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Abstract: Causal reasoning can be considered a cornerstone of intelligent systems. Having access to an
underlying causal graph comes with the promise of cause–effect estimation and the identification of
efficient and safe interventions. However, learning causal representations remains a major challenge,
due to the complexity of many real-world systems. Previous works on causal representation learning
have mostly focused on Variational Auto-Encoders (VAEs). These methods only provide representa-
tions from a point estimate, and they are less effective at handling high dimensions. To overcome
these problems, we propose a Diffusion-based Causal Representation Learning (DCRL) framework
which uses diffusion-based representations for causal discovery in the latent space. DCRL provides
access to both single-dimensional and infinite-dimensional latent codes, which encode different levels
of information. In a first proof of principle, we investigate the use of DCRL for causal representation
learning in a weakly supervised setting. We further demonstrate experimentally that this approach
performs comparably well in identifying the latent causal structure and causal variables.

Keywords: diffusion models; diffusion-based representations; causal representation learning; weak
supervision

1. Introduction

Causal representation learning consists of uncovering a system’s latent causal factors
and their relationships, from observed low-level data. It finds applicability in domains such
as autonomous driving [1], robotics [2], healthcare [3], climate studies [4], epidemiology [5,6],
and finance [7]. Furthermore, recent advancements in Large Language Models (LLMs)
underscore the growing importance of studying causal representation learning in this
domain [8–10]. In these tasks, the underlying causal variables are often unknown, and we
only have access to low-level representations.

Causal representation learning is a challenging problem. In fact, identifying latent
causal factors is generally impossible from observational data only. There has been an ongo-
ing effort to study sets of assumptions that ensure the identifiability of causal variables and
their relationships [1,11–17]. These approaches consider the availability of additional infor-
mation, or they use assumptions on the underlying causal structure of the DGP. However,
many of these assumptions, such as Causal Faithfulness [18] cannot be verified. However,
it is possible to identify latent causal factors from observational and interventional data.
Brehmer et al. [14] considers a weak form of supervision, in which we have access to a data
pair, corresponding to the state of the system before and after a random unknown interven-
tion. Brehmer et al. [14] proves that, in this weakly supervised setting, the structure and the
causal variables are identifiable up to a relabeling and elementwise reparameterization.
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There has been a growing interest in leveraging generative models to learn causal
representations with specific properties. For example, disentangled and object-centric
representations have been shown to be helpful for complex downstream tasks and general-
ization [19–24]. Variational Autoencoders (VAEs) [25] are among the most widely studied
generative models, and they have been successfully used for disentanglement and causal
representation learning [14,26]. However, the problem of learning causal representations
has not yet been approached with more powerful generative models.

Recently, diffusion models have emerged as state-of-the-art generative models, and they
have demonstrated remarkable success across several domains such as image, video, and
audio synthesis [27–37], molecular generation [38–41], and representation learning [42–48].
Diffusion models draw on concepts and principles from diffusion processes to learn the
data distribution [49–53]. These models exploit diffusion behavior to produce diverse,
high-quality, and realistic samples. Furthermore, unlike other generative models like VAEs
that encode the information in one single code, diffusion-based models have the appealing
property of infinite-dimensional latent codes which contain different levels of information
at different timesteps [43]. However, despite this advantage and their remarkable perfor-
mance, diffusion models have not yet been employed for causal representation learning,
indicating that their potential has yet to be explored in this context.

In this work, we study the connection between diffusion-based models and causal
structure learning by employing representations obtained from diffusion models for the
task of causal representation learning. In particular, our contributions are the following:

• We propose DCRL, a diffusion-based framework for causal representation learning in
weakly supervised settings.

• We derive the Evidence Lower Bound (ELBO) for DCRL, in the case of both finite- and
infinite-dimensional representations.

• We empirically illustrate that the noise- and diffusion-based representations contain
equivalent information about the underlying causal variables and causal mechanisms,
and can be used interchangeably.

The rest of the paper is organized as follows: Section 2 explains the related works.
Section 3 covers the background on causality and diffusion models. The background on
diffusion models and diffusion-based representations are outlined in Section 4. Section 5
outlines the addressed problem, the weakly supervised framework, and the identifiability
conditions. Section 6 details the proposed DCRL framework. Experimental results are
presented in Section 7. Finally, Section 8 concludes the paper and suggests potential future
research directions.

2. Related Work
2.1. Diffusion-Based Representation Learning

Learning representations with diffusion models remains a relatively unexplored area.
Several works have tried to train an external module (e.g., an encoder) along with the
score function of the diffusion model to extract representations. Abstreiter et al. [43]
and Mittal et al. [44] condition the score function of a diffusion model on a time-independent
and time-dependent encoder and obtain finite and infinite-dimensional representations,
respectively. Wang et al. [45] uses the same conditioning but regularizes the objective
function with the mutual information between the input data and learned representations.
Traub [48] performs the same conditioning but the authors use Latent Diffusion Models [54],
where the inputs of the diffusion model are latent variables obtained from applying a pre-
trained autoencoder on the input. Furthermore, Kwon et al. [46] proposes an asymmetric
reverse process that discovers the semantic latent space of a frozen diffusion model, where
modification in the space synthesizes various attributes on input images. However, in
principle, diffusion models lack a semantic latent space and it is unclear how to efficiently
learn representations using their capabilities.
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2.2. Causal Representation Learning

Given the inherent challenges of identifiability in causal representation learning, many
previous studies have tackled this issue by imposing certain assumptions on the dataset or
the causal structure. Several previous methods rely on additional knowledge of the data
generation process, such as knowledge of the causal graph or labels for high-level causal
variables. CausalGAN [55] requires the structure of the underlying causal graph to be
known. Yang et al. [11] and Liu et al. [12] assume a linear structural equation model, and
they require additional information associated with the true causal concepts as supervising
signals. Similar to Yang et al. [11], Komanduri et al. [56] assumes the availability of
supplementary supervision labels but without requiring mutual independence among
factors. Von Kügelgen et al. [57] investigates self-supervised causal representation learning
by utilizing a known, but non-trivial, causal graph between content and style factors.
Subramanian et al. [13] applies Bayesian structure learning in the latent space and relies on
having interventional samples. Sturma et al. [58] considers a setup where the authors have
access to data from multiple domains that share a causal representation. Buchholz et al. [59]
assumes the latent distribution is Gaussian and the authors have access to unknown single-
node interventional samples. Additionally, Ahuja et al. [15] analyzes various scenarios and
the level of identifiability in the presence of interventional data. For an overview of causal
representation learning, we refer to Schölkopf et al. [1].

Furthermore, there have been recent works on utilizing diffusion models in causality.
Specifically, Sanchez and Tsaftaris [60] focuses on counterfactual estimation from observa-
tional imaging data given a known causal structure. Similarly, Sanchez et al. [61] aims to
learn the underlying SCM in the low-level data space assuming a non-linear additive noise
model, which is identifiable. However, both of these works focus on the SCM in the data
space, while our approach focuses on learning the SCM in the latent space among the under-
lying latent variables in a weakly supervised setting. Other relevant work closely related
to causal representation learning includes disentangled representations and independent
component analysis [62–66].

3. Structural Causal Model

Following refs. Pearl [67], Bongers et al. [68], we describe the data-generating process
(DGP) using the notion of structural causal models. A structural causal model (SCM) is
a formal framework used to represent and analyze causal relationships among variables
within a system. An SCM essentially consists of a set of random variables, and measurable
functions between them specifying the underlying causal relationships of the DGP. We
formally define SCMs as follows.

Definition 1 (Structural Causal Model (SCM), Definition 2.1 by Bongers et al. [68]). A
structural causal model (SCM) is a tuple ⟨L, J, E ,Z , f , µ⟩, where (i) L is a finite index set of
endogenous variables; (ii) J is an index set of exogenous variables, which is disjoint with L; (iii)
E = ∏j∈J Ej is the product of the domains of the exogenous variables, where each Ej is a measurable
space; (iv) Z = ∏j∈L Zj is the product of the domains of the endogenous variables, where each
Zj is a measurable space; (v) f : Z × E → Z is a measurable function that specifies the causal
mechanism; and (vi) µ = ∏j∈J µj is a product measure, where µj is a probability measure on Ej for
each j ∈ J.

In the definition above, the functional relationships between variables are expressed
in terms of a function f . This feature allows us to model the cause–effect relationships
of the data-generating process (DGP) using structural equations. Structural equations are
mathematical representations used to describe causal relationships among variables in
a system. They express how one or more variables causally influence others within a
causal graphical model. For a given SCM as above, a structural equation specifies an
endogenous random variable zl via a measurable function of the form zl = fl(z, e) where
z ∈ Z , e ∈ E . This function essentially captures the deterministic relationships specified by
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f as in Definition 1. A parent i ∈ L ∪ J of l is any index for which there is no measurable
function k : ∏j∈L\{i} Zj × E → Zl with fl = k almost surely. Intuitively, each endoge-
nous variable zl is specified by its parents together with the exogenous variables via the
structural equations.

A structural equation model as in Definition 1 can be conveniently described with the
causal graph, a directed graph of the form G = (V, E). The nodes of the causal graph consist
of the entire set of indices for the endogenous variables, and the edges are specified by the
structural equations, i.e., {j→ l} ∈ E if and only if j is a parent of l. Note that the variables
in the set pa(zl) are indexed by the parent nodes of l in the corresponding graph G. An
example of a causal diagram is given in Figure 1(left).

Figure 1. A causal graph before and after an intervention. Applying a perfect intervention on z3

eliminates the dependencies between this node and its parents in the causal graph.

Solution Functions. An alternative way of defining SCMs replaces causal mechanisms
with solution functions h : E → Z which maps exogenous noise variables to endogenous
causal variables, i.e., zi = hi(e), e ∈ E , and is defined by successively applying the causal
mechanisms f . Solution functions contain the same information as causal mechanisms and
they can be derived from each other. We utilize this formulation in our framework.

Interventions. A very important aspect of SCMs is that they allow us to reason about
cause–effect relationships using interventions. Interventions refer to deliberate changes
or manipulations made to one or more variables within the model to study their causal
effects on other variables. In this paper, we specifically consider perfect interventions [67].
For a given SCM as in Definition 1, consider a variable W := ∏j∈L′ Zj for a set L′ ⊆ L,
and let w := ∏j∈L′ wj be a point of its domain. The perfect intervention W ← w amounts
to replacing the structural equations zj = f j(z, e) with the constant functions zj ≡ wj for
all j ∈ L′. We denote with z | do(w) the variables z after performing the interventions.
This procedure defines a new probability distribution pz(z | do(w)), which we refer to as
interventional distribution. This distribution entails the following information: If we apply
do(w), what will be the value of z? We extend this definition by defining I as the set of
interventions entailed by w, and we utilize this formulation in our framework. An example
of a causal graph and a single perfect intervention is depicted in Figure 1.

Equivalence of SCMs. We now define the concept of equivalence between structural
causal models. Two SCMs are structurally equivalent if their respective sets of structural
equations and exogenous variables are equivalent. Formally, the notion of equivalence is
defined as follows.

Definition 2. Consider two SCMs ⟨L, J, E ,Z , f , µ⟩ and ⟨L′, J′, E ′,Z ′, f ′, µ′⟩. Consider their
respective causal graphs G and G ′. An isomorphism between the two SCMs consists of the following:
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(A) A graph isomorphism σ : G → G ′; (A graph isomorphism σ : G → G ′ is a bijective map from
the vertices of G to the vertices of G ′, such that there exist an edge σ(i)→ σ(j) in G ′ iff. there
exist an edge i→ j in G.)

(B) Measure-preserving (A measure-preserving function l : A → B ensures that the probability
distribution in the domain space A remains the same when mapped to the co-domain space
B through the function l.) invertible functions lj : Zj → Z ′

σ(j) such that the function
l(z) := ∏j∈L lj(zj) yields f ′(l(z), e) = l( f (z, e)) for all z ∈ Z , e ∈ E .
We say that two SCMs are equivalent if their domains are identical and such an isomorphism

exists between them.

Definition 2 ensures that the causal mechanisms of equivalent SCMs are essentially
identical. The functions lj in Definition 2 reparameterize the random variables in both
models such that the structural equations and causal relationships are preserved.

4. Diffusion Models
4.1. Overview

The fundamental concept behind diffusion-based generative models is to learn to
generate data by inverting the diffusion process. Diffusion models comprise two processes:
a forward process and a backward process. The forward process gradually adds noise to
data and maps data to (almost) pure noise. The backward process, on the other hand, is
used to go from a noise sample back to the original data space.

The forward process is defined by a stochastic differential equation (SDE) across a
continuous time domain t ∈ [0, 1], aiming to transform the data distribution to a known
prior distribution, typically a standard multivariate Gaussian. Given x0 sampled from a
data distribution p(x0), the forward process constructs a trajectory (xt)t∈[0,1] across the
time domain. We utilize the Variance Exploding SDE [53] for the forward process, which is
defined as:

dx = f (x, t) + g(t)dw :=

√
d[σ2(t)]

dt
dw,

where w is the standard Wiener process, and σ2(t) is the noise variance of the diffusion pro-
cess at time t. The backward process is also formulated as an SDE in the following manner:

dx = [ f (x, t)− g2(t)∇x log pt(x)]dt + g(t)dw̄ ,

where w̄ is the standard Wiener process in reverse time.
Score matching. To use this backward process, the score function ∇x log pt(x) is

required. It is usually approximated by a neural score function sθ(·) which can be trained
by Explicit Score Matching [69] defined as:

L(θ) = Et

[
λ(t)Ep(xt)

[
||sθ(xt, t)−∇xt log pt(xt)||2

]]
,

where λ(t) is a positive weighting function. However, the ground-truth score function
∇x log pt(x) is generally not known. Vincent [70] addresses this issue by proposing De-
noising Score Matching. The approximate score function is then learned by minimizing the
loss function:

L(θ) =
[

λ(t)Ex0Ep(xt |x0)

[
||sθ(xt, t)−∇xt log pt(xt|x0)||2

]]
,

where the conditional distribution of xt given x0 is pt(xt|x0) = N (xt; x0, [σ2(t)− σ2(0)]I).
This objective function originates from the Evidence Lower Bound (ELBO) of the data
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distribution, and it has been shown that with a specific weighting function, this objective
function becomes exactly a term in the ELBO [53]. For more details, see Appendix B.

4.2. Diffusion-Based Representations

Conditional Score Matching. We can modify Denoising Score Matching so that the
score function receives additional information through an external trainable module. This
results in a conditional diffusion model which allows to perform representation learning
while training the score function. Abstreiter et al. [43] proposes conditional Denoising
Score Matching defined as:

L(θ, ϕ) = Et

[
λ(t)Ex0Ep(xt |x0)

[
||sθ(xt, Eϕ(x0), t)−∇xt log pt(xt|x0)||2

]]
, (1)

where the score function is conditioned on a module Eϕ(x0) which provides additional
information about the data to the diffusion model through a learned encoder with pa-
rameters ϕ. In fact, the encoder learns to extract necessary information from x0 in a
reduced-dimensional space that helps recover x0 by denoising xt. Abstreiter et al. [43] also
presents an alternative objective where the encoder is a function of time. Formally, the new
objective is

L(θ, ϕ) = Et

[
λ(t)Ex0Ep(xt |x0)

[
||sθ(xt, Eϕ(x0, t), t)−∇xt log pt(xt|x0)||2

]]
, (2)

With this objective, the encoder learns a representation trajectory of x0 instead of a
single representation. Training this system has the potential to minimize the objective to
zero, motivating the encoder Eϕ(.) to learn meaningful, distinct representations at different
timesteps [43,44].

Comparison with Other Generative Models. The key difference between the other
generative models and diffusion-based representations is that other generative models are
only concerned with one finite code and all the information is encoded into this single
code, while in the latter, different levels of information are encoded along an infinite-
dimensional code, i.e., the encoder is conditioned on time t and produces a trajectory-
based representation (Eϕ(x0, t))t∈[0,1]. Within this representation, various points along the
trajectory contain different levels of information as highlighted by Mittal et al. [44]. In
this work, we first explore a time-independent single code, where we employ Equation (1)
and show that with a certain weighting function, this objective function will become
the ELBO. Then, we apply the same experiments with infinite-dimensional latent code
(Equation (2)) and study the benefits and implications of these formulations for causal
representation learning.

5. Problem Formulation

We consider a system that is described by an unknown underlying SCM on the la-
tent causal variable z, where we have access to low-level data pairs (x0, x̃0) ∼ p(x0, x̃0)
representing the system before and after a random, unknown, and atomic intervention.
We consider the assumptions and the data-generation process that will be described in
Section 5.1. Our objective is to learn an SCM that accurately represents the true underlying
SCM associated with the given data, up to a permutation and elementwise reparameteriza-
tion of causal variables and solution functions. To this end, we train an SCM by maximizing
the likelihood of data. With sufficient data and perfect optimization, we can find the SCM
that is equivalent to the ground-truth SCM.

5.1. Weakly Supervised Framework

We build our weakly supervised framework on the assumptions and identifiability
conditions established by Brehmer et al. [14]. We try to learn the underlying SCM over



Entropy 2024, 26, 556 7 of 18

unknown latent causal variables z of a system in which low-level information x0 ∈ X
generated directly from z through an unknown function g : Z → X is available. Follow-
ing Brehmer et al. [14], Locatello et al. [26], we consider a dataset that consists of paired
datapoints (x0, x̃0), generated as follows:

e ∼ pe(e), I ∼ pI(I), z = h(e), x0 = g(z)

ẽ ∼ pe(e | do(e′)) with e′ ∼ peI (e
′), z̃ = h̃I(ẽ), x̃0 = g(z̃)

where e and ẽ are the exogenous noise variables of the underlying SCM, h(·) and h̃I(·) are
the solution functions before and after a single perfect intervention I, and pI(·) is a prior on
all possible values of atomic interventions such that peI (e

′) > 0 for every possible atomic
intervention. In this setting, pe(e | do(e′)) is defined such that the noise variable remains the
same and changes only for the element that is intervened upon, i.e., ẽI = e′ ̸= eI , ẽ\I = e\I .
Since the intervention is perfect, the solution function will also change in a way that only
for the intervened variable is the dependency between the latent causal variable zI and its
parents removed. For the complete list of assumptions, see Appendix A.

It is proven that under this weakly supervised setting, it is possible to identify the
latent causal variables and solution functions up to a permutation and elementwise repa-
rameterization of the variables. For the proof of the identifiability of the described system,
we refer to Brehmer et al. [14].

5.2. Non-Identifiability from Observational Data

In this section, we show that interventions are necessary for identifiability in this
setting. In fact, note that Definition 2 implies that the distributions of two equivalent SCMs
are the same, up to a measure-preserving invertible function. However, two SCMs may
entail the same observational distribution on the generated data, even if their respective
causal mechanisms are not equivalent. This is best illustrated with an example. Consider
two datasets {X1, Y1} and {X2, Y2}. The respective DGPs are:

X1, Y1 ∼ N (0, Σ) and
{

X2 ∼ N (0, 1)
Y2 ∼ X2

where the covariance matrix Σ is defined as

Σ =

[
1 1
1 1

]
.

Note that both datasets {X1, Y1} and {X2, Y2} entail the same observational distri-
bution. However, these datasets have different causal mechanisms. In particular, their
respective causal diagrams are not isomorphic. Hence, by this, we see that the same ob-
servational distribution may entail different causal diagrams. This means that the causal
dynamics of an SCM cannot be inferred from the distribution of a given observational
dataset, i.e., SCMs are unidentifiable from observational data.

5.3. Limitations

While our goal is to execute a robust and informative study to address the selected
research question, it is important to acknowledge inherent limitations related to data,
model assumptions, and evaluations. First, our evaluation is limited to synthetic datasets
in a single modality. Furthermore, we consider the weakly supervised data-generation
process and assumptions for the identifiability of the underlying model, which may limit
the practical application of our work in systems where the assumptions do not hold. Finally,
the representation learning process relies on an encoder, which acts as an information
channel, regulating the amount of input information transmitted to the score function
during each step of the diffusion process. It is important to note that in certain scenarios,
the encoder may not be essential to the diffusion process and could potentially result in
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collapsing behavior. However, it is important to emphasize that our work is a preliminary
step towards utilizing diffusion models for causal representation learning and lays the
foundation for significant further research in this area.

6. The DCRL Framework

Figure 2 provides a visual representation of the framework’s architecture. In this
study, we utilize a conditional diffusion model and apply it to the input data (x0, x̃0), where
x0, x̃0 ∈ R3×W×H and W and H are the width and height of the input, respectively. We
denote (xt)t∈[0,1] as the diffusion trajectory across the time domain with x0 as the input
data. The conditioning module is defined as the encoding module, generating high-level
diffusion-based representations (e, ẽ) for each low-level data pair, where e, ẽ ∈ Rd and d is
the number of latent causal variables assumed to be known. We empirically show that these
latent variables contain equivalent information as in noise variables of the underlying SCM
and can be used interchangeably. Then, we infer the intervention target I ∈ {0, 1, ..., d− 1}
for each data pair by an intervention module and use neural solution functions on top
of the latent variables (e, ẽ) and the intervention target I to obtain the underlying latent
causal variables z, z̃ ∈ Rd. We base our framework on the Implicit Latent Causal Model
(ILCM) introduced by Brehmer et al. [14] and describe each part of our framework in the
next paragraphs.

Figure 2. Overview of our framework. Here, we have a paired image of a face before and after an
intervention (the smile). The paired image is mapped to latent variables by a stochastic encoder. The
intervention target is determined by applying the intervention encoder to these latent variables. To
maintain the weakly supervised structure, the latent variables are projected into a new pair and then
serve as the conditioning module for a conditional diffusion model. The projected latent variables are
in fact diffusion-based representations of the input pair. Finally, they are utilized in neural solution
functions together with the intervention target to obtain the latent causal variables.

6.1. Conditional Diffusion Model

Based on the formulation described in Section 4, we use a conditional diffusion model.
A stochastic encoder q(e|x0) serves as the conditioning module, mapping low-level data
space to high-level latent space. When employing a finite code where the stochastic encoder
is independent of time, e is a single vector of size d. In this case, the framework learns
a single SCM. Alternatively, in the case of using infinite-dimensional latent code, the
stochastic encoder generates (et)t∈[0,1] which is a trajectory-based representation across



Entropy 2024, 26, 556 9 of 18

time. At each timestep t, et ∈ Rd represents a single point of the trajectory. In this scenario,
the framework learns an SCM at each timestep. In the following paragraphs, for the sake
of simplicity, we use the single-code formulation.

6.2. The Encoding and the Intervention Module

The encoding module consists of two main parts: the stochastic encoder and the
projection module. The stochastic encoder q(e|x0) maps data pairs (x0, x̃0) to pre-projection
latent variables (e, ẽ). The encoded inputs are then utilized in the intervention module
q(I|x0, x̃0) to infer the intervention target I for the data pair (x0, x̃0). Based on our data
generation process in Section 5.1, the encoded inputs have the property that only for the
elements that are intervened upon do we have ei ̸= ẽi, i ∈ I, and the rest will remain the
same. Based on this property, in order to infer interventions, we employ an intervention
module q(I|x, x̃) which is defined heuristically as

q(i ∈ I|x0, x̃0) =
1
Z
(α + β|µe(x0)i − µe(x̃0)i|+ γ|µe(x0)i − µe(x̃0)i|2)

where µe(x0) is the mean of the stochastic encoder q(e|x0); α, β, and γ are learnable parame-
ters; and Z is a normalization constant. This simple heuristic function ensures that a variable
has a higher chance to be selected as the intervened variable if it undergoes more significant
changes in response to the intervention. Once the intervention is inferred from the pre-
projection latent variables, we apply the projection module. Similar to Brehmer et al. [14],
the projection module is dependent on the inferred intervention target I and projects
the encoded input (e, ẽ) to new latent variables in a way that for the components ei that
are not intervened upon i /∈ I, the pre-intervention and post-intervention latent compo-
nents will be equal ei = ẽi. This prevents the framework from deviating from the weakly
supervised structure.

We write the combination of the encoder and the projection module as q(e, ẽ|x0, x̃0, I),
and refer to it as the encoding module. By this definition, the encoding module q(e, ẽ|x0, x̃0, I)
maps the input (x0, x̃0) to latent variables (e, ẽ) and the intervention module infers the
intervention I based on pre-projection latent variables.

6.3. Prior

Given the intervention target I and latent variables (e, ẽ), we define the prior p(e, ẽ, I) as
p(e, ẽ, I) = p(I)p(e)p(ẽ|e, I). The objective of the prior distribution is to implicitly capture
the causal structure and causal mechanisms within the system. Specifically, p(I) and p(e)
denote the prior distributions over intervention targets and latent variables, respectively,
and are configured as uniform categorical with each latent variable as a category, and
standard Gaussian distributions, respectively. According to our data generation process,
when an intervention is applied, only the elements in the latent variables that are intervened
upon are altered; the other elements remain unchanged and independent of each other.
Consequently, we can define p(ẽ|e, I) as follows:

p(ẽ|e, I) = ∏
i/∈I

δ(ẽi − ei)∏
i∈I

p(ẽi|e)

In this equation, δ(.) is the Dirac delta function that fulfills this property for non-
intervened latent variables.

6.4. Neural Solution Functions

In order to encode the information about the intervened variables, we incorporate a
conditional normalizing flow p(ẽi|e) defined as

p(ẽi|e) = p̃(hi(ẽi; ei))
∣∣∣∂hi(ẽi; ei)

∂ẽi

∣∣∣
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where h(.) are the solution functions of the SCM. They are defined as invertible affine
transformations with parameters learned with neural networks. Therefore, by learning
solution functions, i.e., learning to transform e to z, we implicitly model the causal graph
into the framework and obtain the latent causal variables. For more details about the
implementation, see Appendix C.

6.5. The Evidence Lower Bound for DCRL

We calculate the Evidence Lower Bound (ELBO) for the proposed model for the frame-
work described in the previous section. In the case of having single-point representations
in which the noise variable e is independent of time, the ELBO becomes:

Lmodel = Ep(x0,x̃0)
Eq(I|x0,x̃0)

Eq(e,ẽ|x0,x̃0,I)Et∼U(0,1)Eq(xt |x0)
Eq(x̃t |x̃0)

[
λ(t)||sθ(xt, e, t)

−∇xt log p(xt|x0)||22 + λ(t)||sθ(x̃t, ẽ, t)−∇x̃t log p(x̃t|x̃0)||22 + β
[

log p(I) + log p(e)

+ log p(ẽ|e, I)− log q(I|x0, x̃0)− log q(e, ẽ|x0, x̃0, I)
]]

,

where λ(t) is a positive weighting function, and β = 1. We train the model by minimizing
a reweighted loss function reminiscent of β-VAEs, setting β to 0 and increasing it to 1
during training.

In the case of using infinite-dimensional representations (Equation (2)), the objective
function becomes:

Lmodel = Ep(x0,x̃0)
Eq(I|x0,x̃0)

Et∼U(0,1)Eq(et ,ẽt |x0,x̃0,I)Eq(xt |x0)
Eq(x̃t |x̃0)

[
λ(t)||sθ(xt, et, t)

−∇xt log p(xt|x0)||22 + λ(t)||sθ(x̃t, ẽt, t)−∇x̃t log p(x̃t|x̃0)||22 + β
[

log p(I) + log p(et)

+ log p(ẽt|et, I)− log q(I|x0, x̃0)− log q(et, ẽt|x0, x̃0, I)
]]

, (3)

where (et)t∈[0,1] is the trajectory-based representation and et ∈ Rd is the single point of the
trajectory at time t. For a complete derivation of the ELBO, see Appendix B.

To prevent a collapse of the latent space to a lower-dimensional subspace, we add the
negative entropy of the batch-aggregate intervention posterior as a regularization term to
the loss function:

Lentropy = Ebatches

[
−∑

I
qbatch

I (I) log qbatch
I (I)

]
where Ebatches[ · ] is the expected value over all the batches of data, and qbatch

I (I) is defined as

qbatch
I (I) = Ex0,x̃0∈batch[q(I|x0, x̃0)]

After the training, the framework contains information about the underlying causal
structure and latent causal variables, and it can be used in different downstream tasks.

7. Experiments

Here, we analyze the performance of the proposed model, DCRL, on synthetic data.
We employ DCRL for the task of causal discovery. After training DCRL, we use the frame-
work to obtain causal variables (z, z̃) for the test set, and apply ENCO [71], a continuous
optimization structure learning method that leverages observational and interventional
data, on the obtained samples to infer the underlying causal graph. Furthermore, we
evaluate the learned causal variables with the DCI framework [72].
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Data Generation. In order to generate latent causal variables, we adopt random
graphs, where each edge in a fixed topological order is sampled from a Bernoulli distri-
bution with a parameter that is equal to 0.5. We consider the SCM to be linear Gaussian
and we sample the weights from a multivariate normal distribution with zero mean and
unit variance. We make sure the weights are not close to zero to avoid violation of the
faithfulness assumption. We introduce additive Gaussian noise with equal variances across
all nodes, with its variance set to 0.1. Latent causal variables are then sampled using
ancestral sampling, and we generate 105 training samples, 104 validation samples, and 104

test samples. Finally, to generate input data x0, we apply a random linear projection on
the obtained latent variables. We keep the dimension of x0 fixed to 16. We utilize an SCM
with 5, 10, and 15 variables. To enhance the robustness of the results, we generate data for
4 different seeds and repeat our experiments for each seed.

Baselines. We consider ILCM [14] as our main baseline. To the best of our knowledge,
there are no other methods that consider the same weakly supervised assumptions, and
adapting other methods to our assumptions either substantially changes the method or
is infeasible. We also evaluate the outcomes against a variation of disentanglement VAE
proposed by [26] tailored for weakly supervised settings. This model, referred to as d-VAE,
models the weakly supervised process but assumes unconnected variation factors instead
of a causal relationship among variables. Similarly, we apply ENCO on top of both to
obtain the learned graph.

Metrics. We assess the performance of models with the following metrics:

• The Structural Hamming Distance (SHD) is a metric used to quantify the dissimilarity
between two directed acyclic graphs (DAGs) by measuring the minimum number
of edge additions, deletions, and reversals required to transform one graph into
another. It is calculated by summing up the absolute differences between the entries
of adjacency matrices of two graphs.

• The DCI Disentanglement Score is a metric used to evaluate the disentanglement quality
of a generative model and takes values between 0 and 1. Disentanglement refers to
the extent to which the model learns to predict the underlying factors of variation in
the data in a way that each predicted variable captures at most one underlying factor.
If a predicted factor is important to predict a single underlying factor, the score will be
1, and if a predicted factor is equally important to predict all the underlying factors,
the score will be 0 [72].

• The DCI Completeness Score measures how well each underlying factor of variation
is captured by a single predicted latent variable and has a value between 0 and 1. If
a single variable contributes to one underlying factor, the score will be 1, and if all
variables equally contribute to the prediction of a single factor, the score will be 0 [72].

7.1. Single-Point Representations

Utilizing single-point representations where e ∈ Rd and is independent of time, our
method demonstrates superior or competitive performance compared to the baselines as
indicated by the metrics shown in Figure 3. The d-VAE performs poorly across all metrics
primarily because it assumes independent rather than causal relationships among variables.
In scenarios involving 5 and 10 causal variables, ILCM shows comparable performance to
DCRL, suggesting that a standard VAE can sufficiently capture essential information about
causal factors. However, in higher dimensions, our method excels by capturing more
detailed information about causal variables and their underlying structure. Our findings
indicate that diffusion-based representations are more beneficial in higher dimensions,
providing more accurate information about the underlying causal variables compared to
other baseline methods.
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Figure 3. Comparison of models on different metrics when using single-point representations. Our
approach outperforms or competes favorably with the baseline methods on all metrics. Particularly in
higher dimensions, our method excels by capturing additional information about the causal variables
and the underlying causal structure.

7.2. Infinite-Dimensional Representations

In these experiments, we utilize the infinite-dimensional representations approach to
develop trajectory-based representations for each input x0, denoted as (et)t∈[0,1]. In order
to perform inference, we sample points from this trajectory at intervals of 0.1 resulting in
11 specific timesteps. The outcomes are depicted in Figure 4. Generally, representations in
the middle of the trajectory contain the most information and are comparable to or even
outperform the baselines. Going further in time, representations appear to lose information
but improve as they move towards the end of the trajectory. This phenomenon arises
because during training, as we are further in time, the noise in the diffusion model is
fairly high and the conditioning module compensates for that by providing the necessary
information for the diffusion model to learn the score function.

Figure 4. Cont.
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Figure 4. Comparison of models on different metrics when using infinite-dimensional representations.
From top to bottom, each row corresponds to experiments with 5, 10, and 15 causal variables, respec-
tively. We sample points from the trajectory at intervals of 0.1, creating a total of 11 specific timesteps.
Typically, representations in the middle of the trajectory carry the most information, often matching
or surpassing the baseline performance. As we move further in time, representations seem to lose
some information, but they improve as they approach the end of the trajectory. Furthermore, the
framework performs worse or on par with baselines in lower dimensions but generally outperforms
them in higher dimensions.

8. Conclusions

Identifying the underlying causal variables and mechanisms of a system solely from
observational data is considered impossible without additional assumptions. In this project,
we use weak supervision as an inductive bias and study whether the information encoded
in the latent code of diffusion-based representations contains useful knowledge of causal
variables and the underlying causal graph.

This study represents an initial exploration of applying diffusion models to causal
representation learning, highlighting the need for further research and extensions in this
area. Our method relies on an external encoder to provide necessary information for
the diffusion model to learn the score function. Future work could focus on integrating
more efficient ways of acquiring representations from diffusion models without external
dependencies or conditioning. Additionally, extending the weakly supervised framework
to higher dimensions and other modalities, such as video or multi-view data, is another
potential direction. Applying the proposed method to domains such as experimental design,
reinforcement learning, and robotics—where the independent actions can be considered
interventions and the system’s state before and after an action is observable—presents
another promising avenue for research. Finally, extending the framework to other settings,
such as dynamical systems, where the infinite-dimensional latent code corresponds to the
system’s state at different timesteps, is another interesting potential direction.
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Appendix A. Identifiability Conditions

We give all the assumptions used by [14] for the SCM to be identifiable up to a permu-
tation and elementwise reparameterization of the causal variables. These assumptions are
as follows:

• Causal Sufficiency (see Definition 6.2.2 by Pearl [67]). All the causal variables are
measurable, and the noise variables are mutually independent.

• Faithfulness (see Definition 2.4.1 by Pearl [67]). All the independencies of data
distribution are encoded in the graph.

• Acyclicity. The ground-truth graph is acyclic.
• Diffeomorphic Causal Mechanisms (see Brehmer et al. [14]). We require causal

mechanisms and, therefore, solution functions h(·) to be diffeomorphic, that is, for any
possible input value of the causal mechanisms f (·), f is invertible, differentiable, and
its inverse is differentiable.

• Observability of All Interventions (see Brehmer et al. [14]). The intervention dis-
tribution pI(·) has support for any atomic intervention, i.e., pI(zj) > 0, ∀j ∈ L. In
other words, the dataset contains data pairs generated from interventions on any
causal variable.

• Perfect Atomic Interventions (see Section 3.2. by Pearl [67], and Brehmer et al. [14]).
We assume that the intervention set I contains atomic interventions on causal vari-
ables in which the intervention is perfect, i.e., the intervened-upon mechanism is
independent of any causal variable.

Appendix B. Problem Formulation and ELBO Derivation

Here, we derive the ELBO for the proposed framework. To avoid confusion, in the
notation, we separate the latent variables of the diffusion model and the input data. We
denote them with u and x0, respectively. Furthermore, for simplicity, we only derive the
ELBO when using single-point representations independent of time, i.e., e ∈ Rd. The
ELBO for the infinite-dimensional can be derived similarly. The ELBO for the framework is
calculated as:

log p(x0, x̃0) ≥ Eq(e,ẽ,u,ũ,I|x0,x̃0)

[
log

p(x0, x̃0, u, ũ, e, ẽ, I)
q(e, ẽ, I, u, ũ|x0, x̃0)

]
=Eq(e,ẽ,u,ũ,I|x0,x̃0)

[
log

p(I)
q(I|x0, x̃0)

+ log
p(e)p(ẽ|e, I)

q(e, ẽ|x0, x̃0, I)
+ log

p(x0, u|e)
q(u|x0)

+ log
p(x̃0, ũ|ẽ)
q(ũ|x̃0)

]
=Eq(I|x0,x̃0)

Eq(e,ẽ|x0,x̃0,I)Eq(u|x0)
Eq(ũ|x̃0)

[[
log p(I) + log p(e) + log p(ẽ|e, I)

− log q(I|x0, x̃0)− log q(e, ẽ|x0, x̃0, I)
]
+

[
log

p(x0, u|e)
q(u|x0)

+ log
p(x̃0, ũ|ẽ)
q(ũ|x̃0)

]]

The terms in the first bracket correspond to the intervention encoder and the noise
encoding module, respectively, and the terms in the second bracket correspond to the
diffusion model conditioned on pre- and post-intervention noise encodings.

Song et al. [53] shows that the discretization of SDE formulations of the diffusion
model is equivalent to discrete-time diffusion models. Therefore, for simplicity, we derive
the ELBO for discrete-time diffusion models. Following [73], for a discrete-time diffusion
model where t ∈ [1, T], we have
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Eq(I|x0,x̃0)
Eq(e,ẽ|x0,x̃0,I)Eq(u|x0)

Eq(ũ|x̃0)

[
log

p(x0, u|e)
q(u|x0)

]
=

Eq(e,ẽ|x0,x̃0,I)

[
Eq(u1|x0)

[log p(x0|u1)]− DKL(q(uT |x0)||p(uT)) (A1)

−
T

∑
t=2

Eq(ut |x0)
[DKL(q(ut−1|ut, x0, e)||p(ut−1|ut, e)]

]

where we have the following:

• Eq(u1|x0)
[log p(x0|u1)] is the reconstruction term, and it can be defined in a way that it

is constant so it can be ignored during training.

• DKL(q(uT |x0)||p(uT)) is the prior matching term and can similarly be defined in a
way that it is constant.

• Eut |x0
[DKL(q(ut−1|ut, x0, e)||p(ut−1|ut, e)] is a denoising matching term. This term is

the origin of different interpretations of the score-based diffusion models.

For the SDE formulation of the forward diffusion process, the denoising matching
term becomes [53]

λ(t)||sθ(ut, e, t)−∇ut log p(ut|x0)||22. (A2)

The weight λ(t) of denoising matching terms is related to the diffusion coefficient of
the forward SDE. For a Variance Exploding SDE, the weight is defined as
λ(t) = 2σ2(t) log(σmax/σmin) with σ(t) = σmin · (σmax/σmin)

t. Therefore, by combining
(A1) with (A2), the ELBO becomes

log p(x0, x̃0) ≥ Ep(x0,x̃0)
Eq(I|x0,x̃0)

Eq(e,ẽ|x0,x̃0,I)Et∼U(0,1)Eq(ut |x0)
Eq(ũt |x̃0)[

log p(I) + log p(e) + log p(ẽ|e, I)− log q(I|x0, x̃0)− log q(e, ẽ|x0, x̃0, I)

+λ(t)
[
||sθ(ut, e, t)−∇ut log p(ut|x0)||22 + ||sθ(ũt, ẽ, t)−∇ũt log p(ũt|x̃0)||22

]]

For infinite-dimensional representations, we can derive the ELBO using a similar
argument. In this case, the formula for the ELBO is

log p(x0,x̃0) ≥ Ep(x0,x̃0)
Eq(I|x0,x̃0)

Et∼U(0,1)Eq(et ,ẽt |x0,x̃0,I)Eq(ut |x0)
Eq(ũt |x̃0)[

log p(I) + log p(et) + log p(ẽt|et, I)− log q(I|x0, x̃0)− log q(et, ẽt|x0, x̃0, I)

+λ(t)||sθ(ut, et, t)−∇ut log p(ut|x0)||22 + λ(t)||sθ(ũt, ẽt, t)−∇ũt log p(ũt|x̃0)||22

]

Appendix C. Implementation Details

Appendix C.1. Training

For the training, we follow the four-phase training of Brehmer et al. [14] but consider
only the first three phases. In summary, we consider the following steps:

(1) We begin by training the diffusion model and the encoding module together on data
pairs for 20 epochs. This can be interpreted as a warm-up for the diffusion model and
the encoding module to extract meaningful representations of data.



Entropy 2024, 26, 556 16 of 18

(2) In the second phase, we include all modules for training, except for solution functions.
We consider p(ẽi|e) to be a uniform probability density. The framework is trained in
this phase for 50 epochs.

(3) We include solution functions and train the whole framework with the proposed loss
for 50 epochs.

We find out that considering our data generation process, including the fourth training
phase of Brehmer et al. [14] has no impact on the model’s performance. Consequently,
we choose to disregard it in our analysis. We use the loss in Equation (3) as the objective
function and consider the coefficient of the regularization term Lentropy to be 1. Therefore,
our overall loss function is then given by L = Lmodel + Lentropy.

Appendix C.2. Architectures and Hyperparameters

We train the model for 120 epochs and use the learning rate of 3e-4 with a batch
size of 64. β is initially set to 0 and increased to 1 during training. The noise encoder is
considered Gaussian, with the mean and standard deviation parameterized as an MLP
with two hidden layers and 64 units each and ReLU activation functions. The solution
functions are implemented as affine transformations, where the slope and offset are learned
from pre-intervention noise encodings. These functions utilize the same architecture as the
noise encoder for learning the slope and offset parameters. The architecture of the score
function of the diffusion model is based on NCSN++ architecture [53] with the same set of
hyperparameters used for the CIFAR-10 dataset. As the input x is 16-dimensional and the
score model follows a convolutional architecture, we reshape the input into a 4× 4 format
and then feed it into the diffusion model. Furthermore, in the forward SDE, σmin and σmax
are set to 0.01 and 50, respectively.
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