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Abstract: Background: Disease-modifying antirheumatic drugs (bDMARDs) have shown efficacy in
treating Rheumatoid Arthritis (RA). Predicting treatment outcomes for RA is crucial as approximately
30% of patients do not respond to bDMARDs and only half achieve a sustained response. This
study aims to leverage machine learning to predict both initial response at 6 months and sustained
response at 12 months using baseline clinical data. Methods: Baseline clinical data were collected
from 154 RA patients treated at the University Hospital in Erlangen, Germany. Five machine learning
models were compared: Extreme Gradient Boosting (XGBoost), Adaptive Boosting (AdaBoost),
K-nearest neighbors (KNN), Support Vector Machines (SVM), and Random Forest. Nested cross-
validation was employed to ensure robustness and avoid overfitting, integrating hyperparameter
tuning within its process. Results: XGBoost achieved the highest accuracy for predicting initial
response (AUC-ROC of 0.91), while AdaBoost was the most effective for sustained response (AUC-
ROC of 0.84). Key predictors included the Disease Activity Score-28 using erythrocyte sedimentation
rate (DAS28-ESR), with higher scores at baseline associated with lower response chances at 6 and
12 months. Shapley additive explanations (SHAP) identified the most important baseline features
and visualized their directional effects on treatment response and sustained response. Conclusions:
These findings can enhance RA treatment plans and support clinical decision-making, ultimately
improving patient outcomes by predicting response before starting medication.

Keywords: bDMARDs; machine learning predictive model; rheumatoid arthritis; treatment response;
prediction

1. Introduction

Rheumatoid Arthritis (RA) is a common inflammatory condition that primarily affects
the small joints of the hands and feet, leading to disability, discomfort and deformity. It
affects approximately 0.5–1% of the global population [1–3].

Biological disease-modifying antirheumatic drugs (bDMARDs) are an effective treat-
ment for RA, typically prescribed when patients do not adequately respond to conventional
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synthetic DMARDs (csDMARDs) [4]. According to the European Alliance of Associations
for Rheumatology (EULAR) recommendations, regular monitoring every 1–3 months is
essential in managing active RA. Therapy should be adjusted if a response is not achieved
within six months [5]. The goal of RA treatment is a sustained response, defined as re-
maining in remission or at least low disease activity (LDA). Patients on bDMARDs should
have at least two follow-up visits within six months after achieving a response to ensure
sustained response [6]. Despite their effectiveness, 30–40% of patients do not respond to
bDMARDs, and only 50% achieve a sustained response [7,8]. Early response prediction
before starting medication and appropriate treatment selection can improve disease control,
reduce joint damage and alleviate pain [9,10]. Non-responders may experience uncon-
trolled disease progression, leading to increased healthcare costs and a decline in quality of
life [11–14]. Although the costs of bDMARDs have decreased, their substantial cost still
necessitates judicious use of healthcare resources [15].

Machine learning (ML) can identify patterns and relationships within data, offering
potential benefits for predicting bDMARD outcomes and helping rheumatologists make
more accurate treatment decisions [16]. While previous studies have explored ML tech-
niques for predicting treatment response in RA patients, they face several challenges, such
as limitations associated with the availability and cost of imaging and gene expression
data [17]. For example, San Koo et al. [18] and Lee et al. [19] used clinical and imaging data
to predict response at one year, but imaging data are often not available in routine practice
and one year is too long to wait for therapy adjustment. Guan et al. [20] used clinical and
genetic markers to predict response over 24 months, but genetic data are typically not
available in routine clinical practice. Tao et al. [21] focused on predicting response at six
months using genetic data, which is also often inaccessible. In addition, Rivellese et al. [22]
and Yoosuf et al. [23] used gene expression to predict treatment response. However, such
datasets are not available for every patient and are expensive for healthcare systems. To our
knowledge, none of this research has predicted the sustained response at twelve months.

This study aims to overcome existing limitations by using routine clinical data before
starting medication, to predict both the initial response and the sustained response. More-
over, we identify the most relevant baseline clinical features and their directional effects
on treatment outcomes using Shapley additive explanations (SHAP), which enhances the
model’s interpretability for physicians. Our approach not only aligns with the EULAR gold
standard for six-month response but also focuses on the sustained response, a critical yet
often neglected aspect of RA treatment. We assess our strategy using clinical data from RA
patients treated with bDMARDs, incorporating baseline and follow-up information from
the initiation of treatment until any change or discontinuation of therapy.

2. Materials and Methods
2.1. Data Collection

In this study, we collected anonymized data from RA patients at Erlangen University
Hospital in Germany. All patients met the ACR/EULAR 2010 classification criteria for
RA [24]. The research conducted in this study complied entirely with the principles outlined
in the Declaration of Helsinki. The ethics committee of Friedrich-Alexander University
(FAU) approved conducting the research in a cohort of patients with RA, with approval
reference numbers 334-18 B and 333-16 B.

These patients were included from the time they initiated the bDMARDs treatment
until they either changed the treatment or tapered these medications. For each patient,
the study gathered clinical data for a baseline established at the time the patient started
taking bDMARDs. Subsequent data were collected during patient follow-ups. All gathered
clinical characteristics followed the same healthcare protocols and guidelines throughout
the entirety of the study period. Demographic characteristics like age and gender, as well
as disease-specific characteristics such as the type of medications the patients were taking
in addition to their bDMARDs, like csDMARDs and non-steroidal anti-inflammatory drugs
(NSAIDs), were recorded. Disease-specific characteristics also included C-reactive protein
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(CRP) level, erythrocyte sedimentation rate (ESR), rheumatoid factor (RF) and presence of
cyclic citrullinated peptide (CCP) antibodies. Furthermore, disease activity measures, such
as tender and swollen joint counts based on 28 joints (TJC28 and SJC28), visual analogue
scales (VAS) for pain, patients and physicians’ global disease activity, disease activity score
in 28 joints based on CRP and ESR (DAS28-ESR and DAS28-CRP), clinical disease activity
index (CDAI), simple disease activity Index (SDAI) and health assessment questionnaire
(HAQ) were assessed. The study also took into account other comorbidities, for instance,
asthma, diabetes, heart disease, etc. The list of all features can be seen in Tables A2 and A3.

2.2. Data Preprocessing

Before analyzing the collected data, a preprocessing step was necessary to address
inconsistencies due to the routine data-collection process. It is important to note that
rheumatologists collected data during their own diagnoses and treatments. However, some
challenges emerged, such as the selective collection of features during follow-up visits. In
some cases, specific features were recorded only once (rather than during every follow-up),
like, for example, gender or certain features might have been omitted intentionally or
accidentally, leading to various missing values in the raw data. To overcome this issue, we
implemented a comprehensive imputation strategy. The proportion of missing data for
each value is summarized in Table A1.

For the imputation of missing values, we employed different methods depending
on the variable characteristics. For variables demonstrating linear correlations with other
follow-up measurements, such as patient comorbidities, we utilized straightforward linear
imputation techniques like the nearest available observation (NAO) and linear extrapola-
tion [25]. These imputations were conducted on an individual patient basis and remained
independent of data from other patients.

For other missing values, such as DAS28 and the values used to calculate DAS28 (e.g.,
CDI Score, SDI Score SJC28 and TJC28), which did not show linear correlations with other
variables, we used the Multiple Imputation by Chained Equations (MICE) method [26].
MICE uses data from various variables to estimate the best possible prediction for each
missing value by considering data from all patients collectively, not just individually.

We chose MICE because it can also handle datasets with up to 20% missing data. It
creates multiple imputations for missing values by modeling each variable with missing
data based on other variables in the dataset [27,28]. This method ensures that the imputed
values are as accurate as possible, maintaining the dataset’s integrity for analysis [29].

Using imputation was crucial to avoid biases and inaccuracies from incomplete data,
ensuring our analyses were robust and reliable.

2.3. Response and Sustained Response Groups

In this study, we defined responses to bDMARDs into two states: remission and
low disease activity (LDA) [30]. The sustained response also refers to the maintenance of
remission or LDA states for at least six months [6]. Based on the EULAR criteria, we used
DAS28 score based on the erythrocyte sedimentation rate (DAS28-ESR) score to quantify
remission and LDA. A DAS28-ESR score below 2.6 indicates remission, while a score
between 2.6 and 3.2 indicates LDA [31].

In evaluating the effectiveness of bDMARDs treatment, patients were categorized
based on their response and sustained response to the treatment. To assess the response,
patients were labeled as “responders” if they met the remission or LDA criteria after
6 months and if they could maintain these criteria for an additional six months, requiring at
least two visits within this period to be considered part of the sustained responder group.
Patients who did not meet the responder criteria were categorized as “non-sustained
responders”, regardless of their DAS28-ESR values within the second six months.
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2.4. Predictive Classification Models

In order to predict patient response and sustained response to bDMARDs treatment,
we employed two separate machine learning models, as illustrated in Figure 1. Both
models utilize the same clinical data to predict the patient’s response to treatment at the six-
month follow-up and estimate their sustained response to treatment after twelve months,
respectively. For both models, we provide information regarding the most important
clinical features influencing the model’s outcome. We evaluated multiple classification
models to identify the most effective approach. Five machine learning classifiers were
trained with the selected features: Support Vector Machine (SVM) [32], Random Forest [33],
Extreme Gradient Boosting (XGBoost) [34], Adaptive Boosting (AdaBoost) [35] and K-
nearest neighbor (KNN) [36].

Figure 1. Data-processing flowchart showing patient selection, labeling strategy and delivery to the
respective prediction model-selection units.
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2.5. Feature Importance and Interpretability

To make our models more reliable and easier to understand, we found and selected
the most important features. We used a technique called Random Forest (RF) to figure
out which features were crucial [37]. Then, we ranked them based on their importance.
Nevertheless, the RF algorithm alone does not provide information regarding the direction
in which these variables influence the outcome of predictions. To address the problem,
we used Shapley additive explanations (SHAP) [38,39]. SHAP computed the difference
in model output with and without each feature. This resulted in a SHapley value for
each feature, which not only indicated its contribution but also the direction of its effect
on the model’s predictions. This information is crucial for clinicians to identify the best
variables that significantly influence the prediction of response and sustained response in
bDMARDs treatment.

2.6. Model Selection

We used a nested cross-validation methodology for training, validating and testing pre-
diction models [40]. This technique guarantees our models’ robustness and best performance
when processing real-world clinical data, which is essential for healthcare applications.

The nested cross-validation process consists of two main parts: an outer loop and an
inner loop. In the framework of the outer loop, we first split our dataset into two main
segments: an 80% training set and a 20% test set.

The training data were subsequently split into five different subsets, or “folds”, within
the inner loop. Here, we used hyperparameter tuning and feature selection. Using four
folds for training and one for validation, we explored different combinations of features
and hyperparameters in each iteration. After choosing the features, we used a grid search
for each classifier, assessing every possible combination of hyperparameters. The search for
the selection of the best hyperparameters was based on achieving the maximum accuracy
on the validation dataset. This procedure was iterated five times, ultimately identifying the
most effective hyperparameters and features for classifiers. Table A4 provides a list of the
hyperparameters and the search space for each classifier.

In the second stage, we trained and evaluated our classifiers within the outer loop of
the nested cross-validation method, utilizing the chosen features and the best hyperparam-
eters identified in the first step. In this phase, we assessed performance metrics using the
test dataset.

We repeated this method four times, using one of the remaining test folds as the
testing dataset and the other as the training dataset in each iteration. For each new training
dataset, the inner loop is repeated five times, resulting in a 5 × 5 cross-validation process.
In addition, within the outer loop, we computed SHAP values for the features that were
chosen [41]. After concatenating these SHAP values, we were able to identify the most
significant features in our models. Figure 2 presents a visual representation of this nested
cross-validation process.

To evaluate the performance of the classifiers in predicting response and sustained
response, we utilized four evaluation metrics: accuracy, Area Under the Receiver Operating
Characteristic Curve (AUC-ROC), Matthews Correlation Coefficient (MCC) and F1 score.
The cut-off threshold for the ROC curves was set to 0.5. This threshold is commonly chosen
as it assumes equal costs for false positives and false negatives.

Using the outer loop of nested cross-validation, we obtained five values of each metric
for each classifier prediction. The best classifiers for response and sustained response
prediction were selected based on a combination of the highest mean of the evaluation
metrics and also taking into account standard deviation as an indicator of variability. This
approach allowed us to prioritize classifiers with both strong average performance and
relatively low variability.



J. Clin. Med. 2024, 13, 3890 6 of 16

Figure 2. Flowchart illustrating the nested cross-validation process for feature selection, hyperpa-
rameter tuning and model selection. The nested cross-validation consists of five outer loops and
five inner loops. In the inner loop, the optimal combination of features and hyperparameters is
determined. During each round of the outer cross-validation, the SHAP values of the selected features
are calculated on the test folds (Image adapted from [42]).

2.7. Software

The machine learning models and analysis scripts used in this study were developed
using Python 3.9. The code and libraries used in this study are available on GitHub.

3. Results
3.1. Patients Characteristics

Among the 183 RA patients screened, 154 had at least one follow-up at six months
from baseline and at least two follow-ups within the subsequent six months. The remaining
29 patients were excluded as they did not meet these criteria. Table A2 presents the
baseline clinical features of these 154 RA patients, stratified by their response at six months.
Additionally, Table A3 provides a stratification based on sustained response.
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Out of 154 RA patients, 98 were identified as responders to the treatment at the six-
month follow-up, and subsequently, 66 of these responders were recognized as having
sustained response. The distribution of patients across these groups is illustrated in Figure 3,
highlighting that while 64% of patients met the response criteria, only 43% were able to
maintain a sustained response.

The patients were supplied various bDMARDs, including Etanercept, Adalimumab,
Certolizumab, Rituximab, Infliximab, Abatacept, Tocilizumab, Golimumab, Sarilumab,
Secukinumab, Anakinra and Ustekinumab.

Sustained Responders N:66 | 43%Non-sustained Responders – N:88 | 57%

Figure 3. The proportion of responders and non-responders (after 6 months), and sustained respon-
ders and non-sustained responders (after 12 months).

3.1.1. bDMARDs Response Prediction

We assessed five classifiers to predict patient response to bDMARDs treatment and
classified them into two groups: responder and non-responder. Our dataset of 154 RA
patients was divided into folds within the inner loop of the nested cross-validation process,
with roughly 31 patients included for training and validation for each fold. This distribution
meant that, for the outer loop, roughly 123 patients (80% of the total of 154), divided into
five folds for the inner loop, were utilized for training in each of the five iterations, while
the remaining 31 patients (20% of the total of 154), formed the test set. This made sure
that every patient was fairly represented during the training and testing phases enabling
thorough evaluation of the model’s functionality.

From all classifiers, XGBoost outperformed the others, achieving the highest accuracy,
AUC-ROC, MCC and F1 score. XGBoost demonstrated mean values of 0.851, 0.91, 0.714
and 0.878 for accuracy, AUC-ROC, MCC and F1 score, respectively (Table 1). Figure A1
shows the ROC curves for the five outer test folds of the classifiers.

Table 1. Results of predictive classifiers of response.

Classifier Accuracy AUC-ROC F1 Score MCC

AdaBoost 0.808 (0.070) 0.849 (0.060) 0.872 (0.063) 0.686 (0.114)
SVM 0.812 (0.046) 0.848 (0.034) 0.851 (0.048) 0.490 (0.121)
KNN 0.766 (0.059) 0.827 (0.081) 0.821 (0.043) 0.366 (0.135)
XGBoost 0.851 (0.044) 0.910 (0.040) 0.878 (0.053) 0.714 (0.179)
Random Forest 0.852 (0.033) 0.908 (0.065) 0.846 (0.071) 0.640 (0.103)

Note: Mean (±SD) evaluation scores of classifiers that classify the RA patients into two groups (Responder and
Non-responder to bDMARDs). XGBoost is the best classifier for classifying responses.

Additionally, Figure 4 displays the SHAP plots. The figure on the left side of Figure 4A
displays the mean of absolute SHAP values, which shows the baseline features in descend-
ing order of importance for predicting the response to treatment using XGBoost. The key
clinical features that are crucial for predicting treatment response after six months include
DAS28-ESR, VAS for physician, HAQ score, VAS for pain assessment, Body Mass Index
(BMI), VAS for patient, TJC28, age, CDAI score, SDAI score, ESR level, gender, SJC28, RF,
csDMARDs taking, CRP level and NSAID usage, respectively.
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Figure 4. The figure shows the most effective baseline features and their impact in predicting
responses (A) using the XGBoost classifier, as well as the sustained response (B) through the imple-
mentation of AdaBoost classifiers. The SHAP values for the chosen features, which were obtained
by the Random Forest (RF) model, are shown for predicting both the response and the sustained
response. The figures on the left side show the average of absolute SHAP values and the mean influ-
ence of these features on the model. In contrast, the figures on the right side illustrate SHAP values,
where positive values indicate a higher likelihood of response and sustained response, while negative
values suggest the opposite. Vice versa, smaller SHAP values correspond to a lower probability
of response and sustained response. The model for each patient is visually represented by a dot,
where dots with greater SHAP values are shown in red and dots with lower values are represented in
blue. For binary variables such as gender and diseases (e.g., male/female and presence/absence of
disease, respectively), red dots indicate the presence of the condition or female gender, while blue
dots represent the absence of the condition or male gender. The y-axis shows the most significant
clinical features at the baseline for making these predictions.

The right plot visually represents the direction of each mentioned baseline feature
using a dot distribution. Red dots indicate greater values, while blue dots indicate lower
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values. Each dot represents an individual patient. Positive SHAP values show a response,
whereas negative SHAP values indicate no response. For example, let us consider the
DAS28-ESR score, which is recognized as the most important feature for determining
response. There is a positive correlation between lower values of DAS28-ESR and a higher
probability of being classified as a responder after 6 months of therapy with bDMARDs.

3.1.2. bDMARDs Sustained Response Prediction

We also used five classifiers to predict sustained response to bDMARDs treatment.
The assessment metrics presented in Table 2 reveal that the AdaBoost classifier achieved the
highest mean accuracy, AUC-ROC, MCC and F1-Score for distinguishing patients based on
their sustained response. The mean values for AdaBoost were 0.856, 0.842, 0.68 and 0.759
for accuracy, AUC-ROC, MCC and F1-Score, respectively. Figure A2 shows the ROC curves
for the classifiers across the five outer folds of the nested cross-validation.

Table 2. Results of predictive classifiers of sustained response.

Classifier Accuracy AUC-ROC F1 Score MCC

AdaBoost 0.856 (0.045) 0.842 (0.073) 0.759 (0.047) 0.680 (0.142)
SVM 0.773 (0.054) 0.828 (0.034) 0.755 (0.065) 0.395 (0.202)
KNN 0.701 (0.105) 0.813 (0.040) 0.660 (0.097) 0.203 (0.105)
XGBoost 0.748 (0.091) 0.817 (0.080) 0.689 (0.124) 0.489 (0.227)
Random Forest 0.780 (0.054) 0.810 (0.081) 0.719 (0.100) 0.542 (0.215)

Note: Mean (±SD) evaluation scores of classifiers that classify the RA patients into two groups (Responder and
Non-responder to bDMARDs). AdaBoost is the best classifier for classifying responses.

Figure 4B presents the SHAP plots for the AdaBoost classifier, highlighting the signifi-
cant baseline features and their impact on sustained responses. The primary features for
predicting sustained response are listed in descending order of importance, including the
DAS28-ESR Score, HAQ Score, SDAI Score, VAS pain, age, VAS for patients, BMI, TJC28,
RF, CDAI Score, DAS28-CRP score, CRP level, ESR level, VAS for physicians, asthma status,
csDMARD usage, RF and gender. The last four attributes have a negligible impact. As pre-
viously stated, the SHAP method enhances our comprehension of how features influence
outcomes and provides a clearer indication of the most influential features by analyzing the
distribution of red and blue dots. For example, patients with lower DAS28-ESR and HAQ
scores at the start of treatment have a higher likelihood of achieving sustained response.

4. Discussion

Our study utilized routine clinical data and machine learning methods to predict
the response to bDMARDs treatment at six months and the sustained treatment response
after twelve months. We achieved high predictive accuracy, with the XGBoost classifier
showing an AUC-ROC of 0.910 for initial response prediction and the AdaBoost classifier
demonstrating an AUC-ROC of 0.842 for sustained response. The robustness of our models
was ensured through nested cross-validation, with SHAP values providing insights into
feature importance and directionality.

Using baseline data, we can predict patient outcomes before starting the medication,
allowing for more accurate and efficient care by quickly identifying patients unlikely to
benefit from these therapies. This approach optimizes follow-up schedules, improves
overall treatment effectiveness and better allocates healthcare resources.

Our study addresses gaps in previous research by aligning endpoints with EULAR
standards and focusing on sustained response, thus enhancing the practicality and appli-
cability of our findings. The emphasis on baseline characteristics provides clinicians with
valuable guidance for making informed treatment decisions before prescribing medication.
This targeted approach is crucial for effective patient management in rheumatology.

Despite these advances, our study has certain limitations. Its single-center nature may
limit the generalizability of the findings. Future research should validate these predictive
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models in diverse settings and among larger patient groups to confirm their broader appli-
cability and strengthen their predictive power. Additionally, expanding the scope of our
models to include a wider range of DMARDs could significantly enhance the ability to tailor
treatment plans. By extending the predictive capabilities to various DMARD categories,
we aim to provide clinicians with a comprehensive decision-making tool, ensuring each
patient receives the most suitable and effective treatment.

In conclusion, our study presents a promising approach for predicting bDMARDs re-
sponse and sustained response using routine clinical data. By highlighting the most critical
features and explaining how each clinical feature can influence response and sustained
response, our predictive models can serve as decision support tools to help rheumatologists
make more informed decisions when prescribing bDMARDs.

Author Contributions: Conceptualization, F.S., S.B., G.S., A.K. and B.M.E.; methodology, F.S., L.I.L.G.
and A.B.; software, F.S.; validation, F.S., D.Z. and L.I.L.G.; formal analysis, F.S.; investigation, F.S.;
resources, F.S., S.B., G.S., A.K. and B.M.E.; data curation, S.B., G.S. and A.K.; writing original draft
preparation, F.S.; writing, review and editing, F.S., D.Z., L.I.L.G., A.B., S.B., G.S., A.K. and B.M.E.;
visualization, F.S.; supervision, B.M.E., S.B., G.S. and A.K.; project administration, B.M.E.; funding
acquisition, B.M.E. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Digital Health Innovation Platform (d.hip).

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and approved by the Ethics Committee of Friedrich-Alexander University (FAU) (protocol
code 334-18 B and 333-16 B, were approved on 9 October 2018).

Informed Consent Statement: Patient consent was waived as there was no intervention other than
routine clinical data collection and patients were anonymized.

Data Availability Statement: The datasets generated and analyzed during the current study are
available in Zenodo at the following URL: https://doi.org/10.5281/zenodo.12507169 (accessed on 25
June 2024). These datasets include all clinical baseline data and labelled data based on response and
sustained response. Data were uploaded to the repository during the peer review process.

Acknowledgments: The authors wish to thank Fabian Hartmann at the University Hospital Erlangen
for his assistance in data collection.

Conflicts of Interest: Alexander Brost was employed by Siemens Healthcare GmbH. The remaining
authors declare that the research was conducted in the absence of any commercial or financial
relationships that could be construed as a potential conflict of interest. The funders had no role in
the design of the study, in the collection, analyses, or interpretation of data, in the writing of the
manuscript, or in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

ACR American College Testing
AdaBoost Adaptive Boosting
AUC-ROC Area under the Receiver Operating Characteristic Curve
bDMARDs Biological Disease-Modifying Antirheumatic Drugs
BMI Body Mass Index
CDAI Clinical Disease Activity Index
CCP Cyclic Citrullinated Peptide Antibodies
CRP C-Reactive Protein
csDMARDs Conventional Disease-Modifying Antirheumatic Drugs
DAS28-CRP Disease Activity Score-28 using C-Reactive Protein
DAS28-ESR Disease Activity Score-28 using Erythrocyte Sedimentation Rate
ESR Erythrocyte Sedimentation Rate
EULAR European Alliance of Associations for Rheumatology
HAQ Health Assessment Questionnaire
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KNN K-nearest Neighbors
KOBIO Korean College of Rheumatology Biologics and Targeted Therapy Registry
LDA Low Disease Activity
ML Machine Learning
MICE Multiple Imputations by Chained Equation
NAO Nearest Available Observation
NSAIDs Non-steroidal Anti-inflammatory Drugs
RA Rheumatoid Arthritis
RF Rheumatoid Factor
RF (Model) Random Forest
SD Standard Deviation
SDAI Simple Disease Activity Index
SHAP Shapley Additive Explanations
SJC28 Swollen Joint Count based on 28 joints
SVM Support Vector Machines
TJC28 Tender Joint Count based on 28 joints
VAS Visual Analogue Scales
XGBoost Extreme Gradient Boosting
MCC Matthews Correlation Coefficient

Appendix A

Table A1. Percentage of Missing Data for Each Clinical Feature at Baseline.

Column Percentage Missing (%)

Age (years) 0.00
Gender 0.00
Swollen Joint Count-28 (SJC28) 1.76
Tender Joint Count-28 (TJC28) 1.76
Body Mass Index (BMI) 0.00
Visual Analog Scale (VAS) Activity (Physician) 14.88
Visual Analog Scale (VAS) Activity (Patient) 1.76
Visual Analog Scale (VAS) Pain 14.18
Health Assessment Questionnaire (HAQ) Score 1.77
Disease Activity Score in 28 Joints (DAS28-ESR) 1.76
Disease Activity Score in 28 Joints (DAS28-CRP) 2.26
C-Reactive Protein (CRP) (mg/L) 0.00
Rheumatoid Factor (RF) 0.00
Anti-Cyclic Citrullinated Peptide (CCP) 0.00
Clinical Disease Activity Index (CDAI) 14.88
Simple Disease Activity Index (SDAI) 16.18
Erythrocyte Sedimentation Rate (ESR) (mm) 1.76
Osteoarthritis 0.00
Asthma 0.00
Uveitis 0.00
Hypertension 0.00
Chronic Renal Insufficiency 0.00
COPD 0.00
Depression 0.00
Diabetes 0.00
Inflammatory Bowel Disease 0.00
Fat Metabolism Disorder 0.00
Gout 0.00
Heart Attack 0.00
Coronary Heart Disease 0.00
Osteoporosis 0.00
Periodontitis 0.00
Thyroid Disease 0.00
Thrombosis 0.00
bDMARD 0.00
tsDMARD 0.00
csDMARD 0.00
Prednisolone 0.00
Non-Steroidal Anti-Inflammatory Drug (NSAID) 0.00
bDMARD Intake Duration (days) 0.00
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Table A2. Baseline Clinical Features of RA Patients, Stratified by Response to bDMARDs After 6 Months.

Baseline Characteristics Responders (n = 98) Non-Responders (n = 56) p-Value

Age (years) 51.86 (13.95) 56.29 (11.75) 0.04696
Gender (Female)% 67.35% 82.14% 1.00000
Body Mass Index (BMI) 28.34 (17.26) 27.24 (5.94) 0.64452
Anti-Cyclic Citrullinated Peptide (CCP) 211.68 (313.09) 283.36 (528.09) 0.29154
Clinical Disease Activity Index (CDAI) 5.41 (6.47) 16.41 (11.89) 0.00000
C-Reactive Protein (CRP) (mg/L) 0.32 (0.47) 0.41 (0.5) 0.24045
Health Assessment Questionnaire (HAQ) Score 0.62 (0.66) 0.94 (0.68) 0.00000
Non-Steroidal Anti-Inflammatory Drug (NSAID) Usage% 27.55% 28.57% 1.00000
Rheumatoid Factor (RF) 71.72 (125.38) 145.58 (267.65) 0.02136
Simple Disease Activity Index (SDAI) 6.72 (7.37) 17.12 (11.63) 0.00000
Swollen Joint Count-28 (SJC28) 1.58 (3.47) 3.62 (4.85) 0.00283
Tender Joint Count-28 (TJC28) 1.43 (2.84) 6.79 (6.27) 0.00000
Visual Analog Scale (VAS) Activity (Patient) 20.68 (19.18) 53.0 (22.0) 0.00000
Visual Analog Scale (VAS) Activity (Physician) 11.52 (13.24) 32.95 (22.14) 0.00000
Visual Analog Scale (VAS) Pain 18.96 (18.04) 43.45 (23.11) 0.00000
Erythrocyte Sedimentation Rate (ESR) (mm) 12.71 (9.74) 25.12 (22.19) 0.00000
Disease Activity Score in 28 Joints (DAS28-CRP) 2.37 (0.86) 3.97 (1.13) 0.00000
Disease Activity Score in 28 Joints (DAS28-ESR) 2.39 (1.04) 4.38 (1.16) 0.00000
Asthma % 0.0% 0.0% 1.00000
Inflammatory Bowel Disease % 0.0% 0.0% 1.00000
Prednisolone% 28.57% 55.36% 1.00000
Chronic Renal Insufficiency % 0.0% 0.0% 1.00000
Coronary Heart Disease% 0.0% 0.0% 1.00000
Diabetes% 0.0% 0.0% 1.00000
Fat Metabolism Disorder% 0.0% 0.0% 1.00000
Gout% 0.0% 0.0% 1.00000
Conventional Synthetic Disease-Modifying Antirheumatic Drugs (csD-
MARD) %

65.31% 69.64% 1.00000

Mean (±standard deviation) and percentage of the population for each variable at baseline for RA patients
treated with bDMARDs. p-values indicate the statistical significance of differences between responders and
non-responders.

Table A3. Baseline Clinical Features of RA Patients, Stratified by Sustained Response to bDMARDs
After 12 Months.

Baseline Characteristics
Sustained

Responders (n = 66)
Non-Sustained

Responders (n = 88) p-Value

Age (years) 51.52 (14.13) 55.87 (11.93) 0.04352
Gender (Female)% 62.35% 85.51% 1.00000
Body Mass Index (BMI) 28.65 (18.43) 27.07 (5.72) 0.49349
Anti-Cyclic Citrullinated Peptide (CCP) 245.25 (470.97) 228.49 (306.47) 0.79905
Clinical Disease Activity Index (CDAI) 5.25 (5.89) 14.53 (12.1) 0.00000
C-Reactive Protein (CRP) (mg/L) 0.34 (0.48) 0.36 (0.48) 0.78621
Health Assessment Questionnaire (HAQ) Score 0.54 (0.58) 1.35 (0.73) 0.00000
Non-Steroidal Anti-Inflammatory Drug (NSAID) Usage% 24.71% 31.88% 1.00000
Rheumatoid Factor (RF) 59.5 (85.95) 146.71 (264.27) 0.00478
Simple Disease Activity Index (SDAI) 6.37 (6.61) 15.6 (11.92) 0.00000
Swollen Joint Count-28 (SJC28) 1.55 (3.47) 3.28 (4.67) 0.00948
Tender Joint Count-28 (TJC28) 1.24 (2.3) 6.01 (6.24) 0.00000
Visual Analog Scale (VAS) Activity (Patient) 20.18 (17.86) 47.52 (25.52) 0.00000
Visual Analog Scale (VAS) Activity (Physician) 12.48 (14.99) 27.73 (21.9) 0.00000
Visual Analog Scale (VAS) Pain 18.38 (17.07) 39.55 (24.49) 0.00000
Erythrocyte Sedimentation Rate (ESR) (mm) 12.8 (10.85) 22.67 (20.37) 0.00018
Disease Activity Score in 28 Joints (DAS28-CRP) 2.35 (0.78) 3.69 (1.28) 0.00000
Disease Activity Score in 28 Joints (DAS28-ESR) 2.34 (0.99) 4.06 (1.36) 0.00000
Asthma % 0.0% 0.0% 1.00000
Inflammatory Bowel Disease % 0.0% 0.0% 1.00000
Prednisolone% 29.41% 49.28% 1.00000
Chronic Renal Insufficiency % 0.0% 0.0% 1.00000
Coronary Heart Disease % 0.0% 0.0% 1.00000
Diabetes % 0.0% 0.0% 1.00000
Fat Metabolism Disorder % 0.0% 0.0% 1.00000
Gout % 0.0% 0.0% 1.00000
Conventional Synthetic Disease-Modifying Antirheumatic Drugs (csD-
MARD) %

63.53% 71.01% 1.00000

Mean (±standard deviation) and percentage of the population for each variable at baseline for RA patients treated
with bDMARDs. p-values indicate the statistical significance of differences between sustained responders and
non-sustained responders.
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Table A4. Configuration space and the best hyper-parameters of each classifier.

Classifier Hyper-Parameter Search Space Response Sustained

AdaBoost n_estimators [5, 10, 50, 100, 200] 5 5
learning_rate [0.01, 0.1, 1] 0.01 0.01

SVM C [0.1, 1, 10, 100, 1000] 100 100
gamma [1 × 10−6, 1 × 10−5, 1 × 10−4, 1 × 10−3,

1 × 10−2, 0.1, 1]
1 × 10−3 1 × 10−3

KNN n_neighbors [1, 3, 5, 7, 8, 10, 12] 3, 6, 7, 8 3, 6, 7, 8
leaf_size [1, 50] 1 1

XGBoost n_estimators [1, 10, 100, 200] 10, 50, 100, 200 1, 10, 100, 100
min_child_weight [1, 5, 10] 1, 5 1, 5

Random Forest n_estimators [1, 10, 100] 10, 100 10, 100
max_features [‘sqrt’, ‘log2’] ‘sqrt’ ‘sqrt’
max_depth [1, 2, 3, 4] 1, 3, 4 1, 3, 4

Figure A1. ROC Curves for Nested Cross-Validation: Each curve represents the ROC for a test fold in
the outer loop of the nested cross-validation process used for predicting response at six months.
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ROC fold 1 (AUC=0.71)
ROC fold 1 (AUC=0.81)
ROC fold 1 (AUC=0.74)
ROC fold 1 (AUC=0.84)
ROC fold 1 (AUC=0.91)
Mean ROC (AUC=0.84 ± 0.07)

Figure A2. ROC Curves for Nested Cross-Validation: Each curve represents the ROC for a test fold in
the outer loop of the nested cross-validation process for predicting sustained response at 12 months.
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