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Experimental colonization with H. hepaticus,
S. aureus and R. pneumotropicus does not
influence the metabolic response to high-fat diet
or incretin-analogues in wildtype SOPF mice
Margit Wunderlich1, Manuel Miller1,*, Bärbel Ritter 1, Ronan Le Gleut2, Hannah Marchi2,6,
Monir Majzoub-Altweck3, Patrick J. Knerr4, Jonathan D. Douros4, Timo D. Müller5, Markus Brielmeier1
ABSTRACT

Objectives: We here assessed whether typical pathogens of laboratory mice affect the development of diet-induced obesity and glucose
intolerance, and whether colonization affects the efficacy of the GLP-1R agonist liraglutide and of the GLP-1/GIP co-agonist MAR709 to treat
obesity and diabetes.
Methods: Male C57BL/6J mice were experimentally infected with Helicobacter hepaticus, Rodentibacter pneumotropicus and Staphylococcus
aureus and compared to a group of uninfected specific and opportunistic pathogen free (SOPF) mice. The development of diet-induced obesity
and glucose intolerance was monitored over a period of 26 weeks. To study the influence of pathogens on drug treatment, mice were then
subjected for 6 days daily treatment with either the GLP-1 receptor agonist liraglutide or the GLP-1/GIP co-agonist MAR709.
Results: Colonized mice did not differ from SOPF controls regarding HFD-induced body weight gain, food intake, body composition, glycemic
control, or responsiveness to treatment with liraglutide or the GLP-1/GIP co-agonist MAR709.
Conclusions: We conclude that the occurrence of H. hepaticus, R. pneumotropicus and S. aureus does neither affect the development of diet-
induced obesity or type 2 diabetes, nor the efficacy of GLP-1-based drugs to decrease body weight and to improve glucose control in mice.

� 2024 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. INTRODUCTION

Type 2 diabetes mellitus (T2DM) is a complex metabolic disease that
affects 537 million adults worldwide in 2021 [1]. By 2045, the number
of patients is estimated to increase to more than 700 million people
[2,3]. Therefore, it is important to develop new drugs and compounds
with higher efficacy for better treatment options. Murine models are
important tools to study and understand obesity, T2DM and the
mechanisms by which drugs affect energy and glucose metabolism.
The most widely used mouse strain to study lifestyle-induced obesity is
the C57BL/6J mouse, which upon feeding a high-fat diet (HFD), de-
velops diet-induced obesity (DIO) and many associated comorbidities,
including glucose intolerance, insulin resistance and hepatosteatosis
[4e8]. The development of glucose intolerance in DIO mice is largely
comparable to the pathogenesis in humans [9]. Factors implicated in
the development of human obesity include genetic predisposition,
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unhealthy diet, and physical inactivity. These factors lead to obesity,
high blood glucose levels and associated diseases, which are sum-
marized as the metabolic syndrome. Diabetic patients also show an
increased susceptibility to infection and are more frequently colonized
and infected with pathogenic bacteria [10,11]. In the animal facility,
standardization and verification of hygiene is of paramount importance
for data comparability and interpretation. Although certain pathogens
are excluded from animal husbandry, mice can be colonized with
opportunistic or pathogenic bacteria. These bacteria usually do not
cause clinical symptoms in immunocompetent animals and are
therefore often accepted. However, they can still influence experi-
mental results [12e15]. Contrary to standardization, greater bacterial
variability may increase the transferability of test results. For the study
of the immune system, it has been described that experiments are
more meaningful when laboratory mice are colonized with microor-
ganisms from wild and pet mice. They received a better immune
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Abbreviations

AUC area under the curve
DIO diet-induced obesity
ELISA enzyme-linked immunosorbent assay
EDTA ethylenediaminetetraacetic acid
GLP-1 glucagon-like peptide-1
GIP glucose-dependent insulinotropic polypeptide
HE hematoxylin-eosin
HFD high-fat diet
H. hepaticus Helicobacter hepaticus
IL-10 interleukin 10
ipGTT intraperitoneal glucose tolerance test
IVC individually ventilated cage
MALDI-TOF matrix assisted laser desorption ionization e time of flight
PBS phosphate-buffered saline
R. pneumotropicus Rodentibacter pneumotropicus
S. aureus Staphylococcus aureus
SEM standard error of the mean
SOPF specific and opportunistic pathogen free
TAG triacylglyceride
T2DM type 2 diabetes mellitus
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system more similar to that of adult humans [16,17]. Taken together,
this raises the question of whether multi-colonized mouse models for
diabetes research alter and might even improve the translation of
results to humans compared to pathogen-free mice. In this study, we
aimed to assess whether typical bacteria found in laboratory animal
facilities influence the development of diet-induced obesity, glucose
intolerance and the efficacy of best-in-class drugs to treat obesity and
diabetes. Bacteria with high prevalence in laboratory mice are Heli-
cobacter hepaticus, Rodentibacter pneumotropicus and Staphylo-
coccus aureus [15,18,19]. These bacteria colonize the skin, mucosa or
gut but rarely cause clinical signs in immunocompetent healthy mice
[14,20e26]. S. aureus is a gram-positive bacterium that colonizes the
skin and mucosa of the respiratory and gastrointestinal tracts. Clini-
cally, it can present as dermatitis, wound infection, or abscess
[12,14,23,27]. Another bacterium that inhabits the mucosa of the
respiratory tract is R. pneumotropicus (Pasteurellacea family). It can
also be isolated from the urogenital tract and from the intestine and is
associated with pneumonia, inflammation of the eye or urogenital
tract. Rodentibacter is gram-negative and host-specific to rodents
[12,14,28,29]. The typical Helicobacter species for mice is
H. hepaticus. This gram-negative, microaerophilic bacterium colonizes
the liver and intestine of mice, especially the cecum. It can cause
inflammation, necrosis, and carcinoma [14,24,30]. H. hepaticus
colonization also alters the gut microbiome [31]. Increased rates of
infection with S. aureus and Helicobacter species have been reported
in obese and diabetic patients [11,32e35]. In overweight children, the
prevalence of S. aureus in the gut was increased [36]. Pasteurellacea
species are zoonotic agents that can cause clinical signs in immu-
nocompromised individuals. Diabetes mellitus is considered as a risk
factor for the development of pasteurellosis [37]. Therefore, these
bacteria are not only relevant in laboratory animal husbandry but are
also common comorbidities in diabetic patients. An impact of the in-
testinal flora on obesity and type 2 diabetes development is known
[38e41]. The transplantation of microbiota from lean to obese mice or
the immunization with ileum microbiota can increase insulin sensitivity
[42,43]. The intestinal flora can also change drug efficacy [44].
Diabetes medication and gut microbiome influence each other,
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e.g. metformin or liraglutide [45e51]. To evaluate the influence of
infectious agents in the predisposition to develop obesity and glucose
intolerance, we monitored body weight development and glucose
levels of mice colonized with H. hepaticus, R. pneumotropicus and
S. aureus vs. non-colonized mice over 26 weeks of HFD feeding.
Subsequently, we assessed whether the infection status had an impact
on the metabolic efficacy of best-in-class drugs to treat obesity and
diabetes, namely the GLP-1 receptor agonist liraglutide and the GLP-1/
GIP co-agonist MAR709. Both of these drugs have been shown in
previous studies to profoundly improve body weight and glucose
control in C57BL/6J DIO mice [52e54].

2. MATERIAL AND METHODS

2.1. Animals and model
For this project, the inbred mouse strain C57BL/6J was used as a DIO
model. C57BL/6J is genetically well characterized and widely used for
type 2 diabetes research due to its predisposition to diet-induced
obesity and glucose intolerance [4,55e57]. Female mice are not
suitable because they do not develop glucose intolerance, insulin
resistance or hyperinsulinemia [58].
Male C57BL/6J mice were purchased from Charles River Laboratories
(Charles River Germany GmbH & Co KG, Sulzfeld, Germany) at 3e4
weeks of age with health status specific and opportunistic pathogen
free (SOPF) and proven to be free from the bacteria of interest. Mice
were housed in individually ventilated cages (IVC; GM 500, Tecniplast,
Buggugiate, Italy) with a maximum cage density of four mice per cage.
The light/dark cycle was 12h/12h, the temperature was 22� 2 �C and
the air humidity was 55 � 10%, according to Directive 2010/63/EU.
Cages were enriched with autoclaved nesting material (crinklets and
paper towels), mouse house or tunnel and chewing wood. All mice
were fed ad libitum throughout the experiment with a high-fat diet
(58% kJ energy from fat and sucrose; D12331; Research Diets, New
Brunswick, USA) and had free access to sterile filtered tab water.
The experiment was conducted in strict accordance with the EU
Directive 2010/63/EU on animal experimentation and national law and
was approved by the local government under reference number ROB-
55.2-2532.Vet_02-20-150.

2.2. Bacteria and infection
Infection and subsequent colonization were successfully tested in a
preliminary experiment with a small number of animals. The bacteria
were selected based on their prevalence in animal husbandry and their
relevance to diabetic patients [11,13].
At the beginning of the experiment, half of the animals were orally
infected with a bacterial solution containing three different species.
The group constellation of colonized mice was changed, as all mice
within three cages remained negative for H. hepaticus after experi-
mental infection. In addition, four animals were orally re-infected with
S. aureus as they were negative in the PCR. Afterwards, a stable
colonization was achieved in all infected animals for all three bacteria
until the end of the experiment.
H. hepaticus was obtained from the Leibniz Institute DSMZ - German
Collection of Microorganisms and Cell Cultures GmbH; DSM No.:
22909. R. pneumotropicus was obtained from the Leibniz Institute
DSMZ - German Collection of Microorganisms and Cell Cultures GmbH;
DSM No.: 21403. S. aureus was isolated from the animal husbandry,
the strain was confirmed by MALDI-TOF. Bacteria were cultured on
Columbia blood agar base with 5% sheep blood (VWR, Leuven,
Belgium) as overnight cultures or obtained as an active culture directly
from the DSMZ. For the infection solution, each bacterial culture on
mbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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blood agar was dissolved in 3 mL of phosphate-buffered saline (PBS)
and the cell number was counted under a microscope (Axioplan 2
imaging, Jena, Zeiss; phase contrast; objective 40:1) using a counting
chamber (Neubauer chamber improved, chamber depth 0.02 mm).
H. hepaticus was obtained as a live culture and used directly. The
bacterial solution for each animal contained an infectious dose of
1 � 108 organisms for each bacterium or 1 � 107 organisms for
H. hepaticus in a total volume of 75 mL and was administered by oral
gavage. Half of the mice remained clean with SOPF status and received
PBS in a volume of 75 mL to obtain the same procedures for all ani-
mals. To ensure the infection status, animals were housed in IVC cages
and handled in a strict order, first clean SOPF mice and then infected
mice. Infection status was assessed every two weeks in stool samples
by real-time PCR for each mouse individually. Low copy numbers for
R. pneumotropicus and S. aureus suggest that the main colonization
site is not the gastrointestinal tract. This was confirmed by culturing
throat and preputial swabs with high bacterial growth in a preliminary
colonization test. For the purposes of this study, a positive PCR result in
stool samples was deemed sufficient evidence of colonization. Ana-
lyses were performed using Rotor Gene Q with software 2.1 (Qiagen,
Hilden, Germany). Real-time PCR sequences and protocols were
adapted from literature. For H. hepaticus, primers and probes were
adopted from Fischer [59]. The thermal cycling conditions were
adapted: Initial denaturation at 95 �C for 15 min, 45 cycles of dena-
turation at 95 �C for 15 s, and each cycle followed by primer annealing
and extension at 60 �C for 60 s. For S. aureus, PCR assay 1, SA442-
probe 1 and protocol were used from Nijhuis et al. [60]. For
R. pneumotropicus, primers and probes from Dole et al. were adopted
[61]. The thermal cycling conditions were adapted similarly to
H. hepaticus. Primers and probes were purchased from metabion in-
ternational AG, Planegg, Germany. Reporter dyes 6-Fam and BHQ-1
were used for S. aureus and R. pneumotropicus respectively, and
TAMRA was used as a quencher for H. hepaticus.

2.3. Drugs
After 26 weeks of feeding with a HFD, mice were divided into 6 groups
(2 infection statuses and 3 treatments) with similar body weight, fat,
and lean mass (n ¼ 8e9). All mice were treated with either liraglutide
(50 nmol/kg, GLP-1-agonist, [62]), MAR709 (10 nmol/kg, GLP-1/GIP-
agonist, [53]) or phosphate-buffered saline (PBS) as a negative con-
trol (vehicle). Peptide were prepared according to previously reported
methods [63]. Treatments were administered by daily subcutaneous
injection at a volume of 5 mL per gram of body weight for 6 days, in the
afternoon.

2.4. Metabolic parameters
Body weight of each mouse was measured weekly during the feeding
stage or daily during the treatment week to demonstrate body weight
development. Food intake of each cage was measured on a weekly
basis during the feeding stage and daily during the treatment week. It
was calculated by weighing the food rack before and after feeding,
divided by the number of animals per cage and by the number of
days. For statistical analysis, cages with food shredding mice were
excluded. Blood samples were collected from each mouse every four
weeks during the feeding stage. For blood sampling, the lateral tail
vein was punctured, and glucose was measured directly using a
handheld glucometer (FreeStyle Libre, Abbott GmbH, Wiesbaden,
Germany). Whole blood samples were collected in EDTA-coated
tubes and immediately placed on ice. To obtain plasma, blood
samples were centrifuged at 5000 rpm for 10 min at 4 �C and stored
at �20 �C. ELISA and enzymatic assays were performed in
MOLECULAR METABOLISM 87 (2024) 101992 � 2024 The Authors. Published by Elsevier GmbH. This is
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combination with a photometer (Varioskan LUX plate reader, Fisher
Scientific GmbH, Schwerte, Germany and SkanIt software 5.0 for
microplate readers). Insulin levels were determined using ALPCO,
Mouse Ultrasensitive Insulin ELISA, New Hampshire, USA. Total
cholesterol levels were measured using Fisher Diagnostics, Infinity
Cholesterol Liquid Stable Reagent Kit, Horn, Netherlands. However,
the last measurement could not be analyzed because the enzyme kit
was no longer available from the manufacturer. Triglyceride levels
were determined using FUJIFILM Wako Shibayagi Corporation, Lab-
Assay Triglyceride, Gunma, Japan. In some blood samples, there was
not enough blood to evaluate all parameters. Outliers and values
outside the sensitivity range for each kit were excluded. The last
blood sample at the end of the experiment could not be evaluated due
to partial clotting of the samples.

2.5. Body composition (EchoMRI)
Body composition was analyzed before and after the treatment using a
magnetic resonance whole body composition analyzer (EchoMRI-
100H, Echo Medical Systems, Houston, Texas, USA) to determine
changes in fat and lean mass.

2.6. Intraperitoneal glucose tolerance test (ipGTT)
IpGTT was performed after six days of treatment. Glucose was
measured directly with a handheld glucometer (FreeStyle Libre, Abbott
GmbH, Wiesbaden, Germany) from 6 h fasted mice as a baseline.
Subsequently, 1.75 g glucose per kg body weight was injected
intraperitoneally and glucose levels were measured 15 min, 30 min,
60 min and 120 min after glucose administration.

2.7. Histology
Mice were sacrificed by anesthetic overdose (250 mg/kg
ketamine þ 10 mg/kg xylazine) and cervical dislocation. Lung, kid-
ney, liver, pancreas, spleen, stomach, duodenum, cecum, and colon
were examined blinded by a pathologist for inflammation, bacterial
presence, or other abnormalities. For this purpose, organs were
preserved in formalin solution (neutral buffered 10%), dehydrated,
and embedded in paraffin. Histological sections of 2e3 mm thickness
were prepared and stained with hematoxylin and eosin (HE) or Gi-
emsa. Slides were evaluated using a bright field microscope. Mac-
rovesicular steatosis of the liver was evaluated according to Brunt
et al. and Kleiner et al. [64,65]. Some intestinal samples could not be
processed for histology because they were too small to fit into the
embedding cassette.

2.8. Statistical analysis
Data are presented as � standard error of the mean (SEM). Statistical
analyses and graphs were performed using GraphPad Prism 9.5.0.
Data were tested for normal distribution using the ShapiroeWilk test.
For normally distributed data, Welch-tests and post-hoc Bonferroni
correction for multiple testing were used. Non-normally distributed
data were analyzed using Mann-Whitney-U tests and Bonferroni-Dunn
post hoc analyses. For small sample sizes, where normality cannot be
checked, multiple unpaired t-tests and Bonferroni-Dunn post hoc
analyses were performed. For fat and lean mass changes as well as
ipGTT area under the curve (AUC) assessment, one-way ANOVA fol-
lowed by Bonferroni post hoc test were performed, and for non-
normally distributed data KruskaleWallis test followed by Dunn post
hoc test were performed. Chi-square test was performed for the
assessment of liver steatosis. Differences were considered significant
when adjusted p < 0.05. P-values from post hoc tests are presented
and rounded to three decimal places. The non-rejection of the null
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Table 2 e Food intake pre-diabetes development.

SOPF Colonized

Week 24 2.7 g � 0.05 2.7 g � 0.07
Week 25 2.6 g � 0.07 2.7 g � 0.06
Week 26 2.7 g � 0.14 2.8 g � 0.07
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hypothesis of a statistical test (p � 0.05) is not a proof of the absence
of difference between the groups under study. Therefore, we increased
the number of animals to be able to detect existing differences in pre-
diabetes or drug efficacy caused by bacteria with a probability of 90%
(power of 0.9).

3. RESULTS

3.1. DIO mice colonized with highly prevalent opportunistic
bacteria are suitable as a model for pre-diabetes
Experimentally infected mice developed a stable colonization with all
three bacteria (Table 1), non-infected SOPF mice showed negative
results in the real-time PCR until the end of experiment. Colonized mice
did not differ from non-colonized (SOPF) mice in terms of weight gain
on HFD (Figure 1A). There were also no differences in food intake
(Table 2). Blood glucose remained at the same level throughout the
experiment, no hyperglycemia was observed (Figure 1B). Insulin levels
increased in both groups, consistent with the development of insulin
resistance during the progression of obesity. Nonetheless, insulin
levels were slightly lower in colonized mice compared to non-colonized
controls. Although insulin levels were slightly lower in colonized ani-
mals relative to the non-colonized controls (Figure 1C), no differences
were observed in glucose tolerance (Figure 4AeC), hence indicating
Table 1 e Average copies per ml by real-time PCR of the colonized group.

H. hepaticus R. pneumotropicus S. aureus

Before infection 0 0 0
After infectiona 1.16 � 106 126 10
Before treatment 8.76 � 105 85 5
After treatment 2.60 � 105 188 8

a Stable colonization after experimental infection as well as group re-constellation and
oral re-infection.

Figure 1: Pre-diabetes development under HFD feeding. A Body weight development, n
Cholesterol; n ¼ 18e26, p < 0.05*, p < 0.01**, and p < 0.001***, n.s. ¼ not signi
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that the slight changes in insulin did not translate into changes in
glucose control. There was a slight increase in triglycerides (TAG).
Statistically significant differences were found at week 12 and week
20 with p ¼ 0.011 and p ¼ 0.042, respectively (Figure 1D). Never-
theless, the two curves are oscillating close to each other, showing that
no biologically meaningful differences are observed between the two
hygiene groups. Total cholesterol levels are similar in both groups,
fluctuating upwards and downwards. There was a statistically signif-
icant difference between the two groups at week 20 with p < 0.001
(Figure 1E).

3.2. Treatment effects of incretin-analogues were not altered by
bacterial colonization, MAR709 shows greater effects on glucose
tolerance
Treatment with diabetes medication had no effect on bacterial colo-
nization (Table 1). Body weight decreased significantly in the drug-
treated groups compared to vehicle, with no difference based on the
infection status. Compared to baseline, the SOPF liraglutide group lost
10.7% body weight by the end of the treatment, the colonized lir-
aglutide group lost 12.0%, the SOPF MAR709 group lost 15.5% and
the colonized MAR709 group lost 13.5%, while the SOPF vehicle group
lost 1.2% and the colonized vehicle group lost 1.3% body weight. For
each treatment, no differences were observed between the two hy-
giene statuses (Figure 2AeC). Given these results, the comparison
between the different treatment groups was done combining colonized
and clean mice. Liraglutide and MAR709 showed significant differ-
ences (p < 0.001) in body weight loss compared to vehicle on each
day of treatment, no significant differences were seen between the
¼ 26e27; B Blood glucose, n ¼ 26e27; C Insulin, n ¼ 17e26; D TAG, n ¼ 18e26; E
ficant.
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Figure 2: Body weight and food intake under treatment with incretin-analogues. A Body weight (%) liraglutide; B Body weight (%) MAR709; C Body weight (%) vehicle; D
Body weight (%) grouped; E Food intake (g) liraglutide; F Food intake (g) MAR709; G Food intake (g) vehicle; H Food intake (g) grouped; n ¼ 8e9, p < 0.05*, p < 0.01**, and
p < 0.001***, n.s. ¼ not significant.

Figure 3: Fat mass and lean mass under treatment with incretin-analogues. A Fat mass (%) liraglutide; B Fat mass (%) MAR709; C Fat mass (%) vehicle; D Fat mass (%)
SOPF mice; E Fat mass (%) colonized mice; F Lean mass (%) liraglutide; G Lean mass (%) MAR709; H Lean mass (%) vehicle; I Lean mass (%) SOPF mice; J Lean mass (%)
colonized mice; n ¼ 8e9, p < 0.05*, p < 0.01**, and p < 0.001***, n.s. ¼ not significant.
drugs (Figure 2D).The comparison of the hygiene statuses within each
treatment for food intake showed no statistically significant differences
(Figure 2EeG). The drug-treated groups, aggregating the two infection
statuses, showed reduced food intake relative to vehicle treated
controls. However, no statistically significant differences were
observed between the drugs (Figure 2H). Changes in body composition
after treatment were greatest in MAR709, particularly in fat mass. The
SOPF liraglutide group lost 19.73% fat mass, the colonized liraglutide
group lost 20.91%, the SOPF MAR709 group lost 22.94% and the
colonized MAR709 group lost 24.46%, while the SOPF vehicle group
lost 2.51% and the colonized vehicle group gained 0.33% fat mass.
Considering each treatment group separately, no differences were
observed between colonized and clean mice (Figure 3AeC, 3F-H). The
treated groups lost significantly more fat and lean mass compared to
the vehicle (Figure 3D,E,I,J). There were no statistically significant
differences between liraglutide and MAR709.
MOLECULAR METABOLISM 87 (2024) 101992 � 2024 The Authors. Published by Elsevier GmbH. This is
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Glucose tolerance was assessed in all groups with an ipGTT. Both
liraglutide and MAR709 showed significantly lower glucose levels
compared to vehicle controls. Significant differences between lir-
aglutide and MAR709 were observed at time point 0 (comparison SOPF
groups), 15 min after injection (comparison SOPF groups) and 30 min
after injection (comparison colonized groups). Mice in the MAR709
groups had the lowest basal glucose levels, approaching basal levels
120 min after glucose administration. Vehicle groups showed the
highest glucose excursions. The two hygiene statuses had similar
glucose levels, and that for each treatment separately (Figure 4AeC).
Statistically significant differences were observed only for the basal
blood glucose level for MAR709 (p ¼ 0.047) and vehicle (p ¼ 0.010).
No significant differences were observed for liraglutide. Calculation of
the area under the curve (AUC) showed significant differences between
the drugs and vehicle, but also between liraglutide and MAR709 for
both hygiene statuses (Figure 4DeH).
an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 5
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Figure 4: Glucose tolerance after 6 h fasting. A ipGTT liraglutide; B ipGTT MAR709; C ipGTT vehicle; D AUC liraglutide; E AUC MAR709; F AUC vehicle; G AUC SOPF mice; H AUC
colonized mice; n ¼ 8e9, p < 0.05*, p < 0.01**, and p < 0.001***, n.s. ¼ not significant.

Figure 5: Steatosis scores according to Brunt et al. and Kleiner et al. [44,45]. A Score 0 normal; B Score 1 mild; C Score 2 moderate; D Score 3 severe.

Original article
3.3. Macro- and microscopic changes resulting from exposure to
HFD or bacterial colonization
Greasy fur was seen in two cages where mice had dragged the high-
fat diet into the cage. One mouse had two small abscesses on its
abdomen. These were thought to be due to bite wounds between
males. None of the mice showed dermatitis due to the high-fat diet or
clinical signs of a bacterial infection. No other abnormalities where
seen in fur or skin.
Histology revealed hepatic steatosis in half of the animals in both hygiene
groups (24 out of 52 mice; Figure 5 and Table 3). A chi-square test was
Table 3 e Steatosis liver (macrovesicular).

SOPF Colonized Total

Score 0 8 20 28
Score 1 4 1 5
Score 2 8 2 10
Score 3 6 3 9
Total 26 26 52
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statistically significant with a p-value< 0.05. This indicates an influence
of the bacterial status on the development of steatosis. In addition, 39
mice showed periportal interstitial lymphocytic infiltrates or focal mixed
cell infiltrates of lymphocytes and neutrophils. Most of the foci measured
less than 100 mm in size, three mice showed larger inflammatory foci
(two SOPF and one colonized). One mouse of each hygiene group also
showed multifocal cell group necrosis. Mild exocrine pancreatitis with
foci of lymphocytic infiltration was observed in two mice in the SOPF
group. Autophagic vacuoles were found in the acinar cells of four mice in
the colonized group. No other pancreatic abnormalities were observed.
Renal specimens from 41 mice showed suburothelial lymphocytic infil-
tration of the renal pelvis (22 SOPF, 19 colonized). The duodenum
samples of half of the animals in both hygiene groups showed villous
fusion, focal to multifocal apical villous necrosis, follicular formation,
villous apical vacuolization, excessive lymphoplasmacytic infiltration of
the lamina propria and dilatation of the central villous canals. Giemsa
staining revealed the presence of H. hepaticus in all parts of the intestine
of colonized mice. No bacteria were detected in the liver. There were no
abnormalities in the lungs, spleen, stomach, cecum, or colon.
mbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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4. DISCUSSION

Microorganisms play an important role in health, especially the gut
microbiome is becoming an important area of study. Changes in the
composition can exacerbate, trigger and cure diseases [66]. The
development of obesity and type 2 diabetes can also be exacerbated by
altered intestinal flora [38e41]. Not only in humans, but also in mice the
microbiome should be considered in disease development [67]. All mice
of this study originated from one breeder of the same barrier and with
the same hygiene status. The microbiome should thus be very similar,
as the starting situation was identical for all mice. Differences due to
bacteria are attributable to the experimental infection. Stool samples
demonstrated that the infected mice remained colonized with
H. hepaticus, R. pneumotropicus, and S. aureus until the end of the
experiment whereas the SOPF mice tested negative at all times in real-
time PCR. A limitation of the study is the clearly lower copy numbers in
the fecal PCR for S. aureus and R. pneumotropicus compared to those of
H. hepaticus. This raises the question of the degree of colonization for
these two bacteria and whether clinically relevant infections were
achieved via oral gavage which could possibly influence the metabolic
response to high-fat diet or incretin-analogues in mice to the same
extent as the infection with H. hepaticus. One possible explanation for
the large difference in copy numbers could be the preferred colonization
site of the different pathogens. H. hepaticus colonizes exclusively the
intestine, especially the cecum and colon. R. pneumotropicus and
S. aureus also colonize other mucous membranes, such as the naso-
pharynx or genital tract [14,27,28,30,59]. Nevertheless, similar copy
numbers of stool samples can be found in the literature for
R. pneumotropicus [68]. Furthermore, it was demonstrated that mice
colonized by R. pneumotropicus were tested positive by PCR using fecal
pellets over a period of one year [69]. To ensure that the infection route
via oral gavage leads to a stable colonization with all three bacterial
species used and that fecal pellets are suitable for confirming the
infection, a preliminary test was performed on six mice in advance. In
addition to the analysis of fecal samples with PCR, swap samples from
different body regions showed bacterial growth on Columbia blood agar
plates four weeks after experimental infection. R. pneumotropicus was
present in all mouth-and-throat swabs as well as nose swabs and in
some smears of the preputium and the eyes. All mice showed bacterial
growth for S. aureus in mouth-and-throat and preputial swabs and
occasionally in swabs from the nose. Therefore, samples from other
parts of the body than feces could have achieved higher copy numbers
in real-time PCR. Based on the results of the preliminary test and positive
PCR results over the entire testing period, we assume successful
colonization with all three bacteria in all experimentally infected mice. At
the same time, we cannot exclude the fact that other routes of infection
would have been more suitable for R. pneumotropicus and S. aureus to
achieve a higher degree of colonization and thus a possibly greater
potential impact throughout the experiment.
As body weight gain and food intake were similar in both hygiene
groups, the model can be used either with or without the presence of
H. hepaticus, R. pneumotropicus and S. aureus. Changes in blood
values due to the development of pre-diabetes were seen in increased
insulin levels in both hygiene groups. In colonized mice, insulin levels
were lower compared to SOPF. Cells were possibly less insulin
resistant in colonized mice. Contrary results can be found in the
literature for S. aureus, where colonization causes the production of an
insulin-binding protein that leads to increased insulin resistance [70].
In the ipGTT, no differences in glucose tolerance were observed be-
tween the colonized mice and the SOPF mice for each treatment. The
drug efficacy test was not adversely affected by colonization. Glucose
MOLECULAR METABOLISM 87 (2024) 101992 � 2024 The Authors. Published by Elsevier GmbH. This is
www.molecularmetabolism.com
levels remained constant throughout the experiment, presumably the
increased insulin levels compensated for the insulin resistance and
increasing blood glucose. This was also observed in the data of Schile
in DIO mice [71]. Total cholesterol levels were fluctuating upwards and
downwards in both groups during the feeding phase. At the last
measurement for cholesterol, SOPF mice had slightly higher levels
compared to the first measurement at 4 weeks, while colonized mice
had slightly lower levels, with a statistically significant difference be-
tween the two groups at this time point. Like cholesterol, TAG levels
were oscillating between the first and last measurements. The colo-
nized group showed slightly higher levels after 24 weeks of high-fat
diet, two time points showed significant differences with higher
levels for SOPF (week 12 and 20). We assume that these differences
are natural fluctuations, as they were only seen for single time points
[72]. To summarize the metabolic changes during the development of
pre-diabetes, no significant differences were seen between the two
hygiene groups at the last measurement before treatment, except for
cholesterol.
Drug efficacy was not affected by bacterial colonization. For liraglutide,
MAR709 and vehicle, no differences were observed between the hy-
giene groups regarding body weight loss, food intake and changes in
body composition during drug administration. Food intake and body
weight loss were significantly lower in the treated groups compared to
vehicle. Body composition also showed a significant loss of fat mass
with both treatments compared to vehicle. MAR709 induced the
greatest loss of fat mass and body weight, as seen in the studies by
Finan et al. and Zhang et al. [52,53]. Impaired glucose tolerance is a
hallmark of pre-diabetes. Therefore, an ipGTT was performed after the
treatment week. There were significant differences for the basal
glucose levels of MAR709 and vehicle comparing SOPF against colo-
nized groups. During the ipGTT, no significant differences in hygiene
status were found within the drug and vehicle groups. Therefore, the
baselines differences can be neglected. MAR709 treated groups
achieved the lowest basal glucose levels and lowest glucose excur-
sions. The AUC showed significant differences in glucose tolerance
between drugs and vehicle and also between MAR709 and liraglutide.
This confirms the superiority of the co-agonist over the mono-agonist
in the treatment of diabetes.
Since mice of both hygiene groups were affected by liver steatosis, it is
likely that the observed changes are diet related. Fatty liver changes are
common in overweight patients [73]. Steatosis to steatohepatitis are
known effects of an unhealthy diet in mice [74e77]. Liver inflammation
and steatosis may also be caused by colonization with H. hepaticus. The
used mouse strain C57BL/6J is immunocompetent and is regarded as
resistant to clinical symptoms under H. hepaticus colonization
[14,24,25]. The main colonization site is the cecum, which was
confirmed in a pilot study [14,59,78]. No bacteria were observed in the
Giemsa stain of the liver. We assume that the cause of steatosis to
steatohepatitis is HFD feeding. The significant chi-square test indicates a
positive influence of the bacterial status on the development of steatosis.
Many studies have investigated the influence of the microbiome on the
development of non-alcoholic fatty liver disease [79e84]. In contrast to
our observations, where colonized mice showed a lower incidence, in
literature an increased steatosis under bacterial colonization with
S. aureus is reported. Bacterial overgrowth of Staphylococci was found
in the small intestine in patients with non-alcoholic fatty liver steatosis
[85]. Experimental infection with H. hepaticus in susceptible BALB/c
mice caused hepatitis and can intensify steatosis under HFD feeding
[86,87]. In wildtype C57BL/6 mice, it has been shown that Helicobacter
colonization can have a positive influence on inflammatory processes.
After experimental infection, anti-inflammatory IL-10 production was
an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 7
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increased as well as transcription factors to downregulate T-cell acti-
vation. In addition, genes for cell repair were activated [88]. These
positive effects of inflammation downregulation could be the reason for
lower steatosis levels in colonized mice in our study. Changes in in-
testinal villi length and lesions are also effects of HFD feeding [89,90].
Fat vacuolization and inflammation have been described in the literature
[91,92]. The abnormalities of the pancreas can be neglected because
they occurred only in the exocrine part. Mild inflammation in the area of
the renal pelvis was seen in both hygiene groups. This is a common
secondary finding in male mice housed together.
The colonization with the three bacteria did not impact the develop-
ment of pre-diabetes and treatment in the DIO model in immuno-
competent C57BL/6 mice. Nevertheless, effects of bacterial
colonization with these agents may occur in immunosuppressed or-
ganisms. H. hepaticus causes inflammatory bowel disease in IL-10-
deficient mice [93,94]. This could have major implications for the
model as colitis increases under HFD [95e97]. An interleukin-10
knockout could also influence staphylococcal infection. S. aureus
manipulates the immune system by enabling colonization through the
stimulation of anti-inflammatory IL-10 production [98]. Higher IL-10
levels were also found in HFD fed mice compared to lean mice in a
sepsis model. HFD adversely affects the immune system and lead to
higher mortality in this study [99]. S. aureus infection is also proin-
flammatory in adipose tissue [100]. The defense mechanisms against
the bacteria depend on the innate immune system [22]. Additional
immunosuppression could increase clinical infection caused by
S. aureus and may influence the DIO model. The same applies to
R. pneumotropicus that shows no clinical infection in immunocom-
petent but in immunodeficient mice [20,21].

5. CONCLUSIONS

Our results show that the DIO model under bacterial colonization with
H. hepaticus, R. pneumotropicus, and S. aureus can be used for pre-
diabetes studies and drug evaluation. In conclusion, no major differ-
ences were observed between colonized mice and SOPF mice.
Treatment with incretin-analogues showed similar results and superior
performance in terms of glucose tolerance for the new compound
MAR709 compared to liraglutide. It should be noted that these results
were obtained in the DIO model using male C57BL/6J mice. They may
not be equally transferred to all diabetes models, to conventionally
housed mice, to immunodeficient strains or colonization with other
bacterial pathogens, but the results provide an indication that exper-
iments do not have to be performed exclusively in SOPF animals. The
potential effect of bacteria and altered microbiome on study results
should always be considered in the experimental design.
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