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OBJECTIVES: To determine real-life quantitative changes in OCT biomarkers in a large set of treatment naive patients in a real-life 
setting undergoing anti-VEGF therapy. For this purpose, we devised a novel deep learning based semantic segmentation 
algorithm providing the first benchmark results for automatic segmentation of 11 OCT features including biomarkers for 
neovascular age-related macular degeneration (nAMD).
METHODS: Training of a Deep U-net based semantic segmentation ensemble algorithm for state-of-the-art semantic 
segmentation performance which was used to analyze OCT features prior to, after 3 and 12 months of anti-VEGF therapy.
RESULTS: High F1 scores of almost 1.0 for neurosensory retina and subretinal fluid on a separate hold-out test set with unseen 
patients. The algorithm performed worse for subretinal hyperreflective material and fibrovascular PED, on par with drusenoid PED, 
and better in segmenting fibrosis. In the evaluation of treatment naive OCT scans, significant changes occurred for intraretinal fluid 
(mean: 0.03 µm3 to 0.01 µm3, p < 0.001), subretinal fluid (0.08 µm3 to 0.01 µm3, p < 0.001), subretinal hyperreflective material 
(0.02 µm3 to 0.01 µm3, p < 0.001), fibrovascular PED (0.12 µm3 to 0.09 µm3, p =∠0.02) and central retinal thickness C0 (225.78 µm3 to 
169.40 µm3). The amounts of intraretinal fluid, fibrovascular PED, and ERM were predictive of poor outcome.
CONCLUSIONS: The segmentation algorithm allows efficient volumetric analysis of OCT scans. Anti-VEGF provokes most potent 
changes in the first 3 months while a gradual loss of RPE hints at a progressing decline of visual acuity. Additional research is 
required to understand how these accurate OCT predictions can be leveraged for a personalized therapy regimen.

Eye; https://doi.org/10.1038/s41433-024-03264-1

INTRODUCTION
Ocular coherence tomography (OCT) imaging of the retina and 
the identification of several disease biomarkers has become key in 
creating treatment protocols and tracking of disease progression 
in neovascular age-related macular degeneration (nAMD) [1]. 
Today, decision for treatment is mainly guided by the findings in 
OCT images of nAMD patients where several biomarkers have 
been detected to guide therapeutic decisions [2–5]. That has, in 
the past, led to an overall high therapy intensity with monthly to 
bimonthly injections over several years, posing a major challenge 
for both patients and the healthcare system: A recent study 
by Chopra et al. shows an 11-fold increase in annual intravitreal 
injections from 2009 to 2019 and is projected to continue to 
rise [6]. Newer studies, however, have shown that ignoring 
subretinal fluid (SRF) (<200 µm at the foveal center) does 
not change outcome in visual acuity for patients but can 
lessen their treatment burden [7]. Additionally, a very 
stable fibrovascular pigment epithelial detachment (fPED) may 
correlate with a protection for the development of macular 
atrophy [8].

Consequently, to understand the prognostic value of different 
biomarkers it is important to assess their overall distribution in 
patients in a real-life setting under optimal therapeutic adher-
ence. However, manually analyzing these and their changes over 
time becomes difficult as well as time consuming once we want 
to study a greater set of patients. Additionally, the variety of 
morphologic features in AMD add much to the complexity and 
heterogeneity of the scan [9]. This generates high-volume data 
making the manual segmentation process close to impossible.

In this project, we propose a deep learning-based semantic 
segmentation algorithm trained with 458 manually annotated 
macular OCT scans, to allow automatic segmentation of clinical 
features of a large series of treatment-naive patients eyes 
suffering from neovascular AMD and undergoing anti-VEGF (vas-
cular endothelial growth factor) treatment.

We additionally show a validation of the algorithm on 
independent test sets of previously unseen patients combined 
with detailed analysis of the inter-annotator variance for 
ambiguous and hard to annotate features. It furthermore allows 
us to give a one-of-a-kind extensive description on the 
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distribution of morphologic features as well as disease biomarkers 
of that patient group found in a real-life setting.

METHODS
This case series included patients from our clinic with treatment-naive 
nAMD in the study eye and had a follow-up observational period of at 
least three and twelve months. Treatment naive was defined as never 
having had any form of intravitreal injection. with the first injection 
received at time of diagnosis. Exclusion criteria were comorbidities such as 
central retinal vein occlusion, retinal branch occlusion, diabetic macular 
edema, uveitis, and other conditions that can lead to the development of 
intra- or subretinal fluid. The study was approved by the institutional 
review board of our institution and adhered to the tenets of the 
Declaration of Helsinki. Written informed consent was obtained from each 
participant prior to the intervention and all testing outlined herein.

Treatment regimen
Patients received an upload of three monthly injections of any of anti- 
VEGF (Ranibizumab, Aflibercept, or Bevacizumab) and were then treated 
according to the Treat and Extend regimen: They were either extended for 
two weeks or continued on a monthly injection routine [10].

Patient identification
We queried our data warehouse for all patients receiving intravitreal 
Injections of anti-VEGF between 2013/03/11 and 2020/07/09. Diagnosis of 
neovascular AMD was confirmed after proof of choroidal neovasculariza-
tion in initial Fluorescein Angiography. We interpolated the data set to 3 
measurement points: Start date is the time of the first intravitreal 
injection. Next monitoring point is after 3 months and lastly after 
12 months of treatment.

Preoperative examinations
Examinations before intravitreal injections included testing best corrected 
visual acuity (BCVA) using standard Snellen Chart, intraocular pressure 
using non-contact tonometry, dilated indirect fundoscopy as well as 
spectral-domain optical coherence tomography of the macula (Spectralis; 
Heidelberg Engineering GmbH, Heidelberg, Germany). The metrics 
“counting fingers”, “hand movement” were converted to 1.98 and 2.28 
logMar respectively as previously described by Lange et al. and Schulze- 
Bonsel et al. [11, 12]. All visual acuity values in this study are given in 
logMAR units.

Segmentation data sets
To create the segmentation algorithm, a set of 458 macular OCT scans, 
each from a different patient, were annotated by fellows in medical retina 
(B.A., J.B.S., and M.H.) using the annotation tool LabelMe [13]. They were 
then validated by three retinal experts (J.S., C.K., and T.H.) and re-labeled 
in case of any discrepancies. Each fellow was assigned his or her own set 
randomly. In this process, we followed the Consensus Nomenclature for 
Reporting Neovascular Age-Related Macular Degeneration of the AAO 
(American Academy of Ophthalmology) for disease biomarkers and used 
11 different OCT labels [14]. The annotation was made pixel wise, i.e., each 
pixel in the image was assigned one of the 11 classes: Epiretinal 
Membrane (ERM), Neurosensory Retina (NR), Retinal pigment epithelium 
(RPE), Intraretinal fluid (IRF), SRF, Subretinal hyperreflective material 
(SHRM), Drusenoid pigment epithelial detachment (dPED), fPED, Fibrosis, 
Choroid, Posterior hyaloid membrane (PHM). For annotation examples as 
well as exact class distribution statistics see supplement. The central 
retinal thickness C0 was defined according to the ETDRS grid [15].

An additional data set of 30 scans were annotated to measure the inter- 
annotator variation between the three annotators for a selection of 
ambiguous features. To quantify feature ambiguity as well as establishing 
an upper bound for how well these features can be expected to be 
segmented, the ophthalmological fellows all annotated the same scans. 
Afterwards, a consensus annotation was produced by a panel including 
the retinal experts producing in total four annotations for each of the 
30 scans.

Model architecture
The algorithm used for segmenting the retinal OCT scans is a deep 
convolutional neural network [16] of a U-net type architecture [17]. 

Specifically, the network consists of eleven convolution layers followed by 
batch normalization [18] and relu activation functions [19]. The convolu-
tional layers use padding so as to not alter the dimensions of the feature 
maps and have kernel size set to three throughout the network. Each 
convolutional layer is initialized using the He normal initialization [20] at 
the start of the training. In the encoder, every two convolutional layers are 
followed by a max pooling operation making a total of five max poolings, 
reducing the resolution size of the input from 256 to 8 for the feature 
maps. Here, the original images are linearly resized from 512 to 256 pixels 
height and width. The first convolutional layer is set to have 64 filters and 
this number is doubled after every max pooling layer yielding a maximum 
of 1024 filters in the bottleneck of the architecture. The number of filters 
are then halved after every transposed convolution in the decoder. 
Between the encoder and the decoder a dropout layer with probability 0.2 
is applied for regularization. In the decoder, transposed convolutions as 
well as two layered convolutional blocks as described above are applied 
consecutively until the original input dimension is reached. After filtering 
and max pooling operations a convolutional layer with kernel size one 
and a softmax activation function is applied to achieve the final output of 
the network.

Model training
The models were trained using the Adam optimizer using the categorical 
cross-entropy loss, with an initial learning rate of 0.001, found to be 
optimal through hyperparameter tuning on a validation set. The images 
and annotation masks were split into a train, validation, and test set 
consisting of 338, 84, and 36 images, respectively. Further, an ensemble of 
networks was created for each image in the 36-image test set using a 
leave-one-out validation scheme and adding the remaining test images to 
the training data set. In total five models were trained for each test image 
resulting in 180 different models. At inference time, the softmax outputs 
for each class and pixel, from all five models, were averaged to obtain an 
ensemble prediction. The class with the highest average softmax score 
yielded the final prediction. For the inter-doctor variance data set the 10 
models, out of 180, with the best validation scores were selected to form 
an ensemble from which the predictions were obtained in the same way 
as for the test set.

Model evaluation
The segmentation model is evaluated using the F1 score, i.e., the 
harmonic mean between precision and recall, a standard evaluation 
metric for semantic segmentation tasks. The score is then presented for 
each class. Further the inter-doctor variance is presented as the F1 score 
between each annotator and the 10-model ensemble against the 
consensus annotation. As all pixels are concatenated for all images, as 
typically done in semantic segmentation tasks, no standard deviation 
metrics between images are provided. The statistically evaluated model 
was then used for automatic segmentation of 18,522 OCT scans from 378 
eyes enabling the statistical analysis of morphological OCT features 
including nAMD biomarker distribution on treatment naive patients and 
how they are affected by anti-VEGF injections.

Statistical analysis
All statistical analysis was performed using the Python programming 
language with the Scipy stats software package [21]. Normality of data 
was assumed due to sufficiently large sample sizes well above 30 as 
specified by the central limit theorem [22]. We applied the independent 
samples t-test for parametric comparisons. The level of statistical 
significance was defined as p < 0.05.

The code for the models and training procedures as well as result 
analysis will be made available through the public Github repository upon 
publication.

RESULTS
Deep learning segmentations accurately quantifies presence 
of clinical features in retinal OCT images
The clinical features were segmented with a top performance of 
0.98 F1-score for features NR and SRF. The lowest F1-scores were 
observed for features ERM, dPED, and SHRM (see Fig. 1a). Test set 
examples of the segmented features can be seen in Fig. 1b, 
showing the variety of features accurately segmented in unseen 
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patients. The annotators, on the other end, highly agreed on 
SHRM, fPED, and dPED, while largely disagreeing in the case of 
fibrosis (see Fig. 1c). Overall, the segmentation algorithm 
performed worse than the annotators on SHRM and fPED, on 
par with respect to dPED and better than all annotators when 
segmenting fibrosis (see Fig. 1c). In Fig. 1d we see examples of 
consensus, annotator and segmentation algorithm predicted 
segmentations for example OCT images.

Most morphological changes of treatment naive patients 
occur during the first three months of anti-VEGF therapy
After filtering for the inclusion criteria a total of 378 eyes 
consisting of 18,522 OCT scans from 339 different patients were 
segmented and analyzed. Of those patients 144 were male and 
234 female with an average age of 82 ± 8 years. Features in 
treatment-naive patients that were most prominent on initial 

presentation were by far fPED (Mean: 0.12 µm3, SD: 0.19 µm3), 
followed by SRF (Mean: 0.08 µm3, SD: 0.26 µm3), IRF (Mean 
0.03 µm3, SD 0.08 µm3) and SHRM (Mean: 0.02 µm3, SD: 0.05 µm3, 
see Fig. 2). Mean number of injections was 3.8 ± 1.5 after 3 
months and 8.3 ± 3.5 after 12 months, meaning that on average 
the therapy regimen was extended at some point during the 
observed time frame.

After 3 months of intravitreal treatment there was little but 
significant change in fPED from 0.12 µm down to 0.09 µm (SD: 
0.15 µm, p-value =∠0.02) but no difference afterwards. The overall 
change of this marker over the course of twelve months was 
barely not statistically significant (p-value: 0.05) meaning that 
therapy in general did not lead to real regression of the fPED but 
seems to halt further growth.

Difference in means as tested by t-tests showed a statistical 
significant change in IRF, SRF, SRHM, and CRT C0 after 3 months 

Fig. 1 Deep learning segments clinical features on par with human experts from retinal OCT images. a F1 scores for 11 clinical features 
segmented on a test set from 37 to the algorithm previously unseen patients. b Example of OCT images selected to illustrate various 
segmentation classes with ground truth and predicted segmentation maps. c F1 scores for subretinal hyperreflective material, fibrovascular PED, 
drusenoid PED as well as fibrosis on 30 challenging test patients containing these features. d Example OCT images with consensus ground truth, 
annotations from three different annotators as well as predicted segmentation maps displaying segmentation of multiple features. Yellowish 
color was not evaluated and either stands for a crop of the image or vitreous cavity.
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of anti-VEGF therapy but no significant improvement or change 
until month 12 occurred, meaning setbacks under therapy were 
uncommon. This was on par with the observed changes in visual 
acuity. Significant improvement was achieved from before 
treatment during the first 3 months (mean VA on month 1: 0.59 
logMAR, mean VA on month 3: 0.50 logMAR; p-value: 0.003) but 
no significant change occurred afterwards up until month 12. The 
distribution of these and the other morphological features 
including disease biomarker amongst treatment naive patients 
is summarized in Fig. 2 and Table 1. The RPE showed a significant 
decline throughout the complete observation period therefore 
hinting at a steady increase in atrophy.

We additionally used linear regression to model the inter-
dependence between the different biomarkers and visual acuity 
outcome in 12 months. There was a negative correlation between 
visual acuity and intraretinal fluid, ERM, fPED, and fibrosis. Since 
most of these features are most prominent in the active disease 
state (excluding ERM) and bring immense structural changes to 
the retina, this finding does not seem very surprising. Interest-
ingly, SRF had no correlation with a worse outcome in visual 
acuity, supporting the thesis of being protective against retinal 
atrophy and further decline of vision. Other findings are 
summarized in Table 2.

DISCUSSION
Structural changes in OCT images of nAMD patients have been 
extensively studied in the past [5, 23] however, not to the extent 
that is made possible by a high-performing segmentation 
algorithm. In this work, we were able to realistically describe 
not only the morphologic characteristics of the patients but also 
actually quantify those volumetrically including the disease 
biomarkers in their respective scans. This was leveraged to give 
a one-of-a-kind description of a large number of treatment-naive 
nAMD patients in a real-life setting.

Contribution to the application of deep learning algorithms 
in understanding the retina
Semantic segmentation of OCT images has been studied before 
[24–27]. A similar segmentation algorithm was developed by De 
Fauw and colleagues [28] which also uses a segmentation 
network as a pre-processing method for predicting retinal 
disease. Our work differs with regards to two main aspects. First, 
we include the latest consensus nomenclature as specified by the 
AAO, and secondly, we provide an in-depth analysis of feature 
ambiguity by inter-annotator variation analysis and test perfor-
mance metrics reporting on a large number of unseen test 
patients. This entails evaluating uncertainties surrounding feature 

Fig. 2 Volumetric changes of treatment naive OCT biomarkers under anti-VEGF treatment. Significant reduction was seen in IRF, SRF, 
SHRM, RPE and central foveal thickness.

Table 1. Mean volumetric values before (mean 1), three months (mean 3) and twelve months after initiation of anti-VEGF therapy.

ERM IRF SRF SRHM RPE fvped drusen PHM Choroid Fibrosis CRT

Mean 1 0·01 0·03 0·08 0·02 0·19 0·12 0·01 0·02 0·93 0·02 223·82

Mean 3 0·01 0·01 0·01 0·01 0·19 0·09 0·01 0·02 0·96 0·02 169·65

Mean 12 0·01 0·01 0·01 0·00 0·18 0·09 0·01 0·02 0·95 0·03 172·62

sd 1 0·02 0·08 0·25 0·05 0·02 0·18 0·01 0·03 0·41 0·06 88.29

sd 3 0·02 0·07 0·09 0·02 0·02 0·15 0·01 0·03 0·41 0·06 64·11

sd 12 0·02 0·04 0·04 0·01 0·02 0·15 0·01 0·03 0·41 0·08 63·76

p-value (1–3) 0·62 0·00* 0·00* 0·00* 0·00* 0·02 0·44 0·39 0·33 0·59 0·00*

p-value (1–12) 0·38 0·00* 0·00* 0·00* 0·00* 0·05 0·82 0·24 0·50 0·15 0·00*

p-value (3–12) 0·70 0·94 0·86 0·32 0·01 0·59 0·30 0·74 0·76 0·05 0·52

*p < 0.001.
All values are in µm3.
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ambiguities by examining how various retinal experts interpret 
different image features through annotation comparisons and 
then testing the algorithm’s performance against these experts to 
assess its accuracy. We show that segmentation of the above 
features is indeed possible to a high degree of accuracy (see 
Fig. 1a). While the algorithm segments at a similar proficiency as 
the annotators and even outperforms the retinal fellows at 
segmenting fibrosis, we also clearly show the current limitation of 
segmentation of the retina by quantifying the ambiguity of the 
features fibrosis, drusen, and SHRM (see Fig. 2).

These difficulties specifically present in transitions from fPED to 
fibrosis as they would appear very ambiguous on OCT scans. For 
example, Ohayon et al. segmented fibrovascular PED into three 
layers with a more hyperreflective layer 2 that did not respond as 
efficiently as the other layers following anti-VEGF treatment being 
suggestive of a fibrotic component in the PED [29]. Interestingly, 
in accordance to that, the segmentation algorithm presented in 
this study occasionally segmented the fibrovascular PED into a 
fibrotic sub-compartment as well, making the segmentation 
process in this case potentially more accurate than the training 
set provided by the retinal fellows as they had to make a definite 
decision on which biomarker was present for the whole structure. 
However, this warrants further investigation. Lastly, due to the 
lower quality in some of the scans, it seemed difficult to precisely 
isolate the borders between the different OCT classes on a pixel- 
wise level.

Another particular issue with algorithms trained on a specific 
training set is the transferability to different devices with possibly 
other axial resolutions. However, as shown in a previous study, we 
demonstrated that this is indeed possible [30]. SVDNA, a minimal 
method for unsupervised domain adaptation, shows the transfer-
ability of this algorithm to other devices such as Dri-OCT (Topcon, 
Tokyo, Japan), Cirrus OCT (Carl Zeiss AG, Oberkochen, Germany), 
and Bioptigen-OCT (Leica, Wetzlar, Germany). We show that it 
performs at least en par or even outperforms the more complex 
state-of-the-art UDA methods while considerably reducing train-
ing complexity [30].

Distribution of biomarkers and their overall plasticity on 
treatment-naive patients
We show that the most prominent change was to be seen in the 
first three months suggesting the initial upload phase of three 
injections as being the most potent for morphological changes to 

the retina. Interestingly, almost no changes could be determined 
afterwards until month 12, revealing that any further injection 
past the initial monthly upload phase seems to overwhelmingly 
function as a stabilizing agent. The biomarkers most sensitive to 
change were usually the ones that have been most prominent at 
the beginning: IRF, SRF, SHRM, RPE, and fPED.

We showed that of those markers only IRF and fPED were 
predictive of a generally worse visual acuity outcome after 
12 months. Although it seems logical that higher amounts 
indicate higher disease activity, we couldn’t find any prior 
evidence that would necessarily link the actual volumetric 
amount of fluid to a different outcome in contrast to fPED for 
which there was prior evidence for example as described by Boyer 
et al. [31]. One reason would be that patients with an abundance 
of these markers might have generally presented later after the 
first onset of symptoms and thus natural progression of the 
disease would have led to more irreversible retinal damages as 
delay to treatment is a significant factor for a poorer outcome 
[32]. Other than these, fibrosis and ERM correlated negatively with 
visual acuity which is in direct contradiction to earlier findings by 
Alkin et al., where they concluded comparable results (with and 
without ERM) after treatment with bevacizumab [33].

Our findings also clearly suggest a gradual loss of RPE 
throughout 12 months. This might suggest a relationship 
between intravitreal anti-VEGF and retinal atrophy as it has been 
proposed in the past. Direct proof is still missing [34] however, 
and the loss was happening unaffected by change in injection 
intensity and favors the thesis of a natural disease progression.

Similar descriptive studies have been done in the past but with 
a much smaller case series, manual segmentation and less 
biomarkers which in general led to various findings 
[29, 31, 35, 36].

Lai et al. observed treatment response for intraretinal cysts 
(IRC), SRF, PED, and their correlation with BCVA changes for a time 
period of a year whilst setting similar time points as in our study 
(months 1, 3, 6, and 12) [35]. In 126 eyes only 33.3% showed a 
resolution of their PED whereas IRC resolved in 53.8% and SRF in 
51.6% of cases [35]. In correlation with that we saw a statistically 
significant and prominent volumetric reduction in IRF and SRF, 
whilst the decrease in fPED was not significant over a period of 
12 months. Other observations by Golbaz et al. demonstrated that 
IRF and SRF immediately responded to anti-VEGF treatment albeit 
the overall plasticity of the morphological changes declined over 
time which corroborates with our findings. Interestingly the sub- 
RPE compartments showed the least or no changes to anti VEGF 
therapy [36]. The high immediate effect of anti-VEGF on especially 
IRF or SRF is all in all well documented in several other studies in 
the literature [37]. Bolz et al. for example showed a significant 
effect of anti-VEGF on retinal fluid compartments as early as one 
week after the injection whilst there was no significant change 
after the second and third injection [38]. While this might be 
suggestive of cutting the loading dose to just one injection, the 
small number of cases (n =∠29) and missing long-term observa-
tion of relapsing cases in that study warrants caution.

None of the aforementioned studies documented any changes 
to the RPE layer nor did we find any other studies observing a 
steady loss in RPE with nAMD patients under anti-VEGF therapy, 
at least not in a large cohort as in the treatment-naive dataset 
presented here.

Our study is mainly limited by its retrospective nature. 
However, given the high number of real treatment-naive patients 
in this study, the findings can more or less be very suggestive on 
the effect of anti-VEGF treatment. Moreover, it gives us a general 
idea on a broad population of patients, and what morphological 
properties they present upon first presentation. Other limitations 
include the discussed feature ambiguities and the lower F1 scores 
for some of the biomarkers. While this could lead to some 
changes being misinterpreted, the F1 numbers are still quite high 

Table 2. Results from multiple regression analysis of oct markers and 
their effect on 12 month visual acuity (n =∠336).

Model predictors b SE b t p

Intercept 0.64* 0.23 2.82 0.01

ERM 2.5** 0.90 2.51 0.01

IRF 1.24*** 0.29 4.32 0.00

SRF −0.15 0.09 −1.73 0.08

SRHM 0.64 0.47 1.35 0.18

RPE −1.58 1.25 −1.26 0.21

fvped 0.37* 0.14 2.64 0.01

drusen −1.19 2.06 −0.58 0.56

PHM −0.36 0.57 −0.63 0.53

Choroid 0.02 0.05 0.55 0.59

Fibrosis 1.03 0.52 0.05 0.05

crt 0.17 0.38 0.65 0.65

Adj. R2 0.189

F 8.08***

Note. *p < 0.05, **p < 0.01, ***p < 0.001.
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in general. In some cases, they can be artificially lower as for 
certain features (especially membranes) it is difficult for manual 
annotators to segment correctly down to a pixel level with the 
precision that an automatic segmentation algorithm would. These 
micro-differences negatively impact F1 scores, albeit the algo-
rithm being able to handle real segmentation of these features 
smoothly.

To conclude, our study shows the feasibility of a high- 
performing segmentation algorithm to quantitatively segment 
the whole region of a much larger number of OCT volume scans 
and thereby enable precise determination of volumetric changes 
down to a microscopic level. With that we were able to present a 
general description of the volumetric distribution of biomarkers in 
treatment-naive patients and confirm that the most significant 
plasticity in biomarkers happens during the first 3 months of 
therapy with changes coming to a halt afterwards besides a 
gradual loss of the RPE layer which seems to continue at least 
until the end of the observed time frame. For future work, this 
algorithm and findings could be used to analyze larger time series 
data sets and possibly predict the best-fitting therapy for each 
individual patient leading the way to a more personalized 
approach in treatment regimens.

SUMMARY

What was known before

● Limitations in Algorithmic Research Quality and Biomarker 
Inclusion: Existing segmentation algorithms to date present 
substantial quality ambiguities and lack consistent up-to-date 
biomarkers. Furthermore, a validation on independent test 
sets seems to be absent, which represents a notable gap in 
the current state of OCT segmentation research, raising 
questions about their reliability and generalizability.

● Shortcomings in characterization of treatment naive AMD 
While existing literature, encompassing trials like MARINA, 
VIEW, or HORIZON, provide a comprehensive understanding 
of age-related macular degeneration (AMD) as a whole, the 
characterization of treatment-naive AMD patients, including 
detailed volumetric analysis of retinal morphology and 
disease biomarkers, remains absent. Studies focusing on 
treatment-naive patients typically exhibited limitations such 
as small sample sizes, a constrained array of biomarkers, and 
incomplete volumetric data, which hindered the ability to 
gain a holistic understanding of this patient group.

What this study adds

● Improving existing segmentation algorithms for big data 
analysis: This study improves segmentation algorithms in a 
safe and high quality manner as it is tested on independent 
test sets which then can be leveraged for big data analysis to 
define risk factors in the process. Furthermore, it follows the 
Consensus Nomenclature for Reporting Neovascular Age- 
Related Macular Degeneration of the AAO for disease 
biomarkers.

● Extensive descriptive analysis of a large amount of treatment- 
naive nAMD patients: The analysis of a large cohort of 
treatment-naive patients in a real-world setting as well as 
analysis of changes in the various OCT biomarkers over time 
and under therapy gives us a more precise anatomical insight 
to the disease while defining risk factors in the process. This 
can be leveraged to move towards a more personalized 
therapeutic regimen in the future

CODE AVAILABILITY
The code for the models and training procedures as well as result analysis will be 
made available through the public Github repository upon publication. Additional 
information and other data related to this study is available upon request to the 
corresponding author. Sensitive patient data is carefully and thoroughly 
anonymized.
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