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Abstract 
Numerous imaging techniques are available for observing and interrogating biological samples, and several of them can be used 
consecutively to enable correlative analysis of different image modalities with varying resolutions and the inclusion of structural 
or molecular information. Achieving accurate registration of multimodal images is essential for the correlative analysis process, but 
it remains a challenging computer vision task with no widely accepted solution. Moreover, supervised registration methods require 
annotated data produced by experts, which is limited. To address this challenge, we propose a general unsupervised pipeline for 
multimodal image registration using deep learning. We provide a comprehensive evaluation of the proposed pipeline versus the current 
state-of-the-art image registration and style transfer methods on four types of biological problems utilizing different microscopy 
modalities. We found that style transfer of modality domains paired with fully unsupervised training leads to comparable image 
registration accuracy to supervised methods and, most importantly, does not require human intervention. 
Keywords: unsupervised multimodal image registration; deep learning; microscopy; correlative microscopy
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INTRODUCTION 
With the introduction of various microscopy imaging techniques, 
there has been an increasing demand for concurrent or consecu-
tive image generation from the same biological sample allowing 
for more advanced analysis on multiple scales and integration of 
structural or molecular information [1, 2]. 

The utilization of image multiplexing has been demonstrated 
to be a valuable method for obtaining molecular information 
within whole slide tissue samples [3]. However, the acquisition 
of multiplexed images necessitates the repeated scanning of the 
entire slide, which can result in imprecise alignment of cells due 
to tissue reshaping caused by the application of various stains [4]. 
To address these issues of misalignment, automated solutions are 
required, as manually registering a large number of images is both 
time-consuming and labor-intensive. 

Particular experiments might require image registration of the 
different imaging modalities at the cell or even subcellular levels. 
For instance, in the recently introduced Deep Visual Proteomics 
method, researchers perform single-cell laser microdissection, 
a procedure that requires very high precision. First, they identify 
target cells with high-content or tissue screening microscopy, then 
a deep convolutional neural network segments and selects the 
cells of interest [5–8]. To perform single-cell isolation, the sample 
is usually placed in a different microscopy setup. For such exper-
iments, (sub)micron precision navigation between the micro-
scopes is required [8, 9]. Due to physical reasons, such as sample 
drying, membrane bending on the glass slide or stage controller 
errors, this problem turns out to be extremely challenging without 
computational correction using registration algorithms [10]. 

Supervised state-of-the-art (SOTA) multimodal registration 
methods require manual image alignment for proper training, 
which is time-consuming; the number of expert annotators is 
limited, and the annotation needs to be validated. Several unsu-
pervised image registration methods rely on pixel-wise similarity 
metrics like mean squared error (MSE); however, these types of 
networks work only on monomodal images [11]. To overcome 
this problem, CycleGAN [12] can be trained in an unsupervised 
manner to transform one modality to the other and register 
single modality images, but it requires a relatively large dataset 
[13]. Moreover, prior works demonstrate that using CycleGAN for 
registration in the case of microscopy images can perform poorly 
even if the displacement is low between the two images [14]. 

We propose a pipeline that uses a generative adversarial net-
work (GAN) trained in an unsupervised manner with deep learn-
ing–based interest point detection. We compare several image 
registration pipelines with the SOTA methods designed for mul-
timodal image registration, for example, Contrastive Multimodal 
Image Representation for Registration (CoMIR) [14, 15]. Finally, 
we benchmark our proposed method against the best supervised 
method. 

We acquired four different multimodal microscopy datasets 
and provided landmark annotations. We also present a pipeline 
where the laborious manual alignment phase of the training 
set generation can be omitted with a reasonable trade-off in 
accuracy. We show that our proposed pipeline is applicable to 
automatic single-cell microdissection where the screening and 
isolation are performed with different microscopes at a micron-
precise registration level. 

MATERIALS AND METHODS 
Datasets 

• HeLa Kyoto cell culture dataset (Figure 1): The human endo-
cervical adenocarcinoma HeLa Kyoto EGFP-alpha-tubulin/ 

H2B-mCherry (CLS GMBH, Cat. number.: 300670) cell line was 
endogenously tagged with two fluorescent proteins for the 
microtubule protein alpha-tubulin and the H2B histone to 
visualize the morphological changes in the cytoskeleton and 
the chromatin, respectively. In this type of dataset, our goal 
is to register two modalities created with different imaging 
techniques and conditions. Modality 1: fluorescent imaging 
with nuclei and cytoplasm stained in wet conditions acquired 
1366 × 1024 RGB images with a PerkinElmer Operetta High-
Content Screening system 60× objective (NA 0.6). Modality 
2: brightfield imaging of the same sample after drying out, 
acquired with a Leica LMD6 microscope 63× objective (NA 
0.7), resulted in 1920 × 1440 images. 119 image pairs from this 
dataset were annotated for registration, which required 16 h. 

• Renal cancer tissue dataset (Figure 1): Formalin-Fixed 
Paraffin-Embedded (FFPE) tissue samples of human renal 
cell carcinomas were made available by the Department of 
Pathology and Molecular Pathology at the University Hospital 
Zürich. From selected specimens, 10 μm sections were 
prepared and stained with hematoxylin and eosin (H&E). 
Modality 1: slides were digitized with a Hamamatsu C9600 
scanner equipped with 40× objective 1024 × 1024 images. 
Subsequently, the coverslips were removed by immersing the 
samples in xylene followed by hydration using descending 
ethanol concentrations and air-drying. Modality 2: the same 
sample after the coverslip removal and drying process 
acquired with a Leica LMD6 microscope 63× objective (NA 
0.7) resulted in 1920 × 1440 images. 107 image pairs were 
annotated in this case, and the annotation process required 
13 h. 

• Skin tissue dataset (Figure 1): A fully anonymized skin sample 
with abundant lymphocytes was obtained from the Depart-
ment of Pathology, Zealand University Hospital, Denmark. 
The sample was cut into 2.5 μm thick sections. The tis-
sue was incubated with an anti-CD3 antibody (clone LN10, 
Leica Biosystems). After washing and blocking endogenous 
peroxidase activity, the reactions were detected using the 
EnVision™ Flex Magenta Chromogen system (GV900, Agilent). 
Finally, the slides were rinsed in water and counterstained 
with Mayer’s hematoxylin. Modality 1: screening with a Zeiss 
Axioscan 7 20× objective (0.8 NA) resulted in 1200 × 1600 
RGB images. Modality 2: imaging with LMD7 63× objective 
acquired 1920 × 1440 RGB images. Seventy-nine image pairs 
were annotated, which took 5 h. 

• Stochastic Optical Reconstruction Microscopy (STORM) and 
confocal dataset (Figure 1): Contains images of mouse tissue 
with fluorescent immunostaining of multiple different pro-
teins. Modality 1: confocal image of the sample obtained by a 
Nikon Ti-E inverted microscope equipped with a C2 scan head 
and a Nikon N-STORM system. Modality 2: STORM image 
of the same fluorophore using the same correlated setup. 
STORM coordinates were binned to match the resolution of 
the confocal image for the registration step. 126 image pairs 
were annotated, which took 10.5 h. 

In each dataset, 80% of the images were used for training and 
20% for testing. 

Annotation 
We constructed our ground truth set by generating image pairs 
from the same field of view. We marked points that can be 
considered the same object in both images with the MATLAB 
2021b Control Point Selection toolbox [16]. This toolbox opens 
image pairs where the user can mark points on both images. At
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Figure 1. Representative examples from the four datasets. The image pairs are fully aligned using the annotation. In the HeLa Kyoto dataset, Modality 
1 is imaged using fluorescent microscopy, and Modality 2 is an equivalent brightfield image. Skin tissue is IHC-stained and imaged in two different 
modalities; renal tissue is H&E-stained and imaged with different conditions. The STORM-confocal dataset is a confocal and a STORM localization 
microscopy image of the same fluorophore. The scale bar corresponds to 30 μm on HeLa Kyoto, skin and renal cancer tissue and 4 μm for STORM-
confocal images. 

least three points per image-pair were tagged as corresponding 
to the same area. A rigid transformation (including translation, 
rotation and scaling) was estimated between the images utilizing 
the marked points with MATLAB’s ‘fitgeotrans’ function [ 17]. With 
this transformation, the four corner points of the image were 
transformed and considered as a ground truth. 

Dataset preparation 
For comparison of the methods, we utilized two versions of each 
dataset: (1) an aligned image dataset, created through the uti-
lization of the annotations and center cropped 1024 × 1024 pixels 
from the overlapping regions, and (2) an unaligned dataset, pro-
duced by applying microscopy scaling to standardize the scale of 
the images, resulted in 1024 × 1024 images. In the case of STORM 
confocal, the image size was 512 × 512. 

Style transfer methods 
U-Net 
The U-Net neural network is designed for biomedical image anal-
ysis. It is constructed for semantic segmentation and is capable of 
image-to-image translation tasks [18, 19]. Encoder–decoder style 
architecture of the U-Net was used as a backbone, and the final 
sigmoid layer was removed [20]. As a loss function, L1 distance 
was used, because we considered that the annotation gives a well-
defined correspondence between the image pairs [21]. 

U-Net was trained for 1000 epochs using Adam optimizer with 
an initial learning rate (LR) of 3 × 10−3 and dropped by an order  
of magnitude every 200 epochs. A batch size of 8 was used. The 
images were resized to 256 × 256 for training and inference. 

Pix2pix 
Pix2pix [22] is a GAN that can be used in image-to-image trans-
lation. It consists of a generator network based on U-Net and a 
discriminator network that are trained in an adversarial manner: 
a generator is trained to generate such artificial images, so the 
discriminator is not able to distinguish if the images are the 
output of the generator or real ones. That training approach 
enforces the generated images to look more realistic. 

Pix2pix is trained on randomly cropped out 256 × 256 patches 
from the 1024 × 1024 images, with a batch size of 8. For prediction, 
the 1024 pixel-sized images were cut into four 256 × 256 patches. 

CycleGAN 
CycleGAN [12] is a type of GAN that can be used for image-to-
image translation without paired data. CycleGAN also includes 
a cycle consistency loss, which ensures that mapping an image 
from one domain to the other and back again should result in the 
original image. 

CycleGAN models were trained for 500 epochs with LR 2 × 10−5 

with single batch images. For training and inference images were 
resized to the size of 256 × 256 pixels. We could achieve visually 
better results with CycleGAN and CUT using a single resized 
image, instead of predicting and then combining separate image 
patches. 

Contrastive unpaired translation 
Contrastive unpaired translation (CUT) [23] is an improved version 
of CycleGAN [12], based on patch-wise contrastive and adversarial 
learning. This network does not require paired data from both 
domains to train the model. Instead, it uses a contrastive loss 
function that compares the representations of the translated 
images from the two domains to ensure that the generator 
produces images that are similar to those in the target domain. 
Mutual information of the modalities is maximized between 
the two images, which can result in more realistic transformed 
images. 

CUT models were trained for 500 epochs with LR 2 × 10−5 

with single batch images. For training and inferring images were 
resized to 256 × 256 pixels. Similarly to CycleGAN, transferring 
downscaled images produced visually more realistic microscopy 
images of a different modality than patch-wise style transfer. 

Contrastive Multimodal Image Representation 
for Registration 
CoMIR is a representation learning method, constructed for mul-
timodal image registration [15]. To learn modality-independent
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and rotationally equivariant representations of images, CoMIR 
employs a U-Net based neural network trained with a contrastive 
(modified InfoNCE) loss, which maximizes the mutual informa-
tion between modalities. After training it transforms the different 
image modalities into a common latent space which reduces the 
registration to a monomodal task that can be registered. 

CoMIR was trained with the hyperparameters proposed by the 
authors, but instead of 30 epochs, we used 100 epochs to ensure 
the convergence of the network. 

For inference, both images were transformed into the CoMIR’s 
latent space on the original image size 1024 × 1024. The two 
images in latent space were resized to 256 × 256 and passed to 
the registration algorithms. 

Image registration methods 
Phase cross-correlation with log-polar transform 
Phase cross-correlation can be used as a method for accurately 
inferring the translation between two images. By utilizing the 
properties of the log-polar transform coordinate system and the 
previously obtained translation parameters, it is possible to esti-
mate both the rotation and scaling components. The calculation 
of the translation parameters is performed in the Fourier space. 
Since the estimation of the rotation and scaling are only feasible 
after the moving and fixed images share a common center, first, 
the moving image is transformed using the previously calculated 
translation parameters. The images are then transformed into the 
log-polar space, and a phase-cross correlation is applied to obtain 
the rotation and scaling parameters [24]. 

SIFT 
Scale Invariant Feature Transform (SIFT) is a robust registration 
method that uses scaling and rotational invariant approaches 
to extract key points and descriptors around the points. The 
algorithm uses the difference of Gaussian filters to detect key 
points; then, it assigns orientations based on gradient detection. 
These properties are calculated on both fixed and moving images 
and then with the RANSAC (random consensus) [25, 26] method to  
filter outlier points, and based on these matches, a transformation 
matrix can be estimated. 

SuperPoint 
SuperPoint is an architecture that is trained for feature and 
descriptor detection. The model has a single VGG16 encoder as a 
backbone; then, it splits into two decoder heads. The first decoder 
learns to detect the interest points, and the second learns the 
descriptors. The network is trained in a self-supervised manner; it 
can learn to extract the key points and descriptors using only the 
input images without labeling the data. Key points and descriptors 
are calculated on both fixed and moving images, and then, with 
the RANSAC method [25, 26], a transformation matrix can be 
estimated. 

The SuperPoint model was pre-trained on Common Object in 
Context (COCO) [27] images and was fine-tuned in a 
self-supervised way. In the cases of HeLa, skin and renal cancer 
tissue unlabeled Modality 1 images coming from a screening 
microscope (see Datasets) (Figure 1) were forwarded to the 
MagicPoint model trained on COCO (included in the framework) 
for generating a pseudo ground truth. The MagicPoint model is 
trained through 20 000 iterations using ∼2000 pseudo ground 
truth images. Utilizing this MagicPoint model, new pseudo-ground 
truth labels were generated and repeated in the MagicPoint 
training process with the new labels. After training, the final labels 
from MagicPoint were forwarded to train Superpoint through 1 

million iterations. For the STORM-confocal dataset, we used only 
the COCO-pretrained model as we did not have enough data to 
train the network. 

Baselines 
For baseline, we have used the previously described methods: 
phase cross-correlation with log-polar transform, SIFT and Super-
Point. These were used to determine if the registration was suc-
cessful without using style transfer steps. 

Registration pipelines 
The compared registration pipelines have two steps: first, we use 
style transfer to transform the image pairs into the same modality. 
Here, images of Modality 2 are the inputs to style transfer methods 
and transformed into Modality 1. The only exception is CoMIR 
where both Modality 1 and Modality 2 images were transformed 
into a common latent space. All tested style transfer methods 
(U-Net, pix2pix, CycleGAN, CUT, CoMIR) were trained on aligned 
image pairs, which we consider as supervised training. Since 
CycleGAN and CUT are designed to work with unpaired datasets 
[12, 23], we trained another model using the unaligned image pair 
dataset, which is considered unsupervised training. In these cases, 
image pairs were mixed up. 

Style transferred images and Modality 1 were forwarded to 
registration methods with 256 × 256 size: phase cross-correlation, 
SIFT and SuperPoint algorithms. These methods resulted in trans-
lation, rotation and scaling parameters (Figure 2). Translation, 
rotation and scaling parameters were calculated after transfor-
mation (Figure 2C). 

SuperCUT 
This method is a fully unsupervised method that combines Super-
Point and CUT. Training of this method requires unaligned image 
pairs collected from both modalities. The CUT model, which 
is a part of the SuperCUT method, was trained to transform 
images from Modality 2 on an unaligned image set to Modal-
ity 1 (see  Contrastive unpaired translation section). SuperPoint 
network was trained on Modality 2 images. Transformed images 
Modality 1 were generated by applying the CUT model on Modality 
2. Key points were predicted on Modality 1 and transformed into 
Modality 1 images and then matched with the RANSAC algorithm. 
Finally, an affine matrix is estimated containing translational 
rotational and scaling parameters. 

Hardware 
All neural networks were trained on a PC with an Intel Xeon E5-
2620 v4 @ 2.10GHz CPU, Nvidia Titan Xp 12GB VRAM GDDR5x 
(founders edition, reference card), 3840 CUDA cores @1544Mhz 
with Pascal architecture, 32 GB DDR4 of RAM. 

Metrics 
The average corner error metric (Equation (1)) is the accepted 
metric to evaluate the accuracy of image registration [14, 15]. 
The transformation matrix, which is an output of every image 
registration method described in the paper, is applied to corner 
points of the input test images. The result of the metric is the 
average Euclidean distance between the corner points of the 
obtained transformation from the image registration method and 
the corresponding ground-truth transformation (see Annotation 
section). 

Average corner error =
∑4 

1 

| CornerGround truth 
i − Cornermethod 

i | 
4 

(1) 
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Figure 2. (A) Single-cell isolation workflow. In this figure, we demonstrate the whole laser micro-dissection (LMD) process and the position of the image 
registration in this process. First, the images of Modality 1 images are obtained after sample screening. The images of this modality undergo single-cell 
segmentation to obtain the outlines of cells. The samples are then transferred to laser-cutting, where an LMD microscope is deployed (Modality 2). With 
image registration, the single-cell outlines obtained from the segmentation of the Modality 1 image are aligned with respect to Modality 2. After the 
alignment of the outlines, the laser-cutting of cells can be started. (B) The training strategies for style transfers and SuperPoint models are depicted. 
Modality 1 images from a screening microscope were passed to SuperPoint to train without labels. Supervised style transfer models were created with 
manually aligned images, while the unsupervised models skipped the annotation part. Unsupervised pipelines were represented with dashed lines. (C) 
Registration of a fluorescent and a brightfield image with SuperCUT. The first step is to use CUT to fabricate a fluorescent-like image (Modality 1) from 
the image of a laser-cutting microscope (Modality 2). SuperPoint registration calculates a rigid transformation between fabricated and genuine images. 

Accepted error rates 
We have set the acceptable error thresholds following our laser 
cutting experiments for the HeLa cell line, skin tissue and renal 
cancer tissue. The contour created during segmentation deter-
mines the path of the laser for microdissection. Laser ablation can 
cause damage along the contour depending on the settings of the 

laser microdissection microscope. Applying 63× magnification 
(NA: 0.7) objective with optimized laser power the laser causes 
∼4 μm damage on the sample along the contour. To protect the 
cells from laser-induced damage, the size of the contours was 
dilated with 8 μm. In these cases the accepted threshold was set 
to half of the enlargement: 4 μm, which is ∼2.9% relative to the 
image size.
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Figure 3. Illustration of several style transfer techniques. (A) The brightfield image transformation using the trained style transfer methods. The 
dense regions (CycleGAN versus unsupervised CycleGAN and CUT versus unsupervised CUT) highlight the distinction between the supervised and 
unsupervised approaches. (B) Example of a transformed image pair with CoMIR. Two images were fused into a single latent space, and then, registration 
techniques were used on the transformed images. Style-transferred images were passed to transformation estimation with the following registration 
methods: phase cross-correlation, SIFT and SuperPoint algorithms. 

For the STORM-confocal dataset, we have used the currently 
accepted method for manual image alignment. The centers of the 
images were aligned also manually with dragging mode, which 
resulted in translation parameters only [ 2]. We compared the 
dragged image’s corners with our ground truth corner points 
and determined the corner distance between them. The resulting 
errors were calculated on the test set and the average of them 
were used as an acceptable error of 0.6 μm, which is 1.5% relative 
to the image size. 

Statistical analysis 
Statistical analyses were performed with the Python statsmodels 
library [28]. The Friedman test was performed to determine if 
the data are different for all datasets. For post hoc analysis of 
the alignment errors, Wilcoxon signed-rank test was performed 
for each data pair. The significance level was set to α = 0.05 with 
a 95% confidence interval. P-values were corrected for the false 
discovery rate using the Benjamini–Hochberg-correction method. 

RESULTS 
SuperCUT is designed for multimodal image registration tasks 
such as single-cell isolation, multiplexed imaging or intelligent 
high-resolution acquisition, where accurate image registration is 
required. We exploited the nature of these types of experiments, 
as high-throughput image scanning frequently results in more 
images from one of the modalities (Figure 2A). We conducted 
a comparative analysis of multiple deep learning–based image 
registration pipelines and our proposed method SuperCUT across 
four distinct datasets. 

In general, the tested registration pipelines have two steps: 
first, style transfer was used to transform the image pairs into 
the same modality. Modality 2 images (Figure 1) are  forwarded as  
inputs, and the other modality was expected as an output. Second, 
the output transformed image and the original Modality 1 image 
were registered. 

We tested the following style transfer methods for modality 
transformation: U-Net, Pix2pix, CycleGAN, CUT and CoMIR. We 

used manually aligned image sets for training with all style 
transfer models, but in the case of CycleGAN and CUT, a model 
was also trained with the unaligned image sets. The results of the 
style transfer methods were evaluated qualitatively (Figure 3). 

Comparison of supervised and unsupervised 
methods 
The registration methods without style transfer served as 
baselines. We have determined an acceptable error threshold 
using our laser microdissection protocols for HeLa Kyoto, 
skin and renal cancer tissue, which is 4 μm (∼2.9%). For 
STORM-confocal datasets, we set the accepted error for 0.6 μm 
(1.5%) (see Accepted error rates) (Figure 4). 

For the HeLa Kyoto dataset, the results indicate that without 
style transfer, the registration is unsuccessful producing very 
high average corner errors. The best-performing method in this 
case is U-Net with SuperPoint. The current state-of-the-art CoMIR 
method has an average performance of 11% with SIFT and 7.51% 
with the phase cross-correlation method (Figure 4A). 

For the renal cancer tissue dataset, the lowest score was pro-
duced by U-Net with SIFT 2.03%. Errors less than the allowable 
error could be achieved by supervised CUT with SuperPoint, unsu-
pervised CycleGAN with SuperPoint and unsupervised CUT with 
SuperPoint (SuperCUT) (Figure 4B). 

For the skin tissue dataset, SIFT performance without any style 
transfer was the lowest error, 0.41%. U-Net with SIFT, unsuper-
vised CycleGAN with SIFT and CoMIR with SIFT could approx-
imate 0.41%, 0.42% and 0.43%, respectively. Errors below the 
allowable error range were obtained by all approaches that didn’t 
register with phase cross-correlation (Figure 4C). 

For the STORM-confocal dataset, our proposed model Super-
CUT produces the lowest average error of 0.65%, among U-Net 
with SuperPoint, which produced 0.67% average corner error 
(Figure 4D). 

Comparing the mean average corner errors shows that our 
proposed pipeline CUT with SuperPoint (SuperCUT) scores the 
highest among unsupervised methods and has similar perfor-
mance to the best-supervised method U-Net with SuperPoint
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Figure 4. Barplots of mean average corner error across four different datasets for each registration pipeline. Errors are measured in percentages relative 
to the image size. The accepted error ranges are marked with a black dashed line, respectively, to each dataset. The best supervised U-Net with SuperPoint 
and unsupervised pipelines [CUT with SuperPoint, (SuperCUT)] were highlighted with bold text. 

( Figure 4, Supplementary Tables 1–3 available online at http://bib. 
oxfordjournals.org/). 

Friedman’s non-parametric test was used for analyzing the dis-
tribution of the samples. We found that all datasets contain signif-
icant differences. The Wilcoxon signed-rank test was performed 
for post hoc testing to find the statistical differences between the 
methods. Results show that in two datasets (Figure 1A and D), 
HeLa Kyoto and STORM-confocal, using style transfer signifi-
cantly improved the results compared to SIFT and phase cross-
correlation (Figure 1A and D, Supplementary Tables 1 and 3 avail-
able online at http://bib.oxfordjournals.org/). In the case of skin 
tissue data (Figure 1C), there is no statistical difference between 
SIFT and the best-performing style transfer methods: U-Net with 
SIFT, Unsupervised CycleGAN with SIFT and CoMIR with SIFT. We 
highlight that there is no significant difference between U-Net 
with SuperPoint and the unsupervised CUT model with Super-
Point on any dataset (Figure 4A, B and D). 

Quality assessment 
Based on our results on skin tissue, it is not beneficial to use reg-
istration pipelines since a classical method is capable of solving 
the alignment task with low errors. 

We benchmarked the performance of the CUT and U-Net with 
a limited number of training images on three datasets: HeLa, renal 
tissue and STORM-confocal. We trained a CUT and U-Net model 
on 25-50-75 images from the available training data, respectively. 
Each training was repeated with five different random seeds. The 
results of this experiment demonstrate that image registration 
performance increases if more images are in the training set 
(Figure 5A). U-Net with SuperPoint can learn the image trans-
formation with 50 aligned images to achieve the accepted error 
ranges of each dataset. SuperCUT requires the use of all of the 
images to have an acceptable performance. 

We tested our method’s tolerance for displacement on HeLa 
and renal tissue datasets. As we discussed, for the skin tissue 
dataset, it is not relevant to use the pipelines, and for the STORM-
confocal dataset, we used full images to register; thus, we had to 
add padding to simulate displacement. 

The Modality 2. images were displaced with fixed amounts of 
pixels and measured and calculated the mean average corner 
errors for each displaced dataset. With an overlap of at least 
70%, the registration mean average corner error would be 2%. 
For the HeLa dataset, the SuperCUT was more tolerant of lower 
overlaps. The mean average corner error starts to increase at 60% 
overlap for the U-Net with SuperPoint and at 55% for SuperCUT. 
Below 40% overlap, both methods’ performance dropped into 
the unacceptable range (Figure 5B). We measured the training 
times of the U-Net and CUT using limited amounts of images 
(Figure 5C). We measured the two pipelines’ inference time, which 
showed a 0.03 s difference (Figure 5D). The inference time of each 
pipeline component (U-Net, CoMIR, Cyclegan, CUT, phase cross-
correlation, SuperPoint) is indicated in Figure 5D. 

DISCUSSION 
We present a pipeline for automating the registration of images 
acquired from different imaging modalities, which enables precise 
correlative microscopy in a high-throughput manner. To train the 
proposed pipeline, annotated data are not required, only image 
pairs, typically in the order of 100 to have the best performance. 

As an example, we demonstrate that the proposed method 
automates the process of single-cell microdissection by aligning 
the contours of cells, thereby reducing the need for laborious 
manual alignment. Automatic single-cell microdissection’s great-
est bottleneck is aligning the contours of the cells to their proper 
place on the dissection microscope manually. This is mostly due
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Figure 5. (A) Medians of mean average corner errors of runs with different seeds and for different training set sizes. U-Net (orange lines) can learn image 
transformation with only 50 aligned images to have errors less than the acceptable range for all datasets. SuperCUT (blue lines) needs all available 
training data to ensure acceptable errors. Acceptable errors were marked at ∼2.9 % for HeLa and Renal and at 1.5% for STORM-confocal. (B) Overlap 
tolerance while inferencing for two datasets. (C) Barplots of the training time (Y-axis) benchmark of CUT (orange bars) and U-Net (blue bars) style transfer 
components of the pipelines for different sizes of the training set (X-axis). (D) Results of the inference time per registration for the best supervised and 
unsupervised method: U-Net with SuperPoint (blue bar) and SuperCUT (orange bar) that run on GPU. Gray bars indicated all other tested style transfer 
and registration methods that run on CPU. Note that CoMIR needs to make two transformations for one registration. 
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to the bending or drying of the sample. Using the registration 
algorithm, one can overcome this issue and can rapidly register 
a field of views containing several cells in just a few seconds. 
This work enables high-throughput laser microdissection with 
unsupervised models and may enable complete automation of 
training image acquisition and model training [5, 6, 29]. 

We also show that our pipeline can be used in other correlation 
microscopy techniques, such as localization microscopy, to enable 
automatic registration of images with high precision between 
STORM and confocal modalities. Our pipeline was capable of reg-
istering every test image within the acceptable error range, which 
enables automatic registration instead of manual image align-
ment [2, 30]. We believe that our method will allow researchers 
to rapidly generate models for the registration of other types of 
multiplexed images [31, 32]. 

Our experiments show that the precision of multimodal image 
registration can be significantly improved by using style trans-
fer methods. In some cases, where the image modalities are 
vastly different, such as the HeLa dataset with fluorescent and 
brightfield images, none of the conventional registration methods 
worked without style transfer. By using style transfer and the 
SuperPoint method, we achieved significant improvements in 
registration compared to phase cross-correlation and SIFT in two 
datasets. In the case of HeLa Kyoto and STORM-confocal datasets, 
we observed significant improvements in registration using style 
transfer methods compared to no style registration methods. In 
the case of renal tissue, we observed slight improvements, while 
in the case of skin tissue, which had similar imaging modalities, 
we did not observe any increase in AUC values with style transfer. 
All other tested registration methods produced very low average 
corner errors, and most of them perform in the acceptable range. 

Benchmarking shows that using the best supervised method U-
Net with SuperPoint can have great performance even overfitting 
on 25 images; however, it can take up to 4 h to properly annotate 
those images. 

We notice that it is very important to visually track how the 
contrastive unpaired network is learning the modality transfor-
mation because, in some cases. it is possible that the loss function 
is stuck and learns to generate wrong images. It might lead to very 
high registration errors. 

Based on our limited number of experimental conditions, one 
of the limitations we observed is that in the case of thick tissue 
sections, it is difficult to train high-quality style transfer models; 
therefore, the registration can be imprecise (e.g. Figure 4B). Con-
sequently, a similar effect is noticed, when the images were not in 
the same focal plane as those used for training the style transfer 
model. 

Our primary finding is that it is possible to construct a registra-
tion pipeline utilizing our proposed method SuperCUT and train 
it without any supervision while maintaining results comparable 
to supervised methods. 

Key Points 
• We propose SuperCUT, an unsupervised pipeline that 

can register multimodal microscopy images 
• We compare several unsupervised and supervised regis-

tration pipelines on four different microscopy datasets. 
• Our unsupervised registration pipeline yields compara-

ble results to supervised ones without any laborious 
annotation. 

• Single-cell microdissection’s bottleneck is the need for 
manual alignment of cellular contours, the proposed 
method overcomes this problem and automates single-
cell isolation 

• We show that the pipeline is able to register localization 
microscopy datasets. 
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