the first strategy listed. For 
instance, one can combine the general retrosynthesis 

Fig. 1 The AiZynthFinder python package structure, outlining 
top‑level modules and sub‑packages

https://github.com/PTorrenPeraire/modelsmatter_modelzoo
https://github.com/PTorrenPeraire/modelsmatter_modelzoo
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model with the Ringbreaker model [47], or augment 
predictions with look-up from reaction databases.

The construction of the expansion and filter models 
using the TensorFlow [48] framework has led to a 
significant dependence on TensorFlow for both training 
and inference within AiZynthFinder, affecting the 
software’s overall run-time. To address this, we have 
implemented a measure to use converted template-based 
models in the ONNX [49] format for inference, effectively 
moving the TensorFlow dependency to the training 
phase. The utilization of ONNX models for inference has 
yielded significant improvements in the start-up time, 
average search time for a solution and a minor impact on 
the total number of solved solutions. In the Supporting 
Information, we detail a comparison of Tensorflow 
and ONNX performance that shows that the start-up 
time with ONNX was found to be approximately 2.4 
times faster than TensorFlow, while the search time for 
a solution using ONNX was found to be approximately 
1.7 times faster. Apart from offering speed-ups, moving 
to use ONNX as the ML back-end for the template-
based models allows us to be model-agnostic, applying 
template-based models trained by other groups in 
AiZynthFinder. For instance, we converted the PyTorch-
based model trained by Chen et  al. [50] that has been 
used in several publications [40] and compared it to our 
UPSTO-based model [8] (see Supporting Information for 
further information).

The scoring package holds a collection of scoring 
functions that can be applied to the retrosynthesis 
process to score MCTS nodes or synthetic routes, further 
enhancing the algorithm with a strategy for building and 
selecting optimal routes. The default scorer calculates 
scores for a node, or a reaction route, based on the 
respective maximum tree depth as well as the fraction of 
starting material in stock. Additionally, the module offers 
alternative scoring methods to score nodes and reaction 
routes by considering factors such as the fraction of 
starting material available in stock, the number of 
reactions required to reach a specific node in the tree, 
the count of precursors in a node or route, the average 
occurrence of templates to reach a specific node, the cost 
of molecules and reactions as proposed by Badowski 
et al. [51], and many more.

The stock package holds the mechanism by which 
the retrosynthesis search is terminated because a set 
of purchasable building blocks is reached. The default 
stock is an in-memory set of InChI keys of the available 
material, but we have since AiZynthFinder version 
1.0 implemented additional stopping criteria such 
as minimum amount and maximum price allowed 
for building blocks. We also recently implemented 
the possibility to use the MolBloom package [52] as 

stock, which reduces the memory consumption of 
AiZynthFinder significantly. A benchmarking of this 
functionality is detailed in Supporting Information.

Search algorithms
The sub-package search includes the implementation 
of the MCTS search algorithm including notable 
enhancements to its overall functionality. These 
improvements include a mechanism to prevent the 
formation of cycles when expanding the search tree. 
We have also implemented features that do not change 
the underlying algorithm but make the utilization of 
expensive models such as Chemformer more effective, 
including sibling node-expansion and model caching 
[12]. Moreover, we have expanded the search capabilities 
by incorporating additional search algorithms like the 
Breadth-First Search, Depth First Proof Number Search 
[53], and Retro* [50], within the search sub-package. 
These search algorithms are based on AND/OR-trees 
compared to the super-node representation used in 
MCTS [54].

Interfaces: AiZynthFinder and AiZynthExpander, GUI 
and CLI
The aizynthfinder.py module serves as the primary 
interface to the retrosynthesis process, containing core 
functionalities encapsulated within the AiZynthFinder 
and AiZynthExpander classes. The AiZynthFinder 
class contains the main tree search loop, using 
functionalities from the chem and search sub-packages 
to build synthesis routes. The AiZynthExpander class 
integrates functionalities from chem, context and 
reactiontree to execute single-step retrosynthesis. 
By combining the functionalities of both these classes, 
the complete multi-step retrosynthesis process is formed.

The end-users can access these functionalities through 
two interfaces—the command-line interface (CLI) and 
the graphical user interface (GUI), whose functionalities 
reside within the interfaces sub-package. The 
GUI offers capabilities to execute tree search on single 
compounds directly within a Jupyter [55] notebook. 
This interface also provides users with the possibilities 
to perform route analysis and clustering of routes. An 
example is shown in Fig. 2 for the drug Amenamevir [56]. 
The route clustering is obtained from a tree edit distance 
computation as previously outlined [57]. In contrast, the 
CLI allows users to perform tree search on batches of 
compounds. Users can submit batches of compounds and 
obtain comprehensive results for the provided SMILES. 
Additionally, the CLI provides a checkpoint mechanism, 
enabling users to track processed compounds in case of a 
process restart.
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Results and discussion
To illustrate the usage of AiZynthFinder, we performed 
several retrosynthesis experiments as outlined in Table 1 
(details can be found in Supporting Information). 
We compiled sets of compounds typical for how 
AiZynthFinder is used, and augmented them with 

compound sets from open sources. For in-house 
compounds, we selected one set of approximately 65,000 
compounds that were designed by chemists and a set of 
approximately 112,000 compounds generated by the de 
novo design platform REINVENT [58] for ten different 
drug projects. For the publicly available compounds, we 

Fig. 2 Jupyter GUI for AiZynthFinder highlighting the route clustering. The relationship of the 20 routes extracted from the search 
of the Amenamevir drug is shown in a dendrogram. The bottom‑part of the GUI shows a tab for each of the five clusters obtained when optimizing 
for the number of clusters. Each tab shows a pictorial representation of the routes
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selected 100,000 compounds from the ChEMBL [59] and 
GDB MedChem databases [60], respectively. We will now 
present an analysis of these retrosynthesis experiments 
from numerous perspectives.

The number of targets for which we find at least 
one route where all the starting material is in stock is 
80% and 86% for the AZ designs and Reinvent sets, 
respectively (see Table  2). For ChEMBL, we only find 
solutions to 71% of the targets, somewhat lower than 
the AstraZeneca sets. However, this could be explained 
by the extended number of iterations used for the 
AstraZeneca sets as recommended in a recent study of 
search hyperparameters [61]. For the GDB set we only 
find solutions to about 10%, highlighting a disconnection 
of the current template-based model trained on 
historical reaction data, with the chemistry needed to 
find synthesis routes for the enumerated, and therefore 
potentially non-synthesizable, GDB compounds. The 
median search time is about 40  s for the ChEMBL set 
and 90  s for the Reinvent sets, i.e. it is likely that one 
would obtain a retrosynthesis route within two minutes. 
The number of routes found is above 100 for all sets, 
although the number of solved routes is less than 100. 
Finally, the routes generated for the Reinvent compounds 
are generally the longest, most convergent and require 
the most starting materials. AZ designs require slightly 
shorter routes and slightly less starting materials. For 
the public target sets, GDB require slightly longer routes 
than ChEMBL, although the amount of starting materials 
is comparable. We also performed retrosynthesis analysis 
on the ChEMBL compounds using the 1.0 release of 

AiZynthFinder and the USPTO-based expansion model 
available in 2020 [8] (see Table S2). This setup could solve 
approximately two percent less targets than the current 
setup, confirming the previously made observation that 
for USPTO-based models there is not a large difference 
between the previous model of Thakkar et  al. and the 
current re-trained model [42]. The median search 
time has decreased considerably with the 4.0 version 
mainly due to the use of ONNX, as described above. 
This comparison shows that for gross metrics like the 
one presented in Table  2, the quantitative performance 
of retrosynthesis has improved only slightly compared 
to the earlier version. However, the additional features 
added to the code base like filter policies and algorithmic 
improves the quality of the proposed routes, which is not 
directly reflected in Table 2.

Next, we analysed the classification of the reactions 
used in the synthesis routes. For the AZ designs, 
Reinvent, and ChEMBL sets, the three most commonly 
used reactions are acylations, alkylation/alyrations, and 
deprotections (see Fig.  3). On the contrary, oxidations, 
heterocycle formation and protections are rarely 
used. It is notable that the usage of deprotections is 
not countered by a usage of protections. One possible 
reason could, of course, be that the starting material 
contains protection groups, necessitating the need for 
deprotection. However, in our experience, the routes 
predicted by AiZynthFinder often contain sub-optimal 
(de-)protection strategies, probably because these are 
relatively abundant reaction classes leading them to be 
suggested by the retrosynthesis model. The distribution 

Table 1 Summary of retrosynthesis experiments

Target compounds Number of targets Models trained on Stock collection

AZ designs 65,300 Reaxys + Pistachio + ELN AstraZeneca internal

Reinvent 112,600 Reaxys + Pistachio + ELN AstraZeneca internal

ChEMBL 100,000 USPTO E‑molecules + ZINC

GDB 100,000 USPTO E‑molecules + ZINC

Table 2 General statistics of the retrosynthesis experiments

a Only for targets for which no solved routes were found
b Only for targets for which at least one solved route was found

Target set % solved targets Median 
search 
time (s)

No. of  routesa No. of  routesb No. of 
solved 
routes

Average no. of 
starting material

Average 
no. of 
steps

Average longest 
linear sequence

AZ designs 80.30 82.34 155.72 187.43 65.45 4.31 4.40 3.67

Reinvent 85.61 87.34 148.61 170.04 71.54 5.07 6.04 4.80

ChEMBL 70.96 37.03 121.80 200.21 38.45 2.67 1.97 1.85

GDB 10.12 47.19 145.50 184.01 17.88 2.93 2.98 2.87
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of reaction classes for the GDB target sets is slightly 
different than for the other three classes. There is very 
little heterocycle formations used and fewer acylations, 
whereas the number of unrecognized reactions is 
increased.

Next, we analyze the impact of different stock sets by 
contrasting the origin of used starting materials that are 
part of found synthesis routes when different stock sets 
are combined during the search. For the AZ designs and 
Reinvent compound sets, we used a stock set that is a 
combination of external vendors and building blocks 
available at AstraZeneca storages. When analyzing 
the proportion of starting material that was found in 
either the external or the internal stocks, we see that 
on average, the starting material is most likely found 
in the external stocks, but the internal stock covers on 
average 70% of the starting material (see Fig. 4). In order 
to improve the lead time for synthesis, one could do an 
analysis of the most frequently used externally available 
building blocks and make sure that they are available at 
AstraZeneca’s internal storages. For the ChEMBL and 
GDB target sets, we used a combination of stocks that 
we created for the first release of AiZynthFinder from the 
ZINC database, and the E-Molecules building blocks, a 
popular choice in multi-step retrosynthesis publications 
[40, 50]. We see in Fig. 4 that in general, the E-Molecules 

stock set is most useful as it covers on average 80% of the 
starting material, whereas ZINC stock only covers 60% 
on average. However, as there is virtually no compute 
overhead in using more than one stock in AiZynthFinder, 
one can argue that using both ZINC and E-Molecules is 
preferable. 

There are about 180,000 templates in the internal 
AstraZeneca expansion model, and about 45,500 
templates in the public USPTO-based expansion model, 
extracted by an automatic procedure [41]. An interesting 
question is how many of these templates are used to 
predict routes for the target sets. In Fig. 5, we show that 
between 12,000 (for GDB) and 25,000 (for ChEMBL) 
templates are used when deploying the USPTO-based 
expansion model. This implies that for ChEMBL, about 
59% of the USPTO-based templates are used, but for AZ 
designs, only 10% of the templates derived from Reaxys, 
Pistachio and AstraZeneca ELNs are used. Thus, we can 
conclude that either there is an enormous challenge in 
prioritizing templates or that a majority of the templates 
extracted are redundant. Most likely, it is a combination 
of both.

To investigate the potential prioritization issue, we 
plotted the distribution of the number of reaction 
examples that were used to derive a template. For the set 
of all templates, we see the typical skewed distribution 

Fig. 3 The distribution of different reaction classes in the synthesis routes predicted for the different target sets
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of the number of reactions: most of the templates have 
very few examples, and very few have more than 10,000 
reactions (see Fig.  6C). However, if we look at the 
distribution for the templates used in the predictions for 
the AZ designs and Reinvent targets, we see a normal 

distribution, centred on a bit more than 100 examples, 
and a long tail towards higher number of examples. Thus, 
we are unlikely to utilize templates with few examples. A 
similar shift in the distribution is shown in an analysis for 
the ChEMBL and GDB target sets, but to a much smaller 
degree (see Figure S1). In the internal expansion model, 
we have set the cut-off at ten examples, whereas for the 
USPTO-based model, it is set to three examples. This 
analysis shows that perhaps we could increase the cut-
off, considering that the internal reaction dataset is about 
10 ten times larger than the USPTO dataset, making 
a cut-off at 30 examples could be a reasonable target to 
focus on the used, most common reaction templates. 
Alternatively, we could investigate a few-shot model [45] 
or an approach for reducing the number of templates 
based on graph subsets [32].

Conclusions and outlook
AiZynthFinder is used daily in-house, and chemists can 
choose to run their own retrosynthesis experiments or 
analyse the results of one of the automatically submitted 
jobs that is triggered for every designed compound. 
Many of the features that we have described in this text 
were driven by business needs, to improve the accuracy 
and speed of the retrosynthesis engine. However, despite 

Fig. 4 The percentage of starting materials found in external or internal stocks for the AZ designs and Reinvent target sets, or ZINC and E‑Molecules 
stocks for the ChEMBL and GDB target sets

Fig. 5 The number of unique templates used in the routes 
for different target sets. For AZ designs and Reinvent the model 
trained on Reaxys, Pistachio and AstraZeneca ELN is used 
and for ChEMBL and GDB the USPTO‑based model is used (see 
Table 1)
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some progress made, it is still inherently difficult to 
compare output from retrosynthesis experiments on a 
large scale [25, 54], and improvements are often judged 
on a case-by-case basis.

Although a substantial number of new features 
have been introduced, there are a number of 
limitations of the current approach. AiZynthFinder 
and other retrosynthesis software suffer from some 
severe limitations in efficient usage of the one-step 
retrosynthesis models. Those models are inherently 
trained for batch inference, whereas the multi-step 
algorithms operate inherently on single compounds. 
We have implemented features to our MCTS algorithm 
to alleviate this, but there is still much improvement 
possible. Furthermore, we also showed herein that 
AiZynthFinder is incapable of taking advantage of the 
broad chemical space that is encoded in the template-
based model (see Fig.  5). A second challenge is the 
balancing of multiple expansion models, something 
that has been implemented in AiZynthFinder. In 
production, we typically use three expansion models 
in parallel: the general template-based model, the 
RingBreaker, and a reaction look-up function. Due 
to that the priors from these models does not operate 

on the same scale, we have, for instance, observed an 
overuse of the RingBreaker model. A third challenge 
is the accurate scoring of routes, which is essential for 
the software to recommend routes rather than serving 
as an ideation tool. A more robust scoring could both 
better guide the tree search and aid in selecting the best 
routes.

AiZynthFinder will continue to incorporate solutions 
to these challenges as well as other innovations, and 
continue being an essential tool for retrosynthesis 
analysis, for both industry and academia.
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