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Summary
Background Wildfire activity is an important source of tropospheric ozone (O3) pollution. However, no study to date 
has systematically examined the associations of wildfire-related O3 exposure with mortality globally.

Methods We did a multicountry two-stage time series analysis. From the Multi-City Multi-Country (MCC) Collaborative 
Research Network, data on daily all-cause, cardiovascular, and respiratory deaths were obtained from 749 locations in 
43 countries or areas, representing overlapping periods from Jan 1, 2000, to Dec 31, 2016. We estimated the daily 
concentration of wildfire-related O3 in study locations using a chemical transport model, and then calibrated and 
downscaled O3 estimates to a resolution of 0·25° × 0·25° (approximately 28 km² at the equator). Using a random-effects 
meta-analysis, we examined the associations of short-term wildfire-related O3 exposure (lag period of 0–2 days) with 
daily mortality, first at the location level and then pooled at the country, regional, and global levels. Annual excess 
mortality fraction in each location attributable to wildfire-related O3 was calculated with pooled effect estimates and 
used to obtain excess mortality fractions at country, regional, and global levels.

Findings Between 2000 and 2016, the highest maximum daily wildfire-related O3 concentrations (≥30 µg/m³) were 
observed in locations in South America, central America, and southeastern Asia, and the country of South Africa. 
Across all locations, an increase of 1 µg/m³ in the mean daily concentration of wildfire-related O3 during lag 0–2 days 
was associated with increases of 0·55% (95% CI 0·29 to 0·80) in daily all-cause mortality, 0·44% (–0·10 to 0·99) in 
daily cardiovascular mortality, and 0·82% (0·18 to 1·47) in daily respiratory mortality. The associations of daily 
mortality rates with wildfire-related O3 exposure showed substantial geographical heterogeneity at the country and 
regional levels. Across all locations, estimated annual excess mortality fractions of 0·58% (95% CI 0·31 to 0·85; 
31 606 deaths [95% CI 17 038 to 46 027]) for all-cause mortality, 0·41% (–0·10 to 0·91; 5249 [–1244 to 11 620]) for 
cardiovascular mortality, and 0·86% (0·18 to 1·51; 4657 [999 to 8206]) for respiratory mortality were attributable to 
short-term exposure to wildfire-related O3.

Interpretation In this study, we observed an increase in all-cause and respiratory mortality associated with short-term 
wildfire-related O3 exposure. Effective risk and smoke management strategies should be implemented to protect the 
public from the impacts of wildfires.

Funding Australian Research Council and the Australian National Health and Medical Research Council.

Copyright © 2024 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 
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Introduction
In the past few decades, wildfire occurrence has increased 
worldwide, with widened geographical extent and 
prolonged fire seasons.1 In recent years, many locations 
globally have had unprecedented wildfires, including 
Australia, Brazil, northern California (USA), Canada, and 
the Mediterranean region of Europe, causing substantial 
economic loss and health impacts.2–6 For example, the 
total economic cost due to wildfires in California during 
2018 was estimated to be US$148·5 billion (95% CI 
126·1–192·9), accounting for approximately 1·5% of annual 
gross domestic product (GDP) in the state.7 Due to rapid 

climate change and population growth, the occurrence and 
related health burden of wildfires are expected to increase 
in the future.8

Both wildfires and planned or controlled fires are 
categorised as landscape fires, with wildfires comprising 
the predominant share (approximately 95%) of such 
occurrences.1 Wildfire smoke is a chemically complex 
mixture of contaminants that are hazardous to human 
health, including particulate matter, ozone (O3), and other 
toxic gaseous pollutants.9 A growing body of scientific 
literature has examined the health impacts from wildfire-
related air pollutants. However, the majority of previous 

http://crossmark.crossref.org/dialog/?doi=10.1016/S2542-5196(24)00117-7&domain=pdf
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studies have focused on fine particulate matter (PM2·5), 
with little knowledge about the health effects of O3 from 
wildfire sources.10

O3 is a highly reactive and oxidative gaseous pollutant 
that shows various toxic effects. Both short-term and 
long-term O3 exposure has been linked to a number 
of adverse health effects, including respiratory and 
cardiovascular mortality and morbidity.11 Wildfire activity 
is an important source of tropospheric O3. Wildfires can 
contribute to tropospheric O3 by releasing a large amount 
of O3 precursors, such as nitrogen oxides (NOx) and 
volatile organic compounds, which form O3 by reacting 
in the presence of sunlight.12,13

Existing studies on the adverse health effects of 
wildfire-related O3 have either been challenged by 
accurate population exposure assessment or restricted 
to single location or country.14–16 To the best of our 
knowledge, no previous study has assessed the health 
effects or health burden of wildfire-related O3 compre
hensively across different populations and geographical 
regions globally. To fill these research gaps, we 
systematically analysed the associations between short-
term exposure to wildfire-related O3 and daily all-cause, 
cardiovascular, and respiratory mortality across various 
regions and populations worldwide, based on data 
from the established Multi-City Multi-Country (MCC) 
Collaborative Research Network. The MCC Network 
comprises international research teams collaborating on 
a programme dedicated to generating epidemiological 
evidence on associations between weather and health.

Methods
Study design and data collection
We did a multicountry two-stage time series analysis 
to examine the associations between wildfire-related 
O3 exposure and mortality. Time-series mortality data 
were collected from the database of the established MCC 
Network on Jan 15, 2021, at which time the database 
covered 750 locations (location refers to city or county) in 
43 countries or areas. Based on data from the MCC 
Network, we have previously examined the excess 
mortality associated with urban air pollution and ambient 
temperature.17,18 Daily counts of deaths from all causes, 
cardiovascular causes (International Classification of 
Diseases, 10th Revision [ICD-10] codes I00–I99), and 
respiratory causes (ICD-10 codes J00–J99) were collected 
from each location in overlapping periods from Jan 1, 2000, 
to Dec 31, 2016, with the extraction of cardiovascular and 
respiratory causes based on the underlying cause (the 
primary reason leading to death). Cardiovascular disease 
refers to a group of disorders of the heart and blood 
vessels, including coronary heart disease, cerebrovas
cular disease, peripheral arterial disease, rheumatic 
heart disease, congenital heart disease, and deep vein 
thrombosis and pulmonary embolism. In places where 
mortality data were unavailable for all causes, non-external 
cause mortality data (ICD-10 codes A0–R99) were used 
instead. The availability of all-cause mortality data (or non-
external cause mortality data) was a prerequisite for 
inclusion, resulting in the inclusion of 749 locations in the 
43 countries or areas. In addition, daily data on mean 

Research in context

Evidence before this study
Unprecedented wildfires have been occurring in many locations 
globally. Air pollution from wildfires has become a considerable 
public health concern, given the various adverse effects on 
health. According to previous research, air pollution from 
wildfire sources is significantly linked to an increased risk of 
death. To ascertain the latest evidence from Jan 1, 2000, to 
June 25, 2023, we did a systematic search on Google Scholar, 
Web of Science, and PubMed, using the following terms: 
(“wildfire” or “bushfire” or “fire”) and (“ozone” or “O3”) and 
(“mortal*” or “fatal*” or “death*” or “dead*“). The language of 
publications was restricted to English and Chinese. Our search 
yielded a small number of studies investigating the impact of 
wildfire-related O3 exposure on mortality. These studies showed 
statistically significant links between O3 from wildfires and 
increased hospital admissions or mortality. However, the 
current evidence largely originates from localised or regional 
studies, with a notable absence of comprehensive assessments 
across regions globally.

Added value of this study
To our knowledge, this study is the first to systematically 
evaluate the associations of short-term wildfire-related O3 

exposure with daily mortality across various regions and 
populations globally. We collected daily counts of all-cause, 
cardiovascular, and respiratory deaths from up to 749 locations 
in 43 countries or areas between 2000 and 2016. The daily 
concentration of O3 from wildfire sources in study locations was 
estimated with a 3D GEOS-Chem model. We first examined the 
associations of short-term wildfire-related O3 exposure with 
daily mortality at the location level, and then pooled results at 
the country, regional, and global levels via a random-effects 
meta-analysis. Across all locations, we found that short-term 
exposure to wildfire-related O3 was associated with significant 
percentage increases in daily all-cause and respiratory mortality. 
No such significant increase was found for daily cardiovascular 
mortality.

Implications of all the available evidence
Based on multicountry assessment of exposure, this study 
presents epidemiological evidence showing an excess of deaths 
linked to short-term exposure to wildfire-related O3. Effective 
risk management is required from policy makers and public 
health experts, involving actions to reduce exposure to 
wildfires.
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temperature (°C) and relative humidity (%) and GDP per 
capita (US$) were collected for each location from the 
MCC Network database, as in our previous study.18

Procedures
We estimated population-weighted exposure to wildfire-
related O3. As wildfires constitute most landscape fires 
worldwide, and distinguishing between wildfires and 
non-wildfires presents challenges with current satellite 
detection methods,1 the prevailing approach involves the 
use of landscape fire exposure as a surrogate metric for 
wildfire exposure, as exemplified by initiatives such as 
the Lancet Countdown reports.19,20 The approach for 
estimation of daily wildfire-related O3 concentration has 
been reported previously.1 In brief, daily wildfire-related 
O3 concentration across study locations was estimated 
with the 3D GEOS-Chem model (version 12.0.0). The 
model simulates tropospheric O3 concentration based on 
the O3–NOx–hydrocarbon–aerosol chemical mechanisms 
for each global grid cell (2·0° × 2·5° spatial resolution; 
about 220 km × 280 km at the equator).21,22 O3 photolysis 
rates were computed based on the Fast-JXv7.0 scheme.23 
Dry deposition of O3 was computed based on a multiple-
resistance model.24 The fire emission data were from the 
Global Fire Emissions Database (version 4.1 with small 
fires, GFED4.1s),25 in which the amount of biomass 
burned has been calculated with use of satellite-based 
burn area and active fire information.26 In this study, 
daily O3 perturbations caused by fires were calculated as 
the difference between simulations with and without 
fire emissions for each day and global grid cell from 
2000 to 2016.

As no ground-level measurements were available 
specifically for wildfire-related O3 concentration, the 
GEOS-Chem-derived wildfire-related O3 concentration was 
validated, adjusted, and downscaled via a three-step 
approach, which is shown in detail in appendix 1 (pp 2–4). 
In brief, daily concentration of ambient O3 from all sources 
derived from the GEOS-Chem model was compared with 
ground monitoring data from 6851 stations in 58 countries 
and areas (sources of ground monitoring data reported 
previously27), and their difference was applied to calibrate 
wildfire-related O3 concentration derived from the GEOS-
Chem model. According to results of ten-fold cross-
validation, the GEOS-Chem-derived O3 concentration 
from all sources explained 80% of the variability of ground 
measurements globally (R²=80%), and the continent-
specific results ranged from 43% to 82% (appendix 1 p 4). 
With use of the validated and adjusted model, daily 
concentration of wildfire-related O3 was estimated in each 
of the 749 locations at 0·25° × 0·25° spatial resolution 
(approximately 28 km² at the equator). For locations with 
multiple grid cells, the mean value of all cells that included 
each location was used.

We sourced annual population counts spanning from 
Jan 1, 2000, to Dec 31, 2016, for every 1 km × 1 km grid 
through the WorldPop project.28 These population data 

were subsequently aggregated to a spatial resolution of 
0·25° × 0·25° to align with the daily wildfire-related 
O3 data. To compute population-weighted mean daily 
wildfire-related O3 exposure, we calculated the exposure 
by calculating the mean of the values of all 0·25° × 0·25° 
grids that were fully or partially within the community 
boundaries. The community boundary information was 
obtained from OpenStreetMap (version 0.7.56). In this 
calculation, we weighted each grid’s contribution based 
on its specific population count, multiplied by the 
proportion (0–100%) of the grid’s area intersecting with 
the community.

Statistical analysis
We present the maximum, mean, and IQR of daily con
centrations of population-weighted wildfire-related O3 
exposure for each study location during the study period, 
and the monthly mean of the maximum daily wildfire-
related O3 concentrations.

The associations of short-term exposure to O3 from 
wildfire sources with daily mortality were first examined 
at each location with consideration of potential lag 
effects, and then the results were pooled at country, 
regional, and global levels. To examine the relationship 
of wildfire-related O3 exposure with all-cause, cardio
vascular, and respiratory mortality separately, a location-
specific quasi-Poisson regression model was fitted to the 
time series, as follows:

log(Dij)=bs(O3ij) + ns(time, 8/year) + ns(TEMPij, 3) + dowj

where Dij is count of deaths in location i on day j, and 
bs(O3ij) is the concentration of O3 from wildfire sources 
fitted with use of a constrained distributed lag model, 
which can flexibly examine both the exposure–response 
relationship and lag effect (where bs is a function in the 
model that is used to generate the basis matrices for 
the two dimensions of predictor and lag).29 According to 
the quasi-likelihood version of the Akaike information 
criterion (qAIC) for various lag times (appendix 1 p 5), we 
considered the cumulative effects (mean concentration) 
of wildfire-related O3 on the current day and previous 
2 days of exposure (lag 0–2 days), which is also consistent 
with our previous work.30 In the model, ns(time, 8/year) 
is a time variable fitted with a natural cubic spline (with 
8 degrees of freedom per year) to account for the long-
term time trends and seasonality;17 ns(TEMPij, 3) is mean 
temperature during lag 0–2 days fitted with a natural 
cubic spline (with 3 degrees of freedom).31 The selections 
of degrees of freedom for natural cubic splines of time 
and lag times for temperature were also based on the 
qAIC information. A range of potential degrees of 
freedom and lag days were considered and the ones with 
the smallest qAIC value were selected (appendix 1 
pp 5–6). dow is day of the week, numbered from 1 to 7 
(1 being Monday). In the model, the association between 
variability of O3 concentration and that of counts of 

For the GEOS-Chem model see 
http://wiki.seas.harvard.edu/
geos-chem/

For the Global Fire Emissions 
Database see https://www.
globalfiredata.org/

See Online for appendix 1
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deaths over time (per day) was examined for the whole 
study period.

The second-stage analysis pooled location-specific 
effect estimates at the country, regional, and global levels 
via a random-effect meta-analysis, which accounted for 
both within-location and between-location variabilities in 
effect estimates.32 Considering that the number of 
locations was small in some countries or areas and the 
mortality data did not cover the whole study period in 
some countries, we used the best linear unbiased 
predictions at this stage and set location as the random-
effect term.33 This approach has been shown to provide 

estimates for countries accurately and robustly, especially 
for those with a small number of locations and short 
series of mortality data, as it uses information across 
units at the same hierarchical level.33 To examine the 
variations of the O3–mortality association in different 
geographical regions and economic zones, location-
specific results were also pooled for UN regions (based 
on the 22 geographical subregions of the UN geoscheme; 
some subregions had no locations and some subregions 
were combined due to small numbers of locations, 
resulting in a total of 11 regions; appendix 1 pp 7–8) and 
four economic zones according to location-specific GDP 

Figure 1: Maximum values and IQRs of daily concentrations (µg/m³) of wildfire-related O3 in 749 locations during 2000–16
Some datapoints overlap with others; the values for all locations are provided in appendix 2. The equator (0°) and the tropics (Tropic of Cancer and Tropic of 
Capricorn, 23·6°) are shown. IQR is shown as the difference between quartile 1 and quartile 3. O3=ozone.
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per capita, using the same regions and GDP groups as in 
our previous study.30

In this study, the O3–mortality associations were 
expressed as percentage change in daily mortality (%) 
with 95% CIs per 1 µg/m³ increase in the concentration 
of O3 from wildfire sources. Annual excess mortality 
fraction in each location attributable to acute effects of 
wildfire-related O3 was calculated with use of the pooled 
effect estimates (% and 95% CI). Annual excess deaths 
for all-cause, cardiovascular, and respiratory causes 
were first calculated for each location separately, 
considering both the current-day and lag effects of 
wildfire-related O3. Then, the sum of reported deaths in 
all locations was divided by the sum of excess deaths to 
derive the excess mortality fraction at the country, 
regional, and global levels. Details on the calculation of 
excess mortality fraction are shown in appendix 1 (p 4).

The associations between daily concentrations of non-
wildfire-related O3 and daily mortality were also 
examined, and excess mortality fractions attributable to 
non-wildfire O3 exposure were calculated, with the same 
methods as those used for wildfire-related O3. The daily 
concentration of O3 from other sources was estimated 
as the difference between GEOS-Chem-derived O3 from 
all sources and that from wildfires. 

A series of sensitivity analyses was done to examine 
the robustness of results. In addition to controlling for 
time, temperature, and day of the week, we further 
controlled for wildfire-related PM2·5, O3 from other 
sources, and PM2·5 from all sources (mean daily 
concentrations for lag 0–2 days). The estimation of 
GEOS-Chem-derived daily PM2·5 from wildfire sources 
and all sources has been reported previously.30 In 
addition, as data on relative ambient humidity were not 
available for 235 of 749 locations, a sensitivity analysis 
was done by further controlling for relative humidity in 
locations with available data. In another analysis, the 
degrees of freedom for temperature and relative 
humidity were changed to 4, 5, and 6 to test the 
robustness of the results. A two-sample test was used to 
examine the differences in effect estimates of the main 
models and these alternative models.34

We did all statistical analyses using R (version 4.2.2) 
and the dlnm and mixmeta packages. We interpreted the 
statistical significance of effect estimates of wildfire-
related O3 based on 95% CIs, and the difference between 
two effect estimates in the sensitivity analyses based on 
p values.

Role of the funding source
There was no funding source for this study.

Results
A summary of study locations, study periods, and 
mortality data is presented in appendix 1 (pp 7–8). 
Among the 749 locations in 43 countries or areas across 
six continents (excluding Antarctica) with all-cause 

mortality data (160 [21·4%] of 749 with non-external 
cause mortality data only), 629 (84·0%) locations had 
available cardiovascular mortality data, and 647 (86·4%) 
locations had available respiratory mortality data. In 

All-cause mortality Cardiovascular mortality Respiratory mortality

Argentina –0·23% (–1·44 to 0·99) NA NA

Australia <0·01% (–5·87 to 6·24) NA NA

Brazil 0·06% (–0·22 to 0·34) NA NA

Canada 1·56% (0·50 to 2·63) 0·09% (–0·58 to 0·76) 0·50% (–2·16 to 3·23)

Chile 1·82% (–2·84 to 6·71) NA NA

China –0·68% (–2·13 to 0·79) 0·72% (0·47 to 0·97) 0·48% (–0·18 to 1·15)

Colombia 0·64% (–0·61 to 1·92) 0·45% (–0·48 to 1·39) –0·97% (–2·34 to 0·41)

Costa Rica 1·13% (0·46 to 1·80)* –0·04% (–23·40 to 30·46)* 2·19% (–12·66 to 19·57)*

Czech Republic 0·76% (–0·62 to 2·15) 0·47% (–2·64 to 3·68) 1·93% (–3·27 to 7·41)

Ecuador 0·77% (0·15 to 1·40) 1·71% (0·48 to 2·95) –0·39% (–1·15 to 0·37)

Estonia 0·76% (–2·82 to 4·47) NA NA

Finland 3·23% (2·67 to 3·79)* 4·96% (–9·43 to 21·63)* 6·40% (4·49 to 8·35)*

France 0·39% (–1·18 to 1·99) NA –3·79% (–8·34 to 0·98)

Germany –0·21% (–1·00 to 0·59) NA NA

Greece 0·98% (0·40 to 1·55)* 1·54% (–0·79 to 3·93)* 0·20% (–4·83 to 5·50)*

Guatemala –0·04% (–1·21 to 1·14)* NA NA

Iran 1·75% (–11·20 to 16·59)* 3·34% (0·79 to 5·95)* –4·96% (–6·08 to –3·84)*

Ireland 1·18% (–0·51 to 2·90) 3·12% (–0·77 to 7·17) 2·97% (–3·92 to 10·35)

Italy –0·89% (–3·03 to 1·29) NA NA

Japan 0·41% (0·08 to 0·73) 1·11% (0·46 to 1·76) 0·72% (0·13 to 1·32)

Kuwait –5·04% (–9·71 to –0·13)* –5·82% (–15·52 to 4·99)* –0·85% (–24·39 to 30·01)*

Mexico –0·09% (–0·69 to 0·51) –0·54% (–2·04 to 0·98) 1·15% (–2·79 to 5·25)

Moldova 7·23% (–0·64 to 15·74) NA NA

Netherlands –0·90% (–2·94 to 1·18) NA NA

Norway 4·78% (1·49 to 8·18)* 4·38% (–7·02 to 17·19)* 1·43% (–14·08 to 19·73)*

Panama –1·81% (–7·43 to 4·15)* 0·29% (–9·48 to 11·11)* –9·87% (–19·10 to 0·42)*

Paraguay –0·09% (–3·36 to 3·29)* –0·31% (–6·16 to 5·90)* 0·81% (–9·99 to 12·91)*

Peru –0·09% (–0·38 to 0·19) NA NA

Philippines 0·22% (–1·05 to 1·51) –0·27% (–1·34 to 0·82) –3·13% (–4·77 to –1·46)

Portugal –0·87% (–1·58 to –0·15) –1·67% (–6·69 to 3·61) 3·53% (–0·73 to 7·97)

Puerto Rico 0·93% (0·34 to 1·52)* NA NA

Romania 1·27% (0·15 to 2·40) NA NA

South Africa 0·12% (–0·04 to 0·27) –0·06% (–0·44 to 0·34) –0·30% (–0·72 to 0·13)

South Korea 0·43% (–0·31 to 1·18) 1·32% (–0·30 to 2·97) 0·66% (–0·93 to 2·29)

Spain –0·13% (–1·11 to 0·85) –1·39% (–3·01 to 0·26) –2·04% (–4·58 to 0·57)

Sweden –0·10% (–0·71 to 0·52) –1·32% (–3·53 to 0·94) 4·59% (0·38 to 8·96)

Switzerland –1·26% (–3·41 to 0·94) –0·23% (–6·76 to 6·77) –3·85% (–13·48 to 6·85)

Taiwan 1·02% (–3·15 to 5·37) 0·90% (–5·24 to 7·45) 1·99% (–6·59 to 11·37)

Thailand 0·57% (0·36 to 0·77) 0·45% (–0·01 to 0·91) 1·05% (0·54 to 1·57)

UK 1·30% (0·59 to 2·02) 0·34% (–0·95 to 1·64) 1·57% (–0·25 to 3·42)

Uruguay 0·38% (–2·97 to 3·86)* NA NA

USA 0·82% (0·14 to 1·51) 0·70% (–0·54 to 1·96) 1·49% (0·14 to 2·85)

Viet Nam 0·36% (–0·58 to 1·32) 0·40% (–4·14 to 5·16) 1·72% (–0·12 to 3·60)

Numbers in parentheses are 95% CIs. The main models were controlled for a time variable, ambient temperature, and 
day of the week at the first stage (location level), and included location as the random-effect term at the second stage 
(country or area level). For countries or areas with only one location, location-specific effect estimates were used to 
present the country or area-level results. NA=not available. *Location-specific estimates.

Table 1: Percentage change in mortality per 1 µg/m³ increase in mean daily concentration of wildfire-related 
ozone during lag 0–2 days in 43 countries or areas 
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total, 65·62 million deaths from all causes, 15·11 million 
deaths from cardiovascular causes, and 6·84 million 
deaths from respiratory causes were recorded in these 
locations between Jan 1, 2000, and Dec 31, 2016, over 
a median study period of 13 years (IQR 7–16). The 
maximum daily wildfire-related O3 concentrations in all 
locations during 2000–16 are shown in figure 1 and 
appendix 2. Regions with locations with the highest 
maximum daily wildfire-related O3 (≥30 µg/m³) were 
South America, central America, and southeastern Asia; 
the top three locations with the highest concentrations 
were Cuiaba (Brazil), Ucayali (Peru), and Guatemala. 
Locations in Thailand, such as Chanthaburi, and South 
Africa, such as Vhembe, also showed high maximum 
daily wildfire-related O3 (≥30 µg/m³). The lowest 
concentrations (<5 µg/m³) were observed in locations 
northern America, eastern Asia, and central and 
southern Europe; the top three locations with the lowest 
concentrations were Kuwait, Phoenix (USA), and Las 
Vegas (USA; figure 1, appendix 2). Locations situated 
close to the equator in the tropical region and within 
subtropical regions, such as those in South America, 
southeastern Asia, and South Africa, showed the highest 
maximum daily wildfire-related O3 concentrations. 
Conversely, areas at high latitudes, including eastern 
Asia, northern America, and central, southern, and 
northern Europe, consistently reported the lowest 
concentrations. Among the 749 locations, 734 (98·0%) 
had an IQR of daily wildfire-related O3 concentration of 
less than 3 µg/m³ (figure 1). The peak months of daily 

wildfire-related O3 were January to May for locations in 
the northern hemisphere, and July to October for those 
in the southern hemisphere (appendix 1 p 9). Mean 
concentrations of wildfire-related O3 in all locations are 
shown in appendix 1 (p 14) and appendix 2.

Across all locations, an increase of 1 µg/m³ in the mean 
daily concentration of wildfire-related O3 during lag 
0–2 days was associated with increases of 0·55% (95% CI 
0·29 to 0·80) in daily all-cause mortality, 0·44% 
(–0·10 to 0·99) in daily cardiovascular mortality, and 
0·82% (0·18 to 1·47) in daily respiratory mortality. For O3 
from non-wildfire sources, the associated increases in 
mortality were 0·08% (0·07 to 0·10), 0·07% (0·04 to 0·10), 
and 0·09% (0·05 to 0·13) for the three causes, 
respectively. Estimates of the percentage change in daily 
mortality rates associated with wildfire-related O3 showed 
substantial geographical heterogeneity at the country 
or area level. The country-specific estimates ranged 
from –5·04% (–9·71 to –0·13; for Kuwait) to 7·23% 
(–0·64 to 15·74; for Moldova) for all-cause mortality, 
from –5·82% (–15·52 to 4·99; for Kuwait) to 4·96% 
(–9·43 to 21·63; for Finland) for cardiovascular mortality, 
and from –9·87% (–19·10 to 0·42; for Panama) to 6·40% 
(4·49 to 8·35; for Finland) for respiratory mortality; table 
1). For pooled results by regions, the highest estimates of 
percentage change in mortality were observed in 
northern Europe, eastern Asia, southeastern Asia, and 
northern America, and the lowest in western Asia 
and southern Europe (table 2). In addition, the highest 
estimates were in locations with a GDP per capita of 
$20 000 or higher, whereas the lowest estimates were in 
locations with a GDP per capita of $10 000–19 999 
(table 2).

Based on the pooled associations of all locations, an 
estimated 31 606 (95% CI 17 038 to 46 027) excess all-
cause deaths, 5249 (–1244 to 11 620) cardiovascular 
deaths, and 4657 (999 to 8206) respiratory deaths 
annually were attributable to short-term exposure to 
wildfire-related O3 for lag 0–2 days, corresponding to 
annual excess mortality fractions of 0·58% (95% CI 
0·31 to 0·85), 0·41% (–0·10 to 0·91), and 0·86% (0·18 to 
1·51), respectively (figure 2). For O3 from non-wildfire 
sources, the excess mortality fractions were 2·96% 
(2·40 to 3·52), 2·35% (1·33 to 3·36), and 3·10% (1·66 to 
4·52) for the three causes, respectively. The country or 
area-specific results for short-term wildfire-related O3 
exposure showed substantial variations, with annual 
excess mortality fractions ranging from 0·27% 
(0·15 to 0·39; Taiwan) to 2·23% (1·21 to 3·32; Ecuador) 
for all-cause mortality, from 0·24% (–0·06 to 0·53; 
Kuwait) to 0·92% (–0·22 to 2·02; China) for 
cardiovascular mortality, and from 0·44% (0·09 to 0·78; 
Canada) to 2·14% (0·46 to 3·72; China) for respiratory 
mortality (figure 2). The highest excess mortality 
fractions were observed in southern Africa (ie, South 
Africa), South America, and locations with the lowest 
GDP levels (<$10 000 per capita), whereas the lowest 

All-cause mortality Cardiovascular 
mortality

Respiratory mortality

Region

Australia <0·01% (–5·87 to 6·24) NA NA

Central America 0·05% (–0·47 to 0·58) –0·53% (–1·98 to 0·95) 0·25% (–3·71 to 4·38)

Central Europe 0·77% (–0·28 to 1·82) 0·11% (–4·44 to 4·89) –3·09% (–7·07 to 1·07)

Eastern Asia 0·20% (–0·22 to 0·64) 1·15% (0·42 to 1·89) 0·77% (0·03 to 1·51)

Western Asia –4·25% (–8·67 to 0·39) 0·21% (–8·01 to 9·17) –4·96% (–6·07 to –3·83)

Northern America 0·89% (0·27 to 1·52) 0·70% (–0·45 to 1·85) 1·43% (0·19 to 2·69)

Northern Europe 1·22% (0·60 to 1·84) 0·51% (–0·68 to 1·71) 1·85% (0·19 to 3·54)

Southern Africa 0·12% (–0·04 to 0·27) –0·06% (–0·44 to 0·34) –0·30% (–0·72 to 0·13)

South America 0·21% (–0·29 to 0·73) 0·87% (0·05 to 1·68) –0·52% (–1·18 to 0·15)

Southern Europe –0·37% (–1·21 to 0·48) –1·32% (–2·86 to 0·24) –1·66% (–4·01 to 0·74)

Southeastern Asia 0·53% (0·33 to 0·73) 0·34% (–0·10 to 0·78) 0·74% (0·16 to 1·32)

Location-specific GDP per capita, US$ 

<10 000 0·37% (0·06 to 0·68) 0·35% (0·09 to 0·60) 0·19% (–0·34 to 0·73)

10 000–19 999 0·19% (–0·38 to 0·76) –0·26% (–1·37 to 0·86) –0·76% (–2·33 to 0·84)

20 000–29 999 1·38% (0·55 to 2·22) 0·76% (–0·40 to 1·93) 1·25% (–0·94 to 3·49)

≥30 000 0·66% (0·24 to 1·08) 0·66% (–0·20 to 1·54) 1·03% (0·06 to 2·01)

Pooled estimates are presented, with 95% CIs in parentheses. The main models were adjusted for a time variable, 
ambient temperature, and day of the week at the first stage (location level), and included location as the 
random-effect term at the second stage (regional level). GDP=gross domestic product. NA=not available.

Table 2: Percentage change in mortality per 1 µg/m³ increase in mean daily concentration of wildfire-related 
ozone during lag 0–2 days for different  regions and GDP levels

See Online for appendix 2
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excess mortality fractions were observed in central and 
northern Europe, eastern and western Asia, northern 
America, and locations with high GDP levels (≥$20 000 
GDP per capita; appendix 1 p 9). The corresponding 
numbers of excess annual deaths in different countries 
and regions and by GDP levels are shown in appendix 1 
(pp 10–12). 

Sensitivity analyses indicated that, in addition to 
controlling for time, temperature, and day of the week, 
controlling for wildfire-related PM2·5, ambient O3 from 
other sources, and PM2·5 from all sources did not 
significantly change the pooled estimates (figure 3), 
with the p values all greater than 0·1 for differences with 
the main model estimates (appendix 1 p 13). The pooled 

Figure 2: Annual excess mortality fractions due to exposure to wildfire-related O3 for lag 0–2 days in 43 countries or areas
Annual excess mortality fraction in each location was calculated using the pooled effect estimates and mean daily concentration of wildfire-related O3 for lag 0–2 days. The sum of reported deaths was 
divided by the sum of excess deaths across all locations to derive the excess mortality fraction at the global level. O3=ozone. NA=not available.
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effect estimates were robust to different degrees of 
freedom (3 to 6) for meteorological variables (temperature 
and relative humidity; appendix 1 p 13). Controlling for 
both ambient temperature and relative humidity did 
not significantly change the pooled effect estimates 
(appendix 1 p 15).

Discussion
Our study findings underscore the substantial impact of 
short-term exposure to O3 from wildfire sources, which 
we found to be associated with increased all-cause 
and respiratory mortality. However, the association with 
cardiovascular mortality did not reach statistical sig
nificance. The estimated mortality burden attributable to 
wildfire-related O3 exposure showed notable geographical 
disparities, which were particularly pronounced in 
South America and the country of South Africa, where 
wildfires have been frequent in recent years.1 Our study, 
encompassing a large dataset spanning many geograph
ical regions and diverse sociodemographic conditions, 
provides strong evidence of a link between excess mor
tality and O3 pollution from wildfires.

Currently, evidence on the adverse health effects of 
wildfire-related O3 is scarce, but some local studies have 
indicated its adverse health impacts. One study reported 
significantly increased risk of emergency hospital visits 
for asthma (relative risk per 10 µg/m³ increase in 
O3 concentration: 1·050 [95% CI 1·022–1·078)] during 
active wildfire periods in northern California in 2008.14 
One study in Victoria, Australia, during the 2002–03 

bushfire season showed a significant association between 
O3 pollution and increased hospital admissions (relative 
risk per IQR increase in O3 concentration: 1·027 [95% CI 
1·001–1·053]).35 However, another study that examined 
the health impacts of long-distance O3 transport in rural 
and remote areas of Portugal during fire seasons reported 
null results for the associations of O3 peaks with hospital 
admissions for respiratory illnesses.36

The oxidative stress caused by inhalation of O3 is the 
most widely studied pathway on the health effects of O3, 
which subsequently leads to respiratory cell injury and 
changed cell signalling.11 Other pathways related to the 
respiratory effects of O3 include the stimulation of neural 
reflexes, changes in epithelial barrier function, and 
immune disruption,37,38 among others. Currently, evi
dence for the cardiovascular effects of O3 is insufficient 
and inconclusive. Experimental and epidemiological stud-
ies indicated that initiation of inflammation, increased 
vascular oxidative stress, altered heart rate, and decreased 
heart rate variability were all linked to exposure to O3.39,40 
However, epidemiological studies in the UK and USA 
reported no significant link between short-term O3 
exposure and cardiovascular hospital admission.41,42 
A controlled human exposure research study also found 
no significant correlation between short-term O3 exposure 
and changes in stroke volume or left ventricular ejection 
time.43 In our study, the absence of a significant 
association between exposure to O3 from wildfire sources 
and cardiovascular mortality might also be due to 
uncertainties in the pooled estimates, potentially caused 
by the cardiovascular mortality dataset including the least 
locations (appendix 1 pp 7–8). The pooled results across 
four economic levels highlight the potential impact of 
economic prosperity on wildfire-related health risks. 
Economically disadvantaged regions, such as southern 
Africa (ie, South Africa) and South America, showed the 
highest excess mortality fractions, whereas regions with 
higher GDP levels, such as central and northern Europe 
and northern America, showed the lowest excess 
mortality fractions. In addition to economic prosperity, 
this trend is influenced by regional wildfire frequency.

The health burden of wildfire-related O3 might be largely 
underestimated. Existing studies have primarily focused 
on short-term health effects, and the long-term health 
effects and underlying biological mechanisms remain 
largely unknown.44 Furthermore, evidence on the health 
effects of wildfire smoke is insufficient, with research 
limited to all-cause mortality effects and cardiovascular 
and respiratory effects. To address these critical evidence 
gaps, future research efforts should prioritise investigating 
the intricate relationship between wildfire smoke and 
various health outcomes. This prioritisation is particularly 
vital in vulnerable populations, including children, older 
people, patients with comorbidities, outdoor workers, 
and racial or ethnic minority subpopulations. Additionally, 
a comprehensive understanding of the interaction effects 
between wildfire smoke and other environmental factors, 

Figure 3: Pooled percentage change in mortality per 1 µg/m³ increase in 
wildfire-related O3 during lag 0–2 days by controlling wildfire-related PM2·5, 
O3 from other sources, and PM2·5 from all sources
The main models adjusted for a time variable, ambient temperature, and day of 
the week at the first stage and included location as the random-effect term at 
the second stage. O3=ozone.
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such as high ambient temperature, is paramount.10 Such 
insights are likely to be crucial in informing the 
development of effective public health interventions 
aimed at mitigating the adverse health effects associated 
with wildfire-related O3 exposure.

Wildfire smoke poses acute respiratory risks due to 
its high concentration of particulate matter and volatile 
organic compounds, whereas O3 contributes to cardio
vascular events and exacerbates respiratory illnesses, 
often synergistically amplifying health effects when 
combined with other pollutants.45 Meanwhile, the psy
chological stress induced by wildfires can exacerbate 
mental health issues, potentially affecting a wide popu
lation range.46 Understanding all of these impacts is 
crucial for developing targeted public health interventions 
aimed at mitigating the diverse health risks associated 
with wildfires. In particular, the adverse effects of wildfire-
related O3 to public health should be of high concern. 
Although wildfires only occur in specific locations 
worldwide, O3 generated during wildfires can extend as 
far as 1000 km, and most personal actions (eg, wearing 
a face mask) cannot help to reduce individual exposure.10 
Furthermore, amplified health effects of wildfire partic
ulate matter has been observed with exposure to both 
O3 and high temperature during fire seasons.47 To 
minimise O3 exposure during wildfires, comprehensive 
risk management strategies are essential, and should use 
exposure estimates and health data to guide interventions. 
Coordinated efforts need to be made alongside fuel and 
smoke management initiatives.48 Government agencies 
and communities should be equipped with wildfire 
forecasting tools and tailored prevention strategies to 
mitigate O3-related health risks effectively. Integrating 
O3 reduction measures with existing strategies to limit 
smoke exposure ensures a holistic approach to safe
guarding public health during wildfire events.

To our knowledge, this study is the first to systematically 
evaluate the associations between wildfire-related 
O3 exposure and daily mortality across various locations 
and populations globally. The spatial and temporal 
characteristics of wildfire smoke can be accurately 
captured by exposure assessment with the GEOS-Chem 
model.49 Furthermore, many studies have assessed the 
short-term health effects of air pollution via a two-stage 
analytic approach.17,50 In the first stage, both the con
ventional exposure–response association and the 
additional lag response association are defined in the 
distributed lag model.17 In the second stage, random-
effects meta-analysis evaluates variability in effect 
estimates both within and between cities.51 Via meta-
analysis, we obtained more robust and plausible results 
than from individual studies conducted in one city. 
In addition, this study considered cardiovascular and 
respiratory effects of wildfire-related O3, which can 
facilitate the calculation of overall attributable burden.

Some limitations with our study need to be noted. 
Although this study has considered various populations 

and regions, the pooled mortality risk cannot be interpreted 
as representative at the global level, as the study locations 
are not evenly distributed in each continent (eg, many 
more locations in the Americas than Africa) and most of 
them were from urban areas.17 With use of the GEOS-
Chem model and various spatiotemporal predictors, we 
were able to estimate the concentration of wildfire-related 
O3 in each location, but there were predictive errors 
(R²=80% for GEOS-Chem-derived daily O3 concentrations 
from all sources). Although this value indicates high 
predictive ability of the GEOS-Chem model in capturing 
wildfire-related O3, there remains capacity for improvement 
in future iterations. Enhancements in predictive accuracy 
can be achieved by collecting more individual-level data 
(eg, age and gender) and location-specific data (eg, 
vegetation type and topographical features) on predic
tors, thereby refining exposure assessment methods. As 
a further limitation, this study only used time series 
mortality data. With individual-level information on 
participants (eg, sex, age, and behavioural factors), 
researchers could pinpoint vulnerable populations more 
accurately than in the current analysis, enabling targeted 
interventions and resource allocation to mitigate the health 
effects of wildfires effectively.

Based on multicountry exposure assessment, our study 
highlights the excess of all-cause and respiratory deaths 
linked to short-term O3 exposure from wildfires. Urgent 
action is required from policy makers and public health 
experts to implement effective risk management strategies 
amid the escalating wildfire frequency and intensity driven 
by climate change. These strategies should include 
establishing early warning systems and robust disease 
prevention approaches. Our findings emphasise the need 
to integrate wildfire-related O3 exposure into ongoing 
fire smoke research and smoke prevention activities, to 
guide the development of comprehensive strategies for 
mitigating the adverse health effects of wildfires.
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