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Ferroptosis has attracted attention throughout the last decade because of its tremendous clinical importance. Here, we review the
rapidly growing body of literature on how inhibition of ferroptosis may be harnessed for the treatment of common diseases, and we
focus on metabolic and cardiovascular unmet medical needs. We introduce four classes of preclinically established ferroptosis
inhibitors (ferrostatins) such as iron chelators, radical trapping agents that function in the cytoplasmic compartment, lipophilic radical
trapping antioxidants and ninjurin-1 (NINJ1) specific monoclonal antibodies. In contrast to ferroptosis inducers that cause serious
untoward effects such as acute kidney tubular necrosis, the side effect profile of ferrostatins appears to be limited. We also consider
ferroptosis as a potential side effect itself when several advanced therapies harnessing small-interfering RNA (siRNA)-based treatment
approaches are tested. Importantly, clinical trial design is impeded by the lack of an appropriate biomarker for ferroptosis detection in
serum samples or tissue biopsies. However, we discuss favorable clinical scenarios suited for the design of anti-ferroptosis clinical trials
to test such first-in-class compounds. We conclude that targeting ferroptosis exhibits outstanding treatment options for metabolic and
cardiovascular diseases, but we have only begun to translate this knowledge into clinically relevant applications.
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FACTS

● Ferroptosis contributes to metabolic and cardiovascular
diseases and their complications.

● Ferroptosis inhibition represents a promising therapeutic
option for several acute diseases.

● Several classes of ferroptosis inhibitors (ferrostatins) are available.
● No anti-ferroptotic therapy has been tested in clinical trials.

OPEN QUESTIONS

● How does ferroptosis contribute to metabolic and cardiovas-
cular diseases?

● What is a reliable biomarker for ferroptosis?
● How can the promising preclinical studies be translated into

effective clinical therapies?
● What is the physiological relevance of ferroptosis, and how

can potential side effects of ferrostatins be predicted?

INTRODUCTION
Cell death exhibits a hallmark of many diseases. Clinically relevant
regulated cell death encompasses apoptosis [1], necroptosis [2],

pyroptosis [3] and as an entirely different entity, iron-catalyzed
necrosis [4, 5], referred to as ferroptosis [6]. All of these pathways
result in a cataclysmic burst [7] mediated at least partially by
oligomerization of the plasma membrane protein ninjurin-1
(NINJ1) [8–10]. This ultimate rupture of the plasma membrane
defines “necrosis” and is inevitably associated with the release of
intracellular content referred to as damage associated-molecular
patterns (DAMPs) [11–13] which result in the activation of immune
cells in an event defined as necroinflammation [14, 15]. It is
beyond the scope of this review to discuss the details of these
terms apart from the definition of ferroptosis, and the interested
reader is referred to the above cited review articles. However, the
potential applications for inhibitors of ferroptosis (ferrostatins) are
of particular importance in metabolic and cardiovascular diseases
and their complications. Endocrine disorders, with diabetes
mellitus as the most prominent example, are particularly
susceptible to ferroptosis, and steroid hormones [16, 17] as well
as cholesterol metabolites [18, 19] are emerging as important
regulators of ferroptosis [20]. Cardiovascular complications, such
as myocardial infarction, acute kidney injury and stroke are
particularly common in diabetic patients [21], and the associated
ischemia-reperfusion injury (IRI) has been a prototype disease
model for ferroptosis [5, 22–24]. With lipid peroxidation represent-
ing a typical feature of ferroptosis, it is not surprising that fatty
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liver diseases and IRI in the liver are driven by ferroptosis as well
[25, 26]. Please note that while intercellular ferroptosis propaga-
tion has been described [27, 28], it remains entirely unclear how
cell death propagation between cells is regulated. It is unclear
until today to which extent cell death propagation is a specific
feature of ferroptosis. We will highlight the potential of advanced
therapies targeting ferroptosis and start by defining ferroptosis as
iron-catalyzed necrosis.

PART 1—THE DEFINITION OF FERROPTOSIS
For the purpose of this review article, we define ferroptosis as iron-
catalyzed plasma membrane rupture. Fenton reactions lead to the
generation of reactive oxygen species that may be controlled by
cytosolic redox systems such as the thioredoxin reductase
reaction. The thioredoxin-mediated redox signaling represents
an antient NAD(P)H-dependent biological reaction pattern, some-
times referred to as the redox metabolome [29], and has been
described to be involved in plant immunity [30]. Clearly, the
thioredoxin (TRX)-system is involved in the pathophysiology of
diabetes as well [31, 32]. Failure of such NAD(P)H-dependent
systems to mitigate the cytosolic ROS-concentration triggers the
lipid peroxidation and the typical chemical reactions of ferroptosis
[33] that are opposed by ferroptosis surveillance enzymes. The
best studied system is the glutathione peroxidase 4, a GSH-
metabolizing selenocysteine essential for vertebrate life [34, 35].
GPX4 requires direct contact with the plasma membrane to fully
function, and mutations in the lipid bilayer anchoring loop of
GPX4 result in remarkable dysfunction. Besides GPX4, GSH-
independent enzymes have been described to be capable of
replacing GPX4 function, at least at the cellular level. Ferroptosis-
suppressor protein 1 (FSP1) relies on CoQ10 to prevent lipid
peroxidation [36, 37], while other systems, such as membrane-
bound O-acyltransferase domain-containing 1 and 2 (MBOAT1/2)
are less well understood [38]. With all the chemistry and the
ferroptosis surveillance systems studied in detail, the events that
connect lipid peroxidation with subsequent rupture of the plasma
membrane (necrosis) are almost entirely elusive. Although not all
forms of ferroptosis (e.g., RSL3-induced cell death) appear to require
ninjurin-1 (NINJ1) [39], recent data have suggested a critical
involvement of this molecule to execute the cataclysmic burst of
the plasma membrane in ferroptosis through NINJ1 oligomerization
[10]. The details of the regulated mechanisms of NINJ1 membrane
organization and oligomerization are lacking any concept until
today, although it has recently been demonstrated to involve the
cutting and releasing of membrane discs [40]. However, inhibition
of NINJ1 oligomerization using a monoclonal antibody has been
recently demonstrated to prevent other forms of regulated necrosis,
such as necroptosis and pyroptosis from their ultimate execution
and at least parts of their immunogenicity [9]. Figure 1 demon-
strates our current understanding of the ferroptosis-defining cellular
reactions. Based on the definition of ferroptosis introduced in Fig. 1,
ferroptosis can be interfered with at various levels. Similarly, all
conditions that shift the balance toward a higher ratio of lipid
peroxidation to ferroptosis surveillance capacity will decrease the
threshold for ferroptosis.

PART 2—APPROACHES TO INTERFERE WITH FERROPTOSIS
According to the definition introduced in Fig. 1, ferroptosis may be
classified into four subcellular stages. We have chosen to allocate
inhibitors of ferroptosis (ferrostatins) into four according classes.
Ferroptosis inhibitors (ferrostatins) may be subclassified in at least
four classes according to their mechanisms of action. Figure 2
demonstrates how these classes relate to the ferroptotic cellular
chemical reaction patterns and Table 1 lists several but not all
prominent examples according to their mechanism of action. As one
example of an innovative approach, the use of selenium-containing

Tat-proteins have claimed to protect (e.g., in a strokemodel [41]), but
the transition of this selenium containing Tat SelPep to other
ferroptosis models remains to be demonstrated [41], so we did not
add this approach as an individual class of ferroptosis inhibitors here.
Other advanced therapies aim at harnessing small non-coding RNAs
[42], particularly for cardiovascular diseases, but RNA interference
may even sensitize to ferroptosis [43].

Class 1 ferrostatins: iron chelators
The requirement of iron is part of the definition of ferroptosis.
Erastin was already demonstrated in 2003 to induce rapid cell
death in cancer cells in cell culture experiments [44]. Iron chelation
using 100 μM deferoxamine (DFO) was demonstrated to protect
HT1080 cells from erastin-induced cell death in the first figure of
the first ever publication ferroptosis [45]. In the same set of
experiments, addition of exogenous free iron potentiated erastin-
induced cell death while addition of other divalent metals such as
Cu2+, Mn2+, Ni2+, and Co2+ did not [45]. However, long before the
term ferroptosis was coined, a body of literature on the role of iron
and iron chelation in cell death had accumulated as recently
reviewed [46]. Importantly, the Fenton chemistry might occur in
highly compartmentalized areas of the cell, and iron chelators,
chemically, might not reach such areas (e.g., the complex I and III
in mitochondria), and therefore might fail to inhibit ferroptosis
even though it is mediated by Fenton reactions. While some
literature exists that demonstrates iron chelation to protect in
disease models, e.g., of traumatic brain injury [47], clinical trials
using iron chelators failed to provide clear protective effects e.g.,
in acute kidney injury [48, 49], potentially because of the specific
pharmacodynamics of DFO and derivatives. It will be challenging

Fig. 1 The definition of ferroptosis. By definition, ferroptosis
requires an iron-catalyzed reaction with oxygen (Fenton reaction)
which is the origin of the ferroptosis reaction cascade. In an
intermediate step, reactive oxygen radicals, such as H2O2 and higher
order radicals form as direct and indirect consequences of Fenton
reactions. In most cells, thioredoxin (TRX) scavenges such radicals
and is immediately regenerated by the potent selenoprotein
thioredoxin reductase (TRXRD1) in an NAD(P)H consuming reaction.
If such reactive oxygen radicals cannot be controlled, lipids in the
plasma membrane (and other intracellular membranes) become
peroxidized (Lipid peroxidation). Peroxyl versions of plasma
membrane lipids are converted to alcohols by the classical
ferroptosis surveillance systems, such as glutathione peroxidase 4
(GPX4) and ferroptosis suppressor protein 1 (FSP1) and others.
Lipophilic radical trapping agents compete with lipids for peroxida-
tion, thereby shifting the balance toward lower concentrations of
lipid peroxides. Through entirely unknown mechanisms, and
potentially involving several undefined intermediate steps, plasma
membrane lipid peroxidation results in the oligomerization of pore
forming ninjurin-1 (NINJ1) molecules that are required for
the cataclysmic burst of the plasma membrane. The rupture of the
plasma membrane defines ferroptosis as a necrotic event.
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to design tissue-penetrant iron chelators to target the very
upstream reaction of ferroptosis without significant side effect.

Class 2 ferrostatins: radical trapping agents that function in
the cytosolic compartment
Radicals as a result of Fenton reactions may be scavenged by non-
lipophilic radical trapping antioxidants. One endogenous example of
this class may be hydropersulfide [50]. Additionally, I3P is generated
by the secreted amino acid oxidase interleukin-4-induced-1 (IL4i1)
the activity of which therefore creates an anti-ferroptosis environ-
ment [51, 52]. Pharmacologically, the compound UAMC-3203 [53]
was demonstrated to have a favorable PK profile because it is less
lipophilic, and therefore appears to function as a particularly potent

ferrostatin. Along similar lines, the tissue PK profile of the dual
inhibitor of necroptosis and ferroptosis Nec-1f suggests hydrophilic
properties while functioning as a low-potency ferrostatin [28].
Several other compounds that have entered clinical routine, such as
omeprazole, rifampicin, promethazine, carvedilol and propranolol
have been demonstrated to function as ferroptosis inhibitors, while
all of these drugs exhibit favorable tissue distribution and therefore
might be repurposed as ferrostatins [54]. In this context, it is worth
mentioning that rifampicin resistance is a paramount problem in the
treatment of mycobacteria [55] (see below).

Class 3 ferrostatins
Lipophilic radical trapping antioxidants. Lipophilic radical trapping
antioxidants are by far the best studied class of ferrostatins, and the
expanding list of lipophilic RTAs is too long to be listed here.
However, ferrostatin-1 (Fer-1) is the first-in-class compound but was
ascribed an unfavorable half-life and poor tissue PK [45]. Despite
these properties, this small molecule, against expectations,
protected mice in several preclinical models including the kidney
IRI model which may prolong the half-life of Fer-1 by reduction of its
renal excretion [27]. Liproxstatin-1 (Lip-1) protected GPX4-deficient
mice from death by acute renal tubular necrosis and therefore is
considered a particularly suitable ferrostatin for in vivo research [34].
Vitamin E [56] and Vitamin K [57] are the best studied endogenous
representatives of this class of compounds, and at least for Vitamin
K, protection from ischemia-reperfusion injury has been reported
[57]. Therapeutic supplementation of Vitamin E was tested in
patients with nonalcoholic steatohepatitis and was associated with
significant improvement compared to placebo or pioglitazone,
which was also tested in that trial [58]. While a role for ferroptosis
may be questioned in nonalcoholic steatohepatitis, this trial is
valuable as it carefully assessed the potential side effect profile of a
96-week episode of ferroptosis inhibition in humans without major
untoward effects reported [58]. Vitamin K2 (menaquinone-7) was
tested at a dose of 360 μg/day to improve the serum calcification
propensity and arterial stiffness in kidney transplant recipients in a
single center, randomized, double-blind trial, a 12-week supple-
mentation period, all three severe adverse events were reported to
have occurred unrelated to the study medication [59]. Metabolites,
such as 7-dehydrocholesterol (7-DHC) [18, 19] can also function as
radical trapping agents that oppose ferroptosis. In the case of 7-

Fig. 2 The classes of ferroptosis inhibitors (ferrostatins). Four stages have been defined that characterize the ferroptotic reaction cascade, all of
which potentially can be interfered with. In the initial step, Fenton reactions can be targeted by iron chelators, provided that specific cellular
compartments, such as the lysosome or the ER, can be accessed by the compound. The default example of this class is deferoxamine (DFO). As soon
as free radicals have formed, radical trapping agents (RTAs) may interfere with these short-lived highly reactive products as long as they are available
in direct proximity to the radicals. Lipid peroxidation is competed with by lipophilic radical trapping antioxidants (lipophilic RTAs). Prominent
examples of this most commonly studied class of ferrostatins are ferrostatin-1 (Fer-1), liproxstatin-1 (Lip-1), 16-86 etc. The ultimate step of plasma
membrane rupture can be interfered with by monoclonal antibodies against ninjurin-1 (NINJ1). This step is not specific for ferroptosis, but was initially
demonstrated to be required for necroptosis, pyroptosis and even secondary necrosis following apoptosis.

Table 1. Prominent but incomplete members of the four classes of
ferroptosis inhibitors.

Examples Mechanism

Class I - Deferoxamine [45, 63]
- Deferiprone [126]
- Deferasirox [127]

Iron chelation to inhibit
generation of hydroxyl
radicals

Class II - Hydropersulfides [50]
- UAMC-3203 [53]
- Nec-1f [28]
- Omeprazole [54]
- Rifampicin [54]
- Promethazine [54]
- Carvedilol [54]
- Propranolol [54]
- 7-dehydrocholesterol (7-
DHC) [18, 19]

- indole-3-pyruvate (I3P) [51]

Detoxify hydroxyl
radicals and prevent
protein sulfur
peroxidation

Class III - Fer-1 [45]
- Lip-1 [34]
- Vitamin E [56]
- Vitamin K [57]
- CoQ10 [36, 37]

Interrupt propagation of
lipid peroxidation by
detoxifying lipid peroxyl
radicals

Class IV - Monoclonal NINJ1-
antibody [9, 10]
- Glycine [61, 64, 128]

Prevent cataclysmic
burst of plasma
membrane
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DHC, genetic deletion of 7-DHC reductase (7-DHCR) was found to
protect in two independent ferroptosis screening approaches
[18, 19]. While 7-DHCR itself does not function as an RTA, the
substrate does. Therefore, the activity level of 7-DHCR indirectly
decreases ferroptosis sensitivity, and 7-DHC could be employed
therapeutically. The present data on 7-DHC additionally suggest
that it could inhibit phospholipid peroxidation both in the FENIX
assay (DTUN-induced lipid peroxidation) and iron/ascorbate-
induced lipid peroxidation [18, 19]. Therefore, 7-DHC suppresses
ferroptosis by diverting the “propagation” of peroxyl radical-
mediated damage from phospholipid components to its sterol
core, rather than preventing the “initiation” of lipid peroxidation.

Class 4 ferrostatins: inhibitors of the cataclysmic burst of the
plasma membrane
Until today, only NINJ1-oligomerization inhibitors can be allocated
to this class [10]. However, it remains to be determined if this
approach would inhibit ferroptotic cell death alongside with
necroptosis and pyroptosis, but given the overlapping final steps
of these pathways before plasma membrane rupture [60], we
consider it likely that NINJ1-interference functions as ferroptosis
inhibition. Apart from NINJ1, it is known that glycine protects
isolated kidney tubules from LDH release [61, 62], and that this
effect at least partially contains a ferroptotic component [63]. At
least partially, glycine suppresses necrotic cell death by inhibition
of NINJ1 membrane clustering [64]. Since glycine does not affect
lipid peroxidation directly, it might function in a NINJ1-related
way, potentially preventing plasma membrane discs from being
shed off the membrane, relating to a recently published concept
[40]. Finally, glycine protects kidney tubules from plasma
membrane rupture, but the energetic function of these tubular
cells is severely compromised, indicating that the cells may be
“metabolically dead” while the membrane remains intact [62].

Conditions that sensitize to ferroptosis
It is beyond the scope of this review to mention the long list of
ferroptosis inducers (FINs) that are developed mainly with the
intention to drive cancers into ferroptosis. Some commonly used
drugs, however, sensitize to ferroptosis by affecting the endo-
genous surveillance systems of ferroptosis (compare Fig. 1). As an
example, dipeptidase-1 (DPEP-1) activity decreases the intracel-
lular GSH pool, thereby decreasing the activity of GPX4.
Commonly used steroids, such as dexamethasone and cortisol,
through the glucocorticoid receptor, increase DPEP-1 expression
and thereby sensitize to ferroptosis and deteriorate ischemia-
reperfusion injury [17, 65]. Another recently discovered mechan-
ism of sensitization to ferroptosis involves the emerging treatment
with siRNAs. While the approach offers great opportunities to
directly target specific proteins by in vivo post-transcriptional
gene silencing [66], siRNAs, just like viral RNAs, can be sensed by
the mitochondrial protein MAVS [67] and functionally sensitize to
ferroptosis independent of the knockdown of the target protein
[43]. Most likely by yet another independent mechanism, drugs
that induce cell cycle arrest sensitize to ferroptosis and therefore
my contribute to its success in tumor therapy [68]. With a
perspective to cardiovascular diseases, an oxygen enriched
environment, such as it occurs during the postnatal phase, itself
induces a cell cycle arrest [69] and thereby may contribute to
sensitizing cardiomyocytes to ferroptosis. Finally, iron-selective
prodrugs can activate ferroptosis [70], and iron addition of cancers
and persister cells in particular [71], can be interfered with in many
pharmacological ways and defines a therapeutic approach [72].

PART 3—METABOLIC AND CARDIOVASCULAR DISEASES
DRIVEN BY FERROPTOSIS
The oxygen burst that occurs at the birth of vertebrates creates an
environment of hyperoxia in cardiomyocytes which results in cell

cycle arrest [69]. It is currently unclear to which extent this
potentially priming metabolic event contributes to the outstanding
sensitivity of the heart to ferroptosis [73] in diseases such as
myocardial infarction [74] and cardiomyopathy [75, 76]. However,
the cardiovascular system and its complications emerged as a prime
target for treatments with ferrostatins. This also involves the
common complications of atherosclerosis, many of which share the
common pathophysiological principle of ischemia-reperfusion
injury (IRI). Along these lines, kidney IRI has become a classical
in vivo setting to study ferroptosis inhibitors [22, 77–79], but liver IRI
[34, 57, 80–83], stroke models [84–87] andmyocardial infarction and
heart failure models [23, 88–96] have been demonstrated to involve
ferroptosis and can be improved by ferroptosis inhibition.
Consequences of cardiovascular disease-induced necrosis may
affect the cardiovascular system itself, as exemplified by cardiac
arrythmias. While indeed one study indicated that ferroptosis
inhibition may reduce the frequency of atrial fibrillation [97], this
topic needs to be studied in much more detail. Most of the existing
literature in this field that we will review in the following
paragraphs, however, focused on atherosclerosis and patients at
risk for cardiovascular complications, such as individuals suffering
from diabetes mellitus and/or chronic hemodialysis treatment.
The major risk factor for cardiovascular complications, besides

cigarette smoking and uncontrolled elevated blood pressure, is
diabetes mellitus. As illustrated in Fig. 3, the pathophysiology of
disease progression during type 1 diabetes mellitus (T1DM)
involves ferroptosis at several different stages. First, pancreatic
beta cells, like other hormone producing cells [98, 99], are known
to be extraordinarily sensitive ferroptosis, potentially further
driven by viral infections [100–103]. Second, atherosclerosis as a
major hallmark of diabetic organ complications, involves a
necrotic plaque formation the origin of which may comprise of
ferroptotic cell death [104–107], potentially driven by cholesterol
crystals. Finally, all mentioned ferroptosis-driven IRI complications
(Fig. 3c) apply to the classical cardiovascular end points of diabetic
patients. T1DM patients are commonly subjected to combined
pancreas-kidney transplantation during the process of which
ferroptosis and IRI can occur again (see below). Even though the
specific literature on ferroptosis in cardiovascular diseases in the
setting of diabetes mellitus is limited, some evidence suggests
that endoplasmatic reticulum stress and associated ferroptosis are
particularly important in myocardial IRI [108].
Prospective cohort studies have investigated cardiovascular

diseases and iron uptake in the patient´s diets since the HPFS
[109] and NHANES-I [110] studies in 1994. The results of these
observational trials have indicated that individuals with relatively
high heme iron intake exhibit an increased cardiovascular risk, most
prominently represented by increased hazard ratios for coronary
heart disease [111]. As it is beyond the scope of this article, the
interested reader may be referred to recent reviews on iron uptake
in cardiovascular disease [112]. We argue that given the potential
deterioration of ferroptosis and additional preclinical experimental
data on iron toxicity [53], additional iron supplementation should be
used with caution in patients with high risk of cardiovascular
complications. This appears to be particularly important for chronic
dialysis patients who have lost every trace of renal function,
including the production of erythropoietin as the cause of renal
anemia. Guidelines for these patients still recommend iron
supplementation [113], even though it is well known that
cardiovascular complications in dialysis patients are the leading
cause of death [114–116]. Given the importance of cardiovascular
complications for this patient cohort, we suggest that intravenous
iron supplementation must be tested in longitudinal prospective
randomized controlled clinical trials designed for cardiovascular
complications as the primary end point. In our opinion, without
such clinical trials, supplementation of iron to supranormal levels
cannot be justified in dialysis patients as long as translational
scientific data on ferroptosis are taken into consideration.
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Finally, a condition associated with cardiovascular diseases is
chronic kidney disease (CKD). It is beyond the scope of this review
to list details of CKD pathophysiology. However, most kidney
researchers and nephrologists have accepted the general model
of acute kidney injury (AKI)-to-CKD transition, the central
hypothesis of which interprets CKD progression as repeatedly
occurring episodes of AKI which lead to acute tubular necrosis and
nephron loss [117]. While it is clear that AKI is mediated by
ferroptosis in many scenarios, CKD is commonly associated with
Vitamin K deficiency [118] which might further sensitize CKD
patients to additional episodes of AKI, thereby driving a vicious
circle. Outside the ferroptosis research field, exhaustion of Vitamin
K is mostly discussed as a shortage of Vitamin K dependent
protein (CKDP) expression that contributes to vascular calcification
in CKD patients. These findings are based on the “Rotterdam
Study” that demonstrated high menaquinone intake in the diet to
be associated with reduced risk of coronary heart disease [119,
120]. In conclusion, all these studies point to a superiority upon
ferroptosis inhibition in cardiovascular diseases, and clinical trials
with a clearer focus on ferroptosis rather than general vascular
outcomes are indicated to assess the clinical applicability of anti-
ferroptosis agents. In the following section, we will discuss
potential clinical trials to address this question.

PART 4—CONSIDERATIONS ON POTENTIAL CLINICAL TRIAL
DESIGNS FOR FIRST-IN-CLASS FERROPTOSIS INHIBITORS
As outlined in the previous sections, many clinical conditions may
benefit from treatment with ferrostatins. However, clinical trial

design may be limited because of the lack of a specific biomarker
for ferroptosis in tissues. To consider possible clinical trials despite
these circumstances, we recommend to consider the following
examples:
The ideal clinically emerging scenario requires a situation in

which ferroptosis can be predicted. Solid organ transplantation
exhibits one such example (Fig. 4a). This situation offers two
possibilities for the application of ferrostatin. First, the brain-dead
donor could be treated. Second, the graft, once removed from the
donor and perfused in an isolated perfusion device, could be
applied with ferrostatins. In both cases, the organ recipient would
need to be investigated most carefully for potential side effects. As
mentioned above, kidney-transplant recipient patients were
already treated with supplementation of Vitamin K, but this was
later after transplantation with an entirely different question on
progression of calcification [59]. Of course, a stably kidney
transplanted patient regularly is on an entirely different and
much less aggressive immunosuppressive medication compared
to a freshly transplanted individual. And even though the first
3 months following solid organ transplantation may appear
arguably different compared with the later life of a successfully
transplanted patient, that trial, however, included a kidney
transplant cohort without reporting medication-specific side
effects [59]. This trial included patients with an estimated
glomerular filtration rate (eGFR) as low as 20 ml/min/1.73 m². This
also demonstrates that it may be considered safe to treat patients
suffering from acute and chronic kidney injury.
Another example of iatrogenic ferroptosis induction is ischemia-

reperfusion injury as a consequence of cardiac surgery (Fig. 4b).

Fig. 3 The role of ferroptosis in the pathophysiology of diabetes mellitus. a Insulin-producing pancreatic beta cells are highly sensitive to
ferroptosis, and their loss is considered the origin of type 1 diabetes mellitus (T1DM), a classical example of a metabolic disease. Diabetes
mellitus, not restricted to T1DM, is frequently associated with cardiovascular complications many of which originate from progressive
atherosclerotic plaque formation. b Cholesterol crystals and cells of both the innate and the adaptive immune systems are involved in
atherosclerotic plaque formation, and ferroptosis may be amongst the many pathways that contribute to necrotic debris formation in these
plaques. c Upon atherosclerotic plaque rupture, commonly observed in patients suffering from metabolic syndrome which includes diabetes
mellitus, myocardial infarction, stroke and other disorders associated with a perfusion-deficit or ischemia-reperfusion injury may occur. The
necrosis observed in such tissues, particularly its cell death propagation, is known to be driven by ferroptosis. Treatment with various classes
of ferrostatins was demonstrated to protect end organ damage in respective experimental models.
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Upon clinical trial conditions, ferrostatins can be applied before
the onset of surgery which precedes the onset of ferroptosis upon
reperfusion by as many hours as the surgical procedure may take.
As many cardiac patients exhibit compromised renal function, the
inclusion of patients with an eGFR or 20 ml/min/1.73 m² in a
previous study may also be helpful [59] in the design for this trial,
as the common exclusion criterion of an eGFR >30ml/min/1.73 m²
should not apply. This allows to employ the eGFR slope, e.g.,
assessed over an episode of 6 weeks, alongside with the diagnosis
of end stage renal disease (ESRD) and the need for dialysis as
secondary and primary endpoints, respectively.
Acute kidney injury is amongst the best studied conditions in

ferroptosis research. However, AKI on intensive care units is
pathophysiologically different from experimental IRI [121] in its
nature as it represents a progressive disease in which nephron by
nephron may undergo synchronized regulated necrosis by
ferroptosis over a period of several days or weeks [122]. It is an
option to treat freshly resuscitated individuals with ferrostatins
and enroll them into a clinical trial as soon as they enter the
emergency room on an ICU (Fig. 4c). Ferrostatins could be applied
in the potentially intubated patients intravenously for a defined
period of days (e.g., 5 days) until blood pressure can be sufficiently
controlled the situation of cardiovascular shock can be overcome.

Primary and secondary endpoints could be defined as composite
of death by any cause and requirement for renal replacement
therapy (RRT). Alternatively, if no RRT is required, simple serum
concentrations of urea and creatinine alongside the estimated
glomerular filtration rate (eGFR) could serve as readout systems
e.g., 7 or 10 days after discharge from the ICU and 6 months
following the enrollment into the trial.
Finally, ferroptosis induction is a pathogenic factor to bacteria

[123–125]. One of the most prominent examples causing global
disease burden is mycobacterium tuberculosis [55]. During
granuloma formation and tissue necrosis upon tuberculosis
infection of the lungs, ferrostatins might oppose a bacterial
virulence factor [125]. In such conditions, ferrostatins would have
to be applied for several weeks to potentially unfold their
beneficial effects (Fig. 4d). However, upon severe infection, this
condition requires weeks of antibiotic treatment in the hospital in
almost all cases, since only intravenous antibiotics are available.
During such conditions, the enrollment of critically infected
patients appears manageable to test the contribution of
ferroptotic tissue damage to the overall disease progression.

OUTLOOK
Advancing therapies to create novel first-in-class drugs for clinical
routine requires sequences of mechanistic basic research,
biomedical research, translational preclinical research and state-
of-the-art drug design. It further requires the definition of clear
endpoint studies once the disease patterns are sufficiently
understood, and it involves the careful assessment of side effect
profiles, especially when novel therapeutic routes are tested in
humans. If the clinical readout systems are unequivocally defined,
does advancing therapies require a specific biomarker for a
sematic term such as “ferroptosis”, or is it sufficient to improve the
outcome directly? In our opinion, it is the latter.
For decades, antioxidant treatments have been considered

without a clear endpoint to test. “Non-specificity” was a principle
of such approaches. Amongst stakeholders in the pharmaceutical
industry, this has supported the preconception that radical
trapping antioxidants (lipophilic or not), in contrast to kinase
inhibitors or monoclonal antibodies, cannot be modern drugs and
would be too “unconventional”. A similar preconception was
associated with mRNA-based vaccines until the pandemic thought
us differently. In our opinion, we should let the ongoing
cardiovascular pandemic stimulate our courage to test “uncon-
ventional” approaches. Along the same line, the ongoing M.
tuberculosis pandemic is another paramount reason to take
courage for advanced anti-ferroptosis treatments.
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