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Abstract: Essential transition metals have key roles in oxygen transport, neurotransmitter synthesis,
nucleic acid repair, cellular structure maintenance and stability, oxidative phosphorylation, and
metabolism. The balance between metal deficiency and excess is typically ensured by several ex-
tracellular and intracellular mechanisms involved in uptake, distribution, and excretion. However,
provoked by either intrinsic or extrinsic factors, excess iron, zinc, copper, or manganese can lead to
cellular damage upon chronic or acute exposure, frequently attributed to oxidative stress. Intracellu-
larly, mitochondria are the organelles that require the tightest control concerning reactive oxygen
species production, which inevitably leaves them to be one of the most vulnerable targets of metal
toxicity. Current therapies to counteract metal overload are focused on chelators, which often cause
secondary effects decreasing patients’ quality of life. New therapeutic options based on synthetic or
natural antioxidants have proven positive effects against metal intoxication. In this review, we briefly
address the cellular metabolism of transition metals, consequences of their overload, and current
therapies, followed by their potential role in inducing oxidative stress and remedies thereof.
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1. Introduction

The trace metals iron (Fe), copper (Cu), zinc (Zn), and manganese (Mn) are essential
for cellular metabolism in living organisms [1], being involved in amino acid, lipid, protein,
and carbohydrate metabolism [2,3]. They act as structural cofactors for proteins and
nucleic acids, and are essential for oxygen transport, neurotransmitter synthesis, nucleic
acid repair, and construction of the extracellular matrix [4], as well as cellular respiration
and transcription [5]. Despite their importance, the transition metals Cu2+/+, Fe3+/2+,
and Mn3+/2+ can participate in electron transfer reactions, which can result in damage
to structural cellular components, potentially inducing cell death [1]. To this, intra and
extracellular systems are equipped with different mechanisms that ensure their uptake,
storage, and distribution to their respective targets.

Intoxications caused by transition metals may have their origins in air, water, or soil
contamination and agriculture (namely, resulting from the use of fertilizers and pesticides).
Other anthropogenic activities, like mining and smelting, can also be a source of metal
intoxication in humans [6]. Genetic conditions [1] and aging [7–10] represent further cir-
cumstances that may contribute to the accumulation of transition metals in tissues such as
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liver and brain; the latter being of substantial concern with respect to neurodegenerative dis-
eases [11–13]. Metal imbalances in the body have also been associated with conditions like
cardiovascular disease [14–17], metabolic syndrome [18–20], cancer [21–23], inflammatory
bowel disease [24–26], and even depression and anxiety [27–29].

A more recent concern is the increased adoption of food supplements in diets [30].
Augustsson and co-workers [31] demonstrated a considerable variability in the amount of
metals in 138 supplements, with discrepancies between the declared versus measured con-
tent ranging from 50% to 150%. This included a large spam concentration for Zn2+, Cu2+/+,
Fe3+/2+, and Mn3+/2+ in supplements, with P95/P5 ratios (P95 percentile to P5 percentile
ratio) of 40.000-, 19.000-, 16.000-, and 18.000-fold, respectively. This results in values above
the tolerable daily intake (TDI), namely, 10% for copper and 50% for iron, manganese, and
zinc, in both normal and underweight women and children (3–6 years old), according to
the European Food Safety Authority (EFSA), the US Environmental Protection Agency, the
Dutch RIVM, and the National Institute of Public Health and the Environment [31].

Transition metal intoxications at the cellular level may arise from the interaction with
proteins in different cellular pathways, which cause changes in enzymatic activities, in
protein structure, or even lead to the misplacement of other metals that are important
co-factors for different enzymes. Currently, the main therapeutic approach to treating
metal intoxication is the use of chelators that can, with limitations, remove metals from
the body. The use of natural antioxidants has proven beneficial effects in alleviating the
consequences of metal toxicity, such as oxidative stress, particularly in pre-clinical studies.
This review provides an overview about the essential transition metals’ (Fe3+/2+, Zn2+,
Cu2+/+, and Mn3+/2+) metabolism, the toxic consequences derived from metal overload,
current treatments, and paths towards novel complementary therapies.

2. Essential Transition Metals in Metabolism and Disease
2.1. Iron (Fe)

Iron enters the body via dietary sources in two major forms: heme and nonheme
iron. The bioavailability of heme-Fe2+ from meat, fish, and poultry is around 20–40%,
while non-heme-Fe3+ present in vegetables, fruits, and cereals has a lower bioavailability
of ca. 15% [32]. Iron absorption can be hindered by other metals (calcium and zinc),
phytates, polyphenols, and proteins such as conglycinin, present in soybeans [1,33], but is
augmented by vitamin C, which enhances the absorption of the nonheme form. Besides
its ability to reduce Fe3+ for cellular uptake, thereby increasing its bioavailability, vitamin
C also stimulates ferritin synthesis and the transferrin (Tf)-dependent Fe3+ uptake [34].
Otherwise, Fe3+ reduction is mostly performed by ferrireductase duodenal cytochrome
b (DCYTB)/six transmembrane epithelial antigen of the prostate (STEAP), allowing Fe2+

uptake via the divalent metal transporter 1 (DMT1), while heme-Fe2+ is transported by the
heme carrier protein 1 (HCP1) into enterocytes (Figure 1A).

From there, Fe2+ is either stored in ferritin, which can accommodate up to 4500 atoms
in its ferric form (Fe3+), or released into the portal vein via ferroportin-1 (FPN1), which
may be repressed by hepcidin (Figure 1A). Iron can also be exported from the intestine
via HCP1, followed by Tf binding and subsequent transport in plasma. From the diet,
around 1–2 mg/day are absorbed, while roughly the same amount is lost via enterocyte
and skin desquamation, hemorrhages, and parasitic infections [35]. The major Fe3+/2+

portion is present in erythrocytes (2–2.3 g) that are recycled in the spleen, releasing Fe3+ to
be bound to Tf (~4 mg). Around 1 g of Fe3+ is stored in hepatocyte ferritin, while 150 mg
are found in the bone marrow [35]. Iron is essential for hemoglobin synthesis, oxygen
transport, biosynthesis of collagen, myelin, neurotransmitters, and several components of
the mitochondrial electron transport chain [33].
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Figure 1. Iron metabolism in the enterocyte and hemochromatosis. (A) Iron is absorbed as Fe2+ 

through reduction by DcytB/STEAP, and transported via DMT1. In the case iron is bound to heme, 

it can be transported via heme carrier 1. Another route is via receptor-mediated endocytosis bound 

to transferrin. Afterwards, iron can be stored in the form of ferritin, used for the biosynthesis of Fe-

S clusters, or integrate the cellular labile iron pool. The iron in the labile iron pool can bind to ferritin, 

and vice-versa. If iron is not stored or used, it will be exported to the circulation via ferroportin, and 

oxidized to ferric iron by hephaestin (in the intestine) or ceruloplasmin. Iron export via ferroportin 

is regulated by hepcidin, which is produced by the liver. (B) In hemochromatosis, hepcidin expres-

sion is low, thus ferroportin activity is left unregulated, resulting in an increase in iron efflux in the 

circulation. Abbreviations: DcytB: ferrireductase duodenal cytochrome b; DMT1: divalent metal 

transporter 1; Fe: iron; STEAP: six-transmembrane epithelial antigen of the prostate. Created in Bio-

render.com(accessed on 19 May 2024). 
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Figure 1. Iron metabolism in the enterocyte and hemochromatosis. (A) Iron is absorbed as Fe2+

through reduction by DcytB/STEAP, and transported via DMT1. In the case iron is bound to heme, it
can be transported via heme carrier 1. Another route is via receptor-mediated endocytosis bound
to transferrin. Afterwards, iron can be stored in the form of ferritin, used for the biosynthesis of
Fe-S clusters, or integrate the cellular labile iron pool. The iron in the labile iron pool can bind
to ferritin, and vice-versa. If iron is not stored or used, it will be exported to the circulation via
ferroportin, and oxidized to ferric iron by hephaestin (in the intestine) or ceruloplasmin. Iron export
via ferroportin is regulated by hepcidin, which is produced by the liver. (B) In hemochromatosis,
hepcidin expression is low, thus ferroportin activity is left unregulated, resulting in an increase in
iron efflux in the circulation. Abbreviations: DcytB: ferrireductase duodenal cytochrome b; DMT1:
divalent metal transporter 1; Fe: iron; STEAP: six-transmembrane epithelial antigen of the prostate.
Created in BioRender.com (accessed on 19 May 2024).

These essential Fe-dependent metabolic functions appear evident from numerous stud-
ies, for example, linking obesity to iron deficiency [36,37]. Interestingly, this linkage cannot
be attributed solely to a lower dietary iron uptake due to general malnutrition but rather
may be explained by reduced iron absorption due to increased hepcidin levels in obese
individuals [38,39]. Increased hepcidin expression appears to be linked to inflammation in
adipose tissue, greatly mediated by interleukin 6 (IL-6) [38,40]. Hepcidin levels are also
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controlled by the gut hormone leptin [41,42], which is commonly dysregulated in obese
individuals. This notion is further supported by the observation that serum concentrations
of Fe3+/2+ and Tf were negatively associated with leptin. This association was found in
individuals with a body mass index (BMI) below 30 kg/m2 [43].

Conversely, the excess of iron can lead to health problems as well, especially because of
the lack of a physiologic excretion route. A consequence of the gradual increase in Fe3+/2+ in
the body is the aggravation of anemia as a result of lower Fe3+/2+ absorption in the gut [44],
with its accumulation in the liver and heart, further worsening the course of liver diseases
and other chronic conditions such as metabolic and cardiovascular diseases [45]. Higher
intake of heme-Fe2+ was also associated with a higher risk of type 2 diabetes mellitus in
humans [46]. In the brain, excess Fe3+/2+ was found in the substantia nigra of patients with
Parkinson’s disease [47,48], and its accumulation was associated with tau accumulation
and amyloid-β aggregation in patients with Alzheimer disease [49,50].

The most predominant Fe3+/2+ overload disorder is hereditary hemochromatosis, with
an incidence of 1:220–250 individuals, most commonly observed in populations of northern
European origin [51]. Different types of hemochromatosis are known and relate to different
disease severity levels. The most common type is linked to mutations in the homeostatic
iron regulator (HFE), followed by mutations in hemojuvelin (HJV), hepcidin, transferrin 2
receptor (TfR2), and FPN1 [52]. If such gene mutations negatively affect hepcidin synthesis
(e.g., HJV), circulatory iron can rapidly reach high levels (Figure 1B), causing an early onset
of disease (first–second decade of life) that impacts different organs such as the heart and
the endocrine glands. In the cases where HFE is mutated, a milder late-onset phenotype
arises [53]. Transferrin saturation is observed in patients with hemochromatosis, with a
later increase in serum ferritin, which indicates iron accumulation in tissues. The most
common symptoms include fatigue, malaise, arthralgia, and hepatomegaly. Together with
high serum ferritin levels, patients might develop liver fibrosis, which can progress to
liver cirrhosis and hepatocellular carcinoma [53]. Thalassemia syndrome also correlates
with Fe3+/2+ overload due to ineffective erythropoiesis that is caused by mutations in α- or
β-globin genes [54].

The typical treatments for Fe3+/2+ overload are phlebotomy, whereby blood is taken
weekly (around 500 mL), and chelation therapy. The three chelating agents approved by
the US Food and Drug Administration (FDA) are deferoxamine (DFO), deferiprone, and de-
ferasirox. Side effects of these chelators are retinopathy and auditory toxicity, neutropenia
and agranulocytosis, gastrointestinal issues, and liver and kidney toxicity, respectively [52].
New treatments for Fe3+/2+ overload conditions include the development of hepcidin
mimetics or agonists that may lead to novel treatments for hereditary hemochromatosis,
β-thalassemia, and other diseases of Fe3+/2+ excess [55,56]. With proven positive effects
in pre-clinical studies, and with a phase I clinical trial in healthy individuals, the fer-
roportin inhibitor vamifeport (VIT-2763) is currently being studied as a new potential
therapy [57–59].

2.2. Zinc (Zn)

The total amount of zinc (Zn) in an average adult is around 2.5 g (70 kg), with its
major portion present in the musculoskeletal system (49.5%), followed by bone (36.7%),
skin (4.2%), liver (3.4%), blood (1.5%), and brain (0.6%) [1,60]. In plasma, Zn2+ binds
predominantly to albumin, α-macroglobulin, and Tf. Intracellularly, its majority is stored
in Zn+2-binding proteins in the cytosol (Figure 2).

Zinc absorption in the intestine is highly regulated, and typically 16% to 50% of Zn2+

present in the diet is taken up systemically, depending on individual requirements [60]. A
meat-based diet promotes Zn2+ absorption, while the presence of other metals (calcium and
Fe3+/2+) or phytates (source of phosphorus in seeds and plants, which form pH-dependent
complexes with Zn2+) can hinder its absorption [61].
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Figure 2. Zinc metabolism in the enterocyte and its overload. (A) Zinc is absorbed as Zn2+ via the
ZIPs (mainly ZIP4) and can be excreted into the intestinal lumen by the ZnTs. In the enterocytes, Zn2+

can be found as cytoplasmic free zinc (which can bind to low molecular weight ligants), sequestered
into vesicles, or bound to Zn-binding proteins, such as MT. Zinc can also be transported to the Golgi
apparatus or to the nuclei, where it induces the expression of several zinc-related genes. In circulation,
Zn2+ binds to albumin, macroglobulin, or transferrin. (B) In a scenario of zinc overload, there is
an increase in the transcription of MTF-1, which leads to an increased MT expression to buffer the
cytosolic Zn2+. The overexpression of MT leads to Cu+ binding and decreased absorption. The
increase in zinc in circulation can be detrimental for brain function, leading to the development of
memory deficits and increased deposition of the amyloid beta peptide, which is linked to different
neurodegenerative conditions. Abbreviations: MT: metallothioneins; MTF-1: metal regulatory
transcription factor 1; ZIP: Zrt-, Irt-like protein family; Zn: zinc; ZnT: zinc transporter. Created in
BioRender.com.

Since there is no body compartment dedicated to Zn2+ storage, the metal needs to
be constantly replenished from food, thus the balance between absorption and excretion
is tightly controlled. Zinc loss occurs mainly via fecal and urinary excretion, menstrual
flow in women, and semen in men, as well as loss through hair and nails, and skin desqua-
mation [1,60,61]. Zinc homeostasis is maintained between Zn transporters (ZnT-) and the
Zrt-, Irt-like protein family (ZIP), as well as metallothioneins (MTs), whose expression
is induced by Zn+2 via the metal regulatory transcription factor 1 (MTF-1). At the ente-
rocyte level, ZIP4 transports Zn2+ from the intestinal lumen, either to bind cytosolic MT
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for storage, or to be further transported to vesicles and ER by ZnTs. At the basolateral
side, ZnT-1 exports Zn2+ into the bloodstream, while ZIP5/ZIP14 may import Zn2+ back
into the cytosol (Figure 2) [62]. Zinc is a co-factor for over 300 proteins, participating in
a multitude of physiological processes in the cell. It is involved in signal transduction
for endocrine regulation, systemic growth, response to infection and inflammation, and
cytokine production, as well as for gene regulation responsible for synaptic plasticity and
neuronal death, mood, and memory regulation [62,63].

Zinc also guides different metabolic functions that regulate obesity and diabetes [64].
It is involved in insulin secretion and subsequent action in peripheral tissues. It also
modulates the absorption of long-chain polyunsaturated fatty acids levels through its
action in fatty acid absorption in the intestine and subsequent desaturation. Furthermore,
Zn2+ is important in the assembly and clearance of chylomicrons and lipoproteins [64]. In
ob/ob mice, an animal model for obesity, Zn2+ concentrations were shown to be reduced in
various tissues [65], and intestinal Zn2+ absorption was slightly increased [66]. Nonetheless,
zinc and its supplementation as therapy in obesity is controversial. Zinc has been shown to
increase body fat content and aggravate obesity in genetically obese and dietary-induced
obese mice [67]. Moreover, zinc plasma levels were found to be directly correlated with
abdominal adiposity and liver fat [68], as well as with the risk of metabolic syndrome
in patients, together with copper and iron [18]. Also, studies with zinc supplementation
in high-fat diet (HFD)-fed mice have reported different results. Bolatimi and co-workers
showed that zinc supplementation in HFD-fed mice did not improve glucose handling,
hepatic steatosis, or overall diet induced-liver injury (plasma transaminases) [69], whereas
Qi et al. observed that zinc supplementation promoted glucose absorption, reduced lipid
deposition, improved HFD-induced liver injury, and regulated energy metabolism [70].
In patients with obesity, Khorsandi et al. [71] demonstrated a beneficial effect on body
weight and, more recently, Bashandy et al. [72] reported that zinc nanoparticles reduced
body weight, BMI, and leptin concentrations in an obese mouse model through a decrease
in inflammation, insulin resistance, and Fe2+ cardiac content, along with an increase in
cardiac-reduced glutathione (GSH) and Cu+/Zn2+ superoxide dismutase (SOD1) [72]. Zinc
supplementation was also found to have beneficial health effects in reducing the risk of
digestive tract cancers and diabetes in adults [73].

In the brain, high-dose Zn2+ supplementation (60 ppm in water) in mice has been
shown to induce hippocampal Zn2+ deficiency. While being mechanistically unclear at
present, this caused a deficit of synaptic releasable Zn2+, possibly leading to the inhibition
of brain-derived neurotrophic factor (BDNF) signaling, resulting in learning and memory
deficits [74]. In Alzheimer’s patients, an increase in Zn2+ abundance in the brain is associ-
ated with the accumulation of the amyloid β-peptide and disease severity (Figure 2B) [75].
In bipolar disorder, in contrast, elevated serum Zn2+ levels were observed in clinically
stable patients [76]. Thus, with respect to brain damage, both Zn deficiency and excess
appear to be detrimental.

Zinc intoxication in humans is mostly due to acute, short-term exposure to Zn2+ salts,
often by attempted suicide, leading to severe gastrointestinal and pancreatic damage [77–79].
Exposure to toxic industrial fumes containing Zn oxide may temporarily impair lung
function; contact with Zn2+-containing products may provoke skin reactions; and highly
concentrated Zn sulfate solutions (20%) may cause ocular damage [79,80]. Chronic and sub-
chronic Zn2+ exposure is often related to unsupervised and/or long-term supplementation.
In the intestine, Zn2+ related up-regulation of MTs leads to MT-Cu binding which causes
decreased Cu+ absorption (Figure 2B). In this scenario, Cu deficiency can be responsible
for the development of anemia and neurological problems [81,82]. Zinc intoxication can
be treated using Zn chelators such as calcium disodium edetate (CaNa2EDTA) or diethy-
lentriamene pentaacetate (DTPA). To directly target the symptoms of Zn2+ intoxication,
antiemetics, proton pump inhibitors (PPIs) and/or H2-blockers are administered in the
case of oral ingestion. A whole-bowel irrigation can also be performed if significant gut
burden is observed. Intoxication by inhalation is treated with antipyretics, oral hydration,
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and nonsteroidal anti-inflammatory drugs. Chronic Zn2+ exposure is primarily treated
with Cu sulfate and/or Zn chelators in more severe cases [83].

2.3. Copper (Cu)

Copper (Cu) is taken up by the diet, with a daily average intake of around 1 mg, and a
bioavailability of 65% to 70% [84]. The body Cu2+/+ content can be around 100 mg, mainly
distributed amongst the liver (≈ 10 mg), muscle (≈ 28 mg), and bone tissue (≈ 46 mg) [85].
Copper is an essential enzymatic co-factor, and approximately 54 Cu-binding proteins have
been identified [86], with the most important/studied cuproenzymes being cytochrome c
oxidase (CCO), tyrosinase, dopamine-β-hydroxylase, amine oxidase, lysyl oxidase, SOD1,
hephaestin, and ceruloplasmin (Cp). These enzymes are fundamental in different metabolic
pathways, such as cellular respiration, melanin synthesis, dopamine conversion, oxidore-
ductase activity, and Fe3+/2+ metabolism [87]. The balance between Cu+ uptake, distribu-
tion, and excretion is well accomplished by the body, crucially involving the intestine and
liver. Copper is mainly taken up via nutrition, at the proximal part of the intestine, where it
is reduced by a specific family of metalloreductases, the STEAP proteins, and transported
by the high-affinity copper transporter 1 (CTR1). Other transporters, like DMT1, or the
low-affinity copper transporter 2 (CTR2), have been suggested to have a role in Cu+ uptake
as well; however, their exact mechanisms remain unclear (Figure 3A) [88].
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copper can be stored in the cell in the form of Cu-MT, bound to ATOX1, or transported to SOD1 in
the mitochondria via CCS. In the case copper is not stored or used, it will be exported via ATP7A,
oxidized to Cu+ (in the presence of oxygen), and bound to albumin, macroglobulin, or cysteine-rich
amino acids such as histidine (His), in circulation. (B) In Wilson disease, in one hand, the ATP7B
mutation results in reduced Cu incorporation into ceruloplasmin (Cp), increasing the amount of
non-ceruloplasmin bound Cu (NCBC) in circulation. On the other hand, copper sequestration and
excretion into the bile by ATP7B is strongly inhibited, leading to its accumulation in the hepatocytes.
As consequence, MT and GSH levels increase and Cu accumulates in the mitochondria, leading to
mitochondrial dysfunction. Abbreviations: ATOX1: antioxidant copper chaperone 1; ATP7A: ATPase
copper-transporting alpha; ATP7B: ATPase copper-transporting beta; CCS: copper chaperone for
superoxide dismutase 1; apo-Cp: ceruloplasmin; CTR1/2: high-affinity copper transporter 1/2; Cu:
copper; DcytB: ferrireductase duodenal cytochrome b; DMT1: divalent metal transporter 1; GSH:
glutathione; His: histidine; MTs: metallothioneins; NCBC: non-ceruloplasmin-bound copper; SOD1:
superoxide dismutase 1; STEAP: six transmembrane epithelial antigen of the prostate. Created with
BioRender.com.

For distribution throughout the body, Cu+ is first delivered via ATPase copper trans-
porting alpha (ATP7A) from the enterocytes to the portal vein, where it binds to serum
proteins, such as macroglobulin and albumin, or amino acids like histidine (His) (Figure 3A).
Afterwards, Cu+ enters the liver via CTR1 [89]. Intracellular Cu+ binding and transfer
amongst Cu-dependent proteins is regulated based on a gradient of increasing Cu-binding
affinity [90]. Such “Cu-chaperones” bind Cu+ and transport them either to cytosolic en-
zymes or transporters that deliver Cu+ to different enzymes in the cellular organelles [90].
For instance, antioxidant protein 1 (ATOX1) is responsible for the transport of Cu+ to
ATP7A and ATPase copper-transporting beta (ATP7B) in the trans-Golgi network (TGN).
There, apo-Cp can bind up to six Cu+ atoms, turning into holo-Cp, that is responsible for
the Cu+ distribution to other tissues [91,92]. Ceruloplasmin is considered a main copper
distributor to other organs in the body, together with serum albumin, α-2-macroglobulin,
and His-containing proteins (Figure 3) [93]. Also, ATOX1 is responsible for transferring
Cu+ to the nucleus or to secretory pathways via ATP7B. The copper chaperone for SOD1
(CCS) distributes Cu+ to SOD1 in the cytosol and mitochondria, while a myriad of other
different proteins (Cox17, Cox11, Sco1, and Sco2) are responsible for Cu+ delivery to CCO
into mitochondria (Figure 3).

In a scenario of copper excess, Cu-ATPases (ATP7A and ATP7B) increase Cu+ transport
to the secretory pathways to be incorporated into cuproenzymes or translocate from the
TGN to the vesicular compartment for Cu+ excretion [91,94]. Daily, and under physiological
conditions, the bile transports around 0.6–6 mg Cu+ into the gastrointestinal tract (GIT),
with saliva and gastric and pancreatic juices accounting for 0.8 mg, and duodenal secretions
accounting for 0.16 mg Cu+. Through the fecal route, 0.6–1.6 mg Cu+ is eliminated, whereas
only 0.05 mg are excreted via the urine [84,95].

Copper excess can lead to various diseases, most prominently Wilson’s disease (WD),
a rare autosomal recessive inherited metabolic disorder characterized by the pathological
accumulation of Cu+ due to mutations in the ATP7B gene (Figure 3B) [91,96,97], resulting
in hepatic, neurologic, and/or psychiatric symptoms [98]. The treatment of WD involves
chelator agents (D-penicillamine and trientine) and zinc salts, aiming at avoidance of Cu+

overload and its symptoms [99,100]. In addition to WD, Indian childhood cirrhosis and
idiopathic copper toxicosis are also characterized by Cu+ excess, which are caused by a
synergy of an autosomal-recessive inherited defect in Cu+ metabolism and excess dietary
Cu+ intake [101,102].

Acute effects of excess Cu2+ ingestion in humans include GIT symptoms such as nausea
or abdominal pain, vomiting, and diarrhea [102]. In more critical situations, the symptoms
can progress to hepatic necrosis, neurological diseases, renal failure, and hematological and
cardiovascular disorders [103–105]. These cases are frequently associated with attempted
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suicide [106], and the treatment may rely on chelators, such as D-Penicillamine, dimercaprol,
ethylenediaminetetraacetic acid (EDTA), and 2,3-dimercaptopropane-sulfonate. Therapy may
also include gastric lavage, vasoactive and antiemetic drugs, and hemodialysis [104,106–108].

Chronic copper toxicity has also been documented in patients with renal failure
receiving dialysis via copper tubing [109], upon exposure to pesticides containing cop-
per [110], and in patients receiving intravenous total parenteral nutrition for long time
periods [111,112]. Altered Cu+ levels have also been implicated in metabolic syndrome.
Both low and high dietary intake have been proposed to increase the risk of developing
obesity, referred to as a U-shaped association [113]. In a cross-sectional study, Bulka et al.
found a positive correlation between serum Cu+ levels and abdominal obesity [114], which
is supported by Fan et al. and Övermöhle et al., who showed a strong positive association
between Cu+ serum levels and obesity in children [115] and adolescents [68,115]. In general,
the risk for the development of metabolic syndrome has been attributed to higher serum
copper levels [18]. Furthermore, urine copper was demonstrated to positively correlate
with lipid accumulation products and the visceral adiposity-, body roundness-, conicity-,
body adiposity-, and abdominal volume indices [116].

2.4. Manganese (Mn)

The recommended oral intake of manganese (Mn) for adult men is 2.3 mg/day, and
for adult women is 1.8 mg/day. The upper tolerable intake in adults is 11 mg/day, with
toxicity being observed above 40 mg/day. Manganese can enter the body via absorption
in the GIT tract (3% to 5% of ingested Mn3+/2+ is further taken up, depending on the
individual status), through the lungs after exposure to Mn-rich environments, as happens
near smelters, or after dermal contact. Manganese also has the particularity of having
11 known oxidative states, ranging from −3 to +7, with Mn3+/2+ as the most physiologically
relevant states [117]. In the gut, Mn2+ is transported via DMT1, ZIPs (most prominently
ZIP8 and ZIP14), and calcium channels. Manganese can also be absorbed as Mn+3, bound
to Tf, via the transferrin receptor (Figure 4) [118].

For the basolateral transport in the intestine, it shares Fe+2 and Zn2+ transporters such
as ferroportin and zinc transporter 10 (Znt10) [119]. Importantly, it is documented that
Fe status influences Mn3+/2+ metabolism, since they share both intestinal importers and
exporters [120]. In the human body, the amount of Mn3+/2+ is around 10–20 mg, and its
metabolism is highly dependent on the liver, where it accumulates and can be excreted
via the bile (3.6 mg/day) [121]. In blood, its concentration can range from 1.6 to 62.5 µg/L,
depending on age, ethnicity, and gender [122]. Manganese accumulates non-uniformly
in the brain (5.32 to 14.03 µg/g wet weight), namely in the striatum, globus pallidus,
substantia nigra, and hypothalamic nuclei [117]. This essential trace element is involved in
the synthesis and activation of various enzymes, regulation of glucose and lipid metabolism
and acts as a cofactor for enzymes like arginase, glutamine synthase, and manganese
superoxide dismutase (MnSOD) (Figure 4) [2,123]. The metalloenzyme MnSOD is localized
in the mitochondria and is one of the most important antioxidant components in the cell.
This enzyme catalyzes the dismutation of superoxide in hydrogen peroxide, which is
further degraded by catalase (CAT) to form water and oxygen [2].

Manganese imbalance, particularly Mn2+ excess (hypermanganesemia), has been
associated with neurological and behavioral defects as well as diseases such as Parkinson’s
disease (PD) and manganism [124–128], and reproductive [129] and respiratory problems
in both humans and animals [130]. Manganese dyshomeostasis has also recently been
implicated in metabolic syndrome [2]. Higher dietary Mn3+/2+ intake has been shown
to increase the risk of developing metabolic syndrome [131]; elevated blood levels of
Mn2+ were shown to correlate with increased visceral adipose tissue [132]; and urinary
manganese was positively associated with metabolic syndrome in Asian women [133].
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as a cofactor for MnSOD (SOD2). Manganese (Mn2+) can also influence the expression of genes
(i.e., antioxidant proteins) by binding to nuclear transcription factors. Basolateral manganese release
occurs mainly via ferroportin and zinc transporter 10. (B) In excess, as happens in hypermangane-
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On one hand, as an important co-factor for MnSOD, its deficiency can lead to mitochon-
drial dysfunction due to a decreased capacity for reactive oxygen species (ROS) scavenging.
On the other hand, being a highly reactive element, in excess, it can cause an increase in ROS
production, ultimately damaging mitochondria (Figure 4B) [2,127]. Manganese intoxication
can occur in individuals with chronic liver disease due to the failure of its hepatic clearance,
and upon prolonged total parenteral nutrition, where excessive Mn2+ amounts bypass
the hepatic filter and enter the bloodstream [134]. Furthermore, occupational exposure
to excess Mn7+/3− poses a risk for factory workers, miners, and welders [135,136]. Other
human activities can expose individuals to high Mn7+/3−, including the use of fungicides,
medical imaging contrast agents and water purification agents, the combustion of gasoline,
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and Mn-containing emissions from contaminated soil, dust, and plants near roadways.
Treatment for Mn3+/2+ intoxication is based on chelation therapy with EDTA and, in some
cases, administration of Fe3+/2+ can be used in combination with chelators [119,137,138].
In Chinese patients, para-amino salicylic acid (PAS) proved to be a promising treatment for
severe Mn intoxication [139].

3. Essential Transition Metals and Oxidative Stress

Metal toxicity has been linked to oxidative stress [140,141]. In cells, the generation
of ROS is a physiologic mechanism derived from the utilization of oxygen by different
metabolic reactions [142]. In response, the antioxidant enzymes control the harmful effects
of ROS (Figure 5A), which may also lead to DNA damage, lipid peroxidation, mitochondrial
dysfunction, and cell death (Figure 5B) [142].
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2 , are mostly kept under control by the internal antioxidant
system, e.g., SOD1, catalase, etc. (B) However, in a scenario of decreased antioxidant cellular capacity,
an increase in ROS can elicit damage to proteins, lipids, and DNA, leading to cell death, e.g., via
apoptosis. (C) Also, through Fenton-based reactions involving transition metals, such as Fe2+, •OH is
formed, potentially leading to cellular damage. (D) Zinc, despite being a redox-inert metal, can cause
mitochondrial dysfunction by interfering with the oxidative phosphorylation process, biogenesis of
Fe-S clusters, and glucose metabolism. In excess, zinc can displace other metals, like Cu+ and Fe2+,
from antioxidant enzymes, thus causing cellular metal imbalance. (E) Manganese, with Cu+ and Fe2+,
is a redox-active metal that targets mitochondria and causes inhibition of the complexes’ activity
leading to a decrease ATP production and the increase in mitochondria permeability transition pore
(MPT). Furthermore, a decreased glycolytic activity and GSH content can occur as consequence of
metal overload. (F) Mn2+ can also act in cellular signaling by activating Nrf2, which induces the
expression of HO-1 through binding to ARE, potentially leading to cell death. ARE: antioxidant
response elements, CAT: catalase, Cu: copper, Fe: iron, HO-1: heme oxygenase 1, LIP: labile iron pool,
Mn: manganese; MPT: mitochondria permeability transition pore; Nrf2: nuclear factor erythroid
2, ROS: reactive oxygen species, sMaf: small MAF; SOD1: Cu/Zn superoxide dismutase, Zn: zinc.
Created with BioRender.com.

The labile Fe2+ pool can be present in different cellular compartments, such as cytosol,
mitochondria, and lysosomes, and prompts the participation of the metal in reactions
of oxidation and reduction, which can catalyze the formation of hydroxyl radicals (OH)

BioRender.com


Int. J. Mol. Sci. 2024, 25, 7880 12 of 28

from hydrogen peroxide via the Fenton and Haber/Weiss reactions (Figure 5C) [143,144].
Iron overload was shown to cause oxidative stress in skeletal muscles, delayed muscle
regeneration, decreased expression of myoblast differentiation markers, and decreased
phosphorylation of MAPK signaling pathways in a mouse model of cardiotoxin-induced
muscle regeneration [145]. An increase in ROS, as well as decreased insulin signaling, was
observed upon iron treatment of mouse hepatocytes [146]. Additionally, oxidative stress
related to iron toxicity was implicated in neurodegeneration [147], kidney injury [148], and
delayed spinal cord regeneration [149].

In mitochondria, biogenesis of Fe-sulfur cluster proteins, which are fundamental for
their function, are highly sensitive to an increase in ROS and Fe3+/2+ levels [150,151]. To
this end, it is not unforeseen that Fe-induced oxidative stress led to mitochondrial dys-
function in cardiac tissues. Chan and co-workers [152] observed decreased mitochondrial
function and increased oxidative stress in embryonic heart H9C2 cells, plus opening of the
mitochondrial permeability transition pore in ventricular myocytes from mice treated with
Fe3+/8-hydroxyquinoline. Furthermore, Gordan et al. described arrhythmias in ex-vivo
mouse hearts, also upon treatment with Fe3+/8-hydroxyquinoline [153]. A reduced respira-
tory capacity of hepatic mitochondria, together with an increase in ROS was observed by
Volani and co-workers in mice fed with an Fe-enriched diet for two weeks [154].

For Cu2+/+, in the case of an intracellular elevation of the metal, GSH and MTs bind it
with high affinity [155,156], largely avoiding the involvement of non-bound Cu+ in Fenton-
based reactions. For a long time, oxidative stress was considered as the main mechanism of
cellular damage in Cu-overload toxicity, as happens in WD. However, decreased activity
of antioxidant enzymes, with increased lipid peroxidation and DNA damage were only
observed at later stages of the disease, in both WD patients and animal models [157,158].
Moreover, studies in yeast showed that free Cu+ concentration is less than 10−18 M, which
corresponds to less than one free Cu+ atom per cell, rendering the cellular free Cu+ pool
practically nonexistent [159]. Therefore, even in copper stress conditions, the cellular
response capacity towards Cu-related oxidative damage has proven efficient, at least in an
early disease state [157].

Mitochondria are indeed a preferential target for Cu+ toxicity in cells. New evidence
shows that specific proteins in the mitochondria could be targets for Cu+, namely thiol-
rich [158,160–162] or lipoylated proteins [163], resulting in proteotoxic stress and cell death
(Figure 5D). In a study by Borchard and co-workers, it was observed that mitochondria
isolated from brain tissue were more sensitive to Cu+ challenges in comparison to those
from heart, kidney, and liver tissue. Mitochondria structural alterations were present
upon in vitro treatments, with a Cu/GSH ratio of 1:10, i.e., at reducing conditions, thereby
ruling out a Fenton chemistry-based mechanism of destruction. Interestingly, a significant
emergence of ROS was only detected upon treatment with a Cu/GSH ratio of 5:10, which
would hardly occur in vivo [160]. Such results clearly argue for a thiol/protein-directed
attack of Cu+ as the toxic mechanism, and not for an undirected overwhelming oxidative
stress via Cu-induced Fenton chemistry. Furthermore, other mechanisms for Cu-induced
toxicity were described, such as the interference with cellular signaling pathways, like the
mitogen-activated protein kinases (MAPKs) pathway [164], or the induction of apoptosis
via the mitochondria apoptotic pathway [165,166].

In the case of Zn2+, although it is generally considered a redox-inert metal, it serves as
a co-factor for several enzymes that participate in redox reactions, namely SOD1. It has a
complex and important role in the oxidative stress balance in cells, both as an antioxidant
and as a prooxidant [167]. In the form of Zn2+, it can bind to and inhibit mitochondria
complex I, III, and IV, which can result in decreased ATP production, increased mitochon-
drial membrane permeability transition (MPT), and ROS generation (Figure 5D). Moreover,
Zn2+ overload can impact glycolysis by inhibition of glyceraldehyde 3-phosphate dehy-
drogenase (GAPDH), pyruvate kinase, and phosphofructokinase [167]. Due to allosteric
similarities, zinc can also compete for copper and iron binding sites, causing its misplace-
ment in a scenario of Zn2+ overload (Figure 5D). Overall, excessive Zn2+ directly affects
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several signaling pathways that ultimately lead to disruption of cellular homeostasis [167].
Chen et al. reported that Zn sulfate elicited oxidative stress, decreased mitochondrial
membrane potential and induced the activation of extracellular signal-regulated kinases
1 and 2 (ERK1/2) phosphorylation, lipid peroxidation, and DNA oxidation in human
neuroblastoma cells [168]. Slepchenko and co-workers also observed an increase in ROS
upon zinc treatment in HeLa cells subjected to hypoxia. In this study, the inhibition of
the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity significantly
decreased Zn-induced ROS, which led the authors to hypothesize that intracellular activa-
tion of this enzyme by zinc triggers mitochondrial ROS production [169]. In agreement,
Noh et al. showed that Zn2+ overload induced NADPH oxidase activation in a protein
kinase C (PKC)-dependent manner, possibly contributing to the increased generation of
ROS in mouse cortical cultures [170]. In a study by Pan et al., zinc was also shown to
induce mitochondrial ROS, as well as decreased mitochondrial membrane potential in
hypoxia-induced astrocytes [171].

Manganese, as an essential redox-active trace metal, has also been implicated in
inducing oxidative stress in cellular systems. A time-dependent increase in intracellular
ROS/reactive nitrogen species (RNS), decreased GSH content, and impaired mitochondria
function was reported by Neely et al. in human-induced pluripotent stem cell-derived
postmitotic mesencephalic dopamine neurons after treatment with MnCl2 [172]. Nuclear
localization and subsequent binding of nuclear factor erythroid 2 (Nrf2) to the antioxidant-
responsive element leading to heme oxygenase-1 (HO-1) was observed by Li and co-
workers in rat catecholaminergic cells upon exposure to 300 µM MnCl2 (Figure 5F) [173].
In a study by Tan et al., increasing doses of MnSO4 led to a decrease in SOD, glutathione
peroxidase (GPx), and CAT activities, while the levels of malondialdehyde (MDA) were
upregulated in rat adrenal pheochromocytoma-derived cells. Moreover, cell apoptosis
was significantly increased, as shown by the significant decrease in B-cell lymphoma 2
(Bcl-2) and caspase-3 mRNA levels, while Bcl-2-associated X protein (Bax) mRNA levels
increased [174]. In addition, Liu and co-workers have also shown that Mn2+ induced a
significant increase in H2O2 production in the mitochondria of rat microglia cells through
suppression of complex II (Figure 5D) [175].

4. Antioxidant Therapies for Essential Transition Metals Toxicity
4.1. Iron (Fe)

Iron is a redox-active essential transition metal that is indispensable for several biolog-
ical processes, but can also induce oxidative stress when in excess [176]. Rhee et al. showed
that the DMT1 inhibitor and antioxidant ebselen (Figure 6) prevented intracellular Fe2+

uptake and decreased ROS production in human induced pluripotent stem cell-derived
cardiomyocytes (iPSC-CMs) subjected to Fe3+/2+ overload. In humans, iron overload in-
duced arrhythmia and contractile dysfunction, similarly to the effects observed in the
cardiomyocytes [177]. Natural flavonoids like quercetin (and some derivates), catechin,
and rutin (Figure 6) had a positive antioxidant effect on iron excess in human red blood
cells. In this study by Cherrak et al., Fe3+ and Zn2+ had an enormous prooxidant effect
(37% and 33% induced hemolysis, respectively), while treatment with the flavonoids had a
pronounced antioxidant activity against iron, as measured by levels of hemolysate-reduced
GSH and MDA, as well as CAT activity [178]. Flavonoids have been repeatedly shown
to protect against Fe toxicity, either by direct metal chelation or by scavenging of oxidant
species [179,180]. In pre-clinical models, depending on the compound, different effects
were described. Wang and co-workers observed that treatment with myricetin reduced
iron content and inhibited transferrin receptor 1 (TfR1) in human neuroblastoma cells,
and significantly reversed scopolamine-induced cognitive deficits in a mouse model of
Alzheimer’s disease [180]. In two different studies, myricetin (Figure 6), present in toma-
toes, oranges, nuts, berries, tea and red wine, significantly inhibited hepcidin expression
in vitro and in vivo [181], thereby possibly preventing iron accumulation in the brain [182].
Two different dithiolethiones (D3T and ACDT), present in cruciferous vegetables, exhibited
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antioxidant activity by activating Nrf2 transcription factor and upregulating GSH levels,
which protected human glioblastoma cells (U-87) from Fe-induced toxicity. Furthermore,
Kulkarni and co-workers showed that D3T and ACDT could upregulate the expression of
Nrf2-mediated iron storage protein ferritin, resulting in a reduced total labile Fe2+ pool,
therefore preventing ferroptosis-induced cell death by erastin [183]. Molinari et al. reported
the combined action of lipoic acid (Figure 6), present in foods such as red meat, carrots,
beets, spinach, broccoli and potatoes, and vitamin D to decrease intracellular iron content
and ROS production in primary mouse astrocytes. Furthermore, p53 activity, amyloid pre-
cursor protein and SOD1 content was significantly reduced in comparison to the Fe-treated
control [147].
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The amino acid taurine (Figure 6), enriched in shellfish, turkey and chicken, has an
important role in aging, cardiovascular health, neuroprotection, and cellular function, as
shown in murine models and humans in a detailed overview by Santulli et al. [197]. The
benefits of taurine are correlated with its capacity to act as an osmolyte, regulating cell
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volume and maintaining cell integrity; its antioxidant properties; and its role in calcium
signaling and neurotransmission, as well as in bile acid metabolism [197]. Zhang et al. also
described the hepatoprotective properties of taurine in an iron-overload murine model [198].
Quercetin (Figure 6), enriched in capers, is one of the most reported antioxidant compounds
for Fe-overload treatment, with proven positive effects in iron depletion and oxidative
stress in rats, mice, and human carcinoma cell lines [199–201]. In thalassemia patients under
DFO therapy, Sajadi et al. reported that 500 mg/day of quercetin for 12 weeks reduced
high-sensitivity C-reactive protein, Fe content, ferritin and Tf saturation, and increased
Tf levels in serum, in comparison to non-treated controls [200]. Moreover, in thalassemia
patients at risk of suffering from iron toxicity due to blood transfusions, treatment with
a combination of DFO and silymarin (Figure 6, silibinin) from milk thistle for 9 months
significantly decreased serum ferritin levels, serum Fe3+/2+, and total Fe-binding capacity,
in comparison with the placebo group (DFO-alone). Serum hepcidin and soluble Tf were
also significantly decreased in the silymarin-treated group, with improvement in overall
liver function, in comparison to placebo [202].

4.2. Zinc (Zn)

Zinc plays an important role in human health, and it has anti-oxidant and anti-
inflammatory properties [203]. In contrast to other essential transition metals, such as
Fe3+/2+ and Cu2+/+, few conditions are linked to Zn2+ overload, whether the consequences
are related to oxidative stress or not. Nonetheless, some studies have reported the potential
of antioxidant therapies to ameliorate Zn-related toxicity. Deore and co-workers showed
that administration of α-lipoic acid (15 mg/kg bw) for 15 days improved the levels of SOD,
CAT, GSH and GPx, and decreased ROS in spleen and brain tissue of rats treated with zinc
oxide nanoparticles (ZnONP), 100 mg/kg bw, for 28 days. Also, the augmented levels of
tumor necrosis factor alpha (TNF-α) and interleukins (IL-1β, IL-4, and IL-6) were decreased
in rat brain and spleen tissue upon α-lipoic acid treatment [204]. An improvement of
the cerebellum structure, together with reduced oxidative stress, e.g., MDA, GPx, and
nitric oxide (NO) levels, autophagy (caspase 3, p53) and inflammatory response (IL-1, IL-6,
TNF-α), was observed by Amer et al. after pre-treatment with curcumin (200 mg/kg diet),
enriched in turmeric root, in rats exposed to ZnONP (5.6 mg/kg bw) for 28 days. However,
no differences in brain Zn2+ levels were observed upon pre-treatment [205]. Other studies
also reported reduced lipid peroxidation, improved oxidative defense systems (SOD and
GPx), and reduced apoptosis in rats pre-treated with curcumin (200 mg/kg in the food) and
afterwards exposed to ZnONP [206,207]. The use of ZnONP in different applications such
as cosmetics, electronics, and in the chemical and medical industry has raised concerns
for its potential toxicity for various organisms, from algae and fish to humans. Particu-
larly in mammalian cells, several studies have found that ROS play a key role in ZnONP
toxicity [208], which further supports the use of antioxidants as a potential remedy.

4.3. Copper (Cu)

In similarity to Fe3+/2+, Cu2+/+ is also a redox-active essential transition metal that
participates in different cellular processes, mostly mitochondrial ROS scavenging and
oxidative phosphorylation, as well as different nuclear signaling pathways. Nevertheless,
elevated Cu2+/+ levels can be toxic and lead to proteotoxic stress and ultimately cell death.
Several natural compounds have been investigated for their antioxidant properties in the
context of Cu2+/+ toxicity. A combination of bioactive antioxidant compounds (resveratrol,
ferulic acid, phloretin, and tetrahydrocurcuminoids) (Figure 6), improved cellular viability,
increased proliferation, and decreased total ROS emergence in human oral fibroblasts
treated with CuCl2 [209]. Tamagno et al. further showed that the use of an antioxidant-
rich pitaya fruit extract ameliorated Cu-induced toxicity in organisms like Caenorhabditis
elegans by enhancing the antioxidant system [210]. Treatment with this extract decreased
the activity of acetylcholinesterase (AChE), lipid peroxidation, and the levels of SOD
and CAT that were elevated upon Cu exposure [210]. A concomitant treatment of the
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same pitaya extract with 0.7 mg/L Cu2+ for four days in zebrafish decreased glutathione
S-transferase (GST) and CAT activity in brain tissue, while SOD activity was increased.
In gut tissue, GST activity was increased upon treatment, while CAT activity was also
decreased, in comparison with zebrafish Cu-treated controls [211]. The activity of AChE
and δ-aminolevulinate dehydratase was increased in the brain, while the cortisol levels
in the whole body were decreased upon co-treatment with the extract [211]. Moreover,
Azeez and co-workers reported that the treatment with vitamin E (Figure 6), in the presence
of Cu-sulphate, improved body weight, GPx and GST activity, while decreasing H2O2
and MDA levels in the liver of Clarias gariepinus (African catfish), in comparison with
Cu-treated controls [212]. A 21-day treatment with silymarin encapsulated in a liposomal
formulation (0.5 mg/kg bw, twice daily) improved liver dysfunction and neurobehavioral
abnormalities associated with Cu-toxicity in rats given Cu-sulphate (200 mg/kg bw daily)
for 90 days [213].

In a widely used rat model for Cu-overload in LEC rats, therapeutic antioxidant
strategies to improve liver damaged were reviewed by Zischka et al. [157]. From the
collected evidence, linolenic and linoleic acid supplemented in the diet for 10 weeks reduced
the incidence of hepatitis and delayed its onset for one month. However, no effect was
observed with regards to oxidative stress [214]. In a study by Yamamoto et al., treatment
with lipoic acid dose-dependently reduced liver damage and increased GPx, glutathione
reductase (GR), and SOD1 activity, while decreasing lipid peroxidation. A decrease in
Cu+ and Fe2+ content was also observed, but only in mitochondria [215]. Kitamura and
co-workers showed that N-acetylcysteine (NAC) (Figure 6) had a positive effect in LEC
rats by decreasing the Cu/Fe ratio, as well as liver and kidney damage. However, the
authors hypothesized that this effect is most likely linked to metal chelation rather than
ROS scavenging [216]. Overall, most antioxidant therapies had only a mild effect in vivo,
inducing some delay in the onset of hepatitis, but not reverting liver damage or oxidative
stress [157].

4.4. Manganese (Mn)

Manganese can induce oxidative stress in cells via H2O2 production and disruption of
different cellular functions such as mitochondria respiration and dopamine oxidation [2,123].
This effect is particularly described for the brain, with Mn2+ being associated with neu-
rological problems that are currently attributed mostly to oxidative damage but also to
the impairment of several neurotransmitter systems, especially dopaminergic, but also
cholinergic and GABAergic [217]. To this end, potential antioxidant therapies have been
explored in the context of Mn toxicity.

Chtourou et al. observed the beneficial effects of the flavonoid silymarin against Mn-
induced, radical-mediated cell death in murine neuroblastoma cells [218]. Co-treatment
with silymarin for 24 h improved cellular viability, reduced cellular H2O2 levels, and
improved MnSOD, SOD1, CAT, and GPx enzymatic activities [218]. A methanolic extract
of Acaí (most probably due to its anthocyanins) was reported by da Silva Santos et al. to
reduce neurotoxicity in rat primary astrocytes [219] by restoring the GSH/GSSG ratio and
net glutamate uptake, and protecting the cell membranes from lipid peroxidation and Nrf2
activation by Mn-exposure. However, higher concentrations of the extract exacerbate the
negative effects of Mn2+, further pointing to the importance of dosing [219]. Stephenson
and co-workers showed that pre-treatment with NAC or GSH reduces the DNA damage
induced dose-dependently by Mn2+ in human neuroblastoma cells [220]. The natural
flavonoid quercetin prevented Mn-induced oxidative stress in the hypothalamus, cerebrum,
and cerebellum in the brains of rats, which was characterized by increased H2O2 and MDA
levels, and decreased antioxidant enzyme activity (measured SOD and CAT), with the
animals presenting pronounced locomotor impairment and increased AChE activity [221].
Moreover, Bahar et al. observed that pre-treatment with quercetin improved cellular
viability and decreased ROS production and MDA levels, while increasing SOD, CAT, and
GSH activity in human neuroblastoma cells treated with Mn2+ [222]. Furthermore, an
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improvement in mitochondrial function, and a decrease in apoptosis was observed in the
cells. A reduction in inflammatory factors was also observed in both cells and rats treated
with quercetin. Particularly in the animals, TNF-α, IL-1β, IL-6, and iNOS protein expression
in the brain was reduced in comparison to Mn-treated controls. The mRNA levels of NF-
kB and inducible nitric oxide synthase (iNOS) were reduced, while HO-1 and Nrf2 were
increased in brain tissue, upon treatment. Lastly, quercetin treatment reduced the apoptotic
marker expression in the rats, as observed by the decreased protein expression of Bax,
cytochrome C, caspase 3, and poly(ADP-ribose)-polymerase 1 (PARP-1) in the brain [222].
The neurohepatic protective effects of the carotenoid lycopene were studied by Lebda et al.
in rats treated daily with Mn2+ for 4 weeks, after 20-days of lycopene supplementation. No
significant changes were observed in Mn2+ content in the serum, liver, or brain tissue. But
ALT, AST, AChE, and glucose levels were decreased in the serum of pretreated animals
in comparison to Mn-treated controls [223]. In the liver and brain, lipid peroxidation was
decreased, while GSH, GST and CAT levels were increased as consequence of lycopene
pretreatment. The amount of AChE in the brain was increased with Mn2+ exposure,
and further decreased with the therapeutic intervention [223]. Cordova and co-workers
explored the potential positive effects of the hydrophilic vitamin E analog Trolox (Figure 6)
on the central nervous system of rodents and cell cultures exposed to Mn2+. A concomitant
addition of Trolox and Mn2+ to rat pups (8 days old) decreased caspase activity and
oxidative stress (by F2-isoprostrane quantification) in the striatum, while reversing the
motor coordination deficits observed in the animals treated with Mn2+ [224]. The positive
effects of Trolox and NAC were also observed by Marreilha et al. in immortalized rat
brain microvessel endothelial cells exposed to Mn2+. Co-treatment with the antioxidants
for 24 h improved Mn-induced loss of cell viability and reduced the content of thiol-rich
proteins such as GSH [225]. Milatovic and co-workers also reported the neuroprotective
effect of Trolox pre-treatment in rats (primary cultures and in vivo treatment) against
oxidative damage and ATP depletion caused by the presence of Mn2+ [226]. In humans,
treatment for three and a half months with sodium para-aminosalicylic acid, 6 g/day,
intravenously (4 days treatment, 3 days pause) significantly improved neurological issues
such as tremor, muscular tension, difficulties with writing and speaking, and gait and grip
capacity, amongst others, derived from chronic exposure to Mn2+ [227].

Table 1 summarizes the most relevant antioxidant compounds reported to ameliorate
the oxidative damage caused by iron, copper, and manganese and their respective positive
effects in pre-clinical and clinical studies, as described in the text.

Table 1. Antioxidant treatments in pre-clinical and clinical models to ameliorate iron, copper, and
manganese metal toxicity.

Iron Copper Manganese
Compound Effects Compound Effects Compound Effects

Ebselen
(in vitro)

↓ Fe-uptake
↓ ROS

Resveratrol,
Ferulic acid,
Phloretin
Tetrahydro
curcuminoids (in vitro)

↑ Cell viability
and proliferation
↓ ROS

Silymarin
(in vitro, co-treat)

↓ H2O2 and ROS levels
↑ MnSOD, SOD, GPx,
CAT activity

Quercetin
Catechin
Rutin
(in vitro)

↓ Hemolyzed GSH
↓ MDA levels,
CAT activity

Pitaya-extract
(in vivo)

↓ AChE activity
↓ Lipid peroxidation
↓ MDA, CAT levels

Açaí extract
(anthocyanins)
(in vitro)

↑ GSH/GSSG ratio
↑ Glutamate uptake
↓ Lipid peroxidation
↓ Nrf2 activation

α-Lipoic acid +
vitamin D
(in vitro)

↓ Fe-content
↓ ROS
↓ p53, APP and
SOD content

Pitaya-extract
(in vivo, co-treatment)

↓ GST, CAT
activity (brain)
↑ SOD activity (brain)
↑ GST activity (gut)
↓ CAT activity (gut)
↑ AChE and
δ-aminolevulinate
dehydratase
activity (brain)
↓ cortisol levels

N-acetylcysteine/GSH
(in vitro, pre-treatment)

↑ Cell viability
↓ DNA damage
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Table 1. Cont.

Iron Copper Manganese
Compound Effects Compound Effects Compound Effects

Myricetin
(in vitro, in vivo)

↓ Fe-uptake
↓ TfR1
↓ Lipid peroxidation
↓ DNA oxidation
products

Vitamin E
(in vivo, co-treatment)

↑ GSH, GPx levels
↓ H2O2, MDA levels

Quercetin
(in vivo)

↓ H2O2 levels
↓ Lipid peroxidation
↑ SOD, CAT activity
↓ AChE activity
↑ Locomotor impairment

Taurine
(in vivo)

↓ Lipid peroxidation
↓ Loss of GSH levels

Silymarin
(in vivo, encapsulated in
a liposomal formulation)

↑ Spatial memory
↓ Liver damage (AST,
ALT, Total-Bilirubin)

Quercetin
(in vitro, pre-treatment)

↑ Cell viability
↓ ROS and MDA levels
↑ SOD, CAT, GSH activity
↓ Loss of MMP
↓ TNF-α, IL-1β, IL-6
protein content
↓ NF-kB, iNOS mRNA levels
↑ HO-1, Nrf2 mRNA levels
↓ Bax, Cyt c, caspase 3,
PARP-1 levels

Quercetin
(in vivo,
human studies)

↑ Fe-depletion
↓ Oxidative stress
↓ C-reactive
protein levels
↓ Ferritin content
↓ Transferrin saturation
↑ Transferrin levels

α-Lipoic acid
(in vivo)

↓ Liver damage
↑ GPx, GR, SOD activity
↓ Lipid peroxidation

Lycopene
(in vivo, pre-treatment)

↓ ALT, AST, AChE, glucose
levels (serum)
↓ AChE levels (brain)

Silymarin
(human studies)

↓ Fe-content
↓ Ferritin content
↓ Fe-binding capacity
↓ Hepcidin and
transferrin levels

N-acetylcysteine
(in vivo)

↓ Cu/Zn ratio
↓ Liver and
kidney damage

Trolox
(in vivo, co-treatment)

↓ Caspase activity
↓ Oxidative stress
↑ Motor coordination deficits

Trolox
(in vitro/in vivo,
pre-treatment)

↓ Oxidative stress
↓ ATP depletion

↑ increase, ↓ decrease

5. Conclusions

Essential transition metals play key roles in cellular metabolism. As enzymatic co-
factors, they interfere with lipid and glucose metabolism, mitochondrial function, transcrip-
tion, protein synthesis, and cellular renewal processes, among others. However, excess
caused by genetic mutations, environmental exposure, or over-supplementation can be
detrimental and even fatal if untreated. Apart from traditional chelation therapies, the
use of antioxidants as a treatment strategy for metal toxicity is supported by research that
demonstrated its efficacy in alleviating oxidative damage. Nonetheless, such investigation
was mostly done in pre-clinical models, with studies in humans showing the potential of
antioxidant therapies almost nonexistent. The reason could be related to the high molecular
complexity of metal-induced oxidative stress and the knowledge still lacking in terms of
how transition metals, such as manganese, act. Moreover, most of the information available
report beneficial effects of antioxidants before the metal insult, or as a co-treatment. The
use of antioxidants as a treatment in the case of metal overload and toxicity needs to be
thoroughly addressed in future studies.

A potentially promising approach could be the combination of antioxidants with
chelating agents, addressing both metal overload and oxidative stress. Clearly, with the
current rise of uncontrolled and unsupervised supplementation, as well as the increasing
evidence of toxicity by these metals, more efficient therapeutic countermeasures need to
be developed.
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Abbreviations

ADD Average daily dose
AChE Acetylcholinesterase
Atox1 Antioxidant protein 1
ALT Alanine transaminase
AST Aspartate transaminase
ATP7A ATPase copper-transporting alpha
ATP7B ATPase copper-transporting beta
BDNF Brain-derived neurotrophic factor
BMI Body mass index
bw Body weight
CaNa2EDTA Calcium disodium edetate
CAT Catalase
CCO Cytochrome C oxidase
CCS Copper chaperone for Cu/Zn superoxide dismutase
Cp Ceruloplasmin
CTR1 High-affinity copper transporter 1
CTR2 Low-affinity copper transporter 2
Cu Copper
DCYTB Ferrireductase duodenal cytochrome b
DFO Deferoxamine
DMT1 Divalent metal transporter 1
DTPA Diethylentriamene pentaacetate
EDTA Ethylenediaminetetraacetic acid
ERK1/2 Extracellular signal-regulated kinases 1 and 2
Fe Iron
FDA Food and Drug Administration
FPN1 Ferroportin-1
GIT Gastrointestinal tract
GPx Glutathione peroxidase
GR Glutathione reductase
GSH Glutathione
GSSG Glutathione disulfide
GST Glutathione S-transferase
HCP1 Heme carrier protein 1
HFD High-fat diet
HFE Homeostatic iron regulator
His Histidine
HJV Hemojuvelin
HO-1 Heme oxygenase 1
IL Interleukin
iNOS Inducible nitric oxide synthase
iPSC-CMS Induced pluripotent stem cell-derived cardiomyocytes
MAPKs Mitogen-activated protein kinases
MDA Malondialdehyde
Mn Manganese
MnSOD Manganese superoxide dismutase
MPT Mitochondrial permeability transition pore
MT Metallothionein
MTF-1 Metal regulatory transcription factor 1
NAC N-acetylcysteine
NADPH Nicotinamide adenine dinucleotide phosphate
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NF-kB Nuclear factor kappa B
Nrf2 Nuclear factor erythroid 2
NO Nitric oxide
PAS Para-amino salicylic acid
PARP-1 Poly(ADP-ribose)-polymerase 1
PD Parkinson’s disease
PKC Protein kinase C
PPIs Proton pump inhibitors
ROS Reactive oxygen species
RNS Reactive nitrogen species
STEAP Six-transmembrane epithelial antigen of the prostate
SOD1 Cu/Zn superoxide dismutase
TDI Tolerable daily intake
TGN Trans-Golgi network
Tf Transferrin
TfR1 Transferrin receptor 1
TfR2 Transferrin receptor 2
TNF-α Tumor necrosis factor alpha
WD Wilson disease
ZIP Zrt-, Irt- like protein family
Zn Zinc
ZnT Zinc transporter
ZnONP Zinc oxide nanoparticles
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