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Tools for predicting COVID-19 outcomes enable personalized healthcare,
potentially easing the disease burden. This collaborative study by 15 institutions
across Europe aimed to develop a machine learning model for predicting the risk
of in-hospital mortality post-SARS-CoV-2 infection. Blood samples and clinical
data from 1286 COVID-19 patients collected from 2020 to 2023 across four
cohorts in Europe and Canada were analyzed, with 2906 long non-coding RNAs
profiled using targeted sequencing. From a discovery cohort combining three
European cohorts and 804 patients, age and the long non-coding RNA LEF1-AS1
were identified as predictive features, yielding an AUC of 0.83 (95% CI 0.82-0.84)
and a balanced accuracy of 0.78 (95% CI 0.77-0.79) with a feedforward neural
network classifier. Validation in an independent Canadian cohort of 482 patients
showed consistent performance. Cox regression analysis indicated that higher
levels of LEF1-ASI correlated with reduced mortality risk (age-adjusted hazard
ratio 0.54, 95% CI 0.40-0.74). Quantitative PCR validated LEF1-ASI’s adaptability
to be measured in hospital settings. Here, we demonstrate a promising pre-
dictive model for enhancing COVID-19 patient management.

On October 2nd, 2023, the Nobel Assembly at Karolinska Institute
awarded the 2023 Nobel Prize in Physiology or Medicine to Professors
Katalin Kariké and Drew Weissman for their discovery that modifying
the uridine nucleoside to pseudouridine blocks the inflammatory
response consecutive to cell delivery of messenger RNA (mRNA)
molecules, thereby increasing the production of proteins encoded by

the mRNA'. This discovery 15 years ago revolutionized the therapeutic
potential of mRNA and allowed the rapid development of mRNA vac-
cines against SARS-CoV-2. RNAs have come of age, not only for vac-
cines, but for diagnosing and treating disease’.

On March 2020, partners of the EU-CardioRNA COST Action
network®* gathered forces to develop a RNA-based diagnostic test
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based on artificial intelligence (Al) to predict clinical outcomes after
COVID-19°. The rationale for this endeavor was that leveraging the
power of non-coding RNAs may help reduce the devastating con-
sequences of COVID-19 pandemic®. Indeed, risk prediction models
could inform about clinical management of patients. Non-coding
RNAs, unable to encode proteins like the better-known mRNAs, are
regulated in virtually all pathological conditions and, since they are
detectable in the blood, they have emerged in recent years as a new
reservoir of non-invasive candidate biomarkers and therapeutic tar-
gets. Our consortium previously characterized a panel of 2906 cardiac-
enriched or heart failure-associated long non-coding RNAs (IncRNAs)
(FIMICS panel)” which, together with an in-house developed bioinfor-
matics pipeline to maximize the benefit of targeted sequencing (Fir-
alink pipeline®), provides a new tool to discover disease-associated
IncRNAs with potential to help in diagnosis and risk stratification. Since
the FIMICS panel contains many inflammation-related IncRNAs and
inflammation is a hallmark of host response to infection by SARS-CoV-
2, we thought that it may be of usefulness to identify predictors of
COVID-19 outcome.

In the H2020-funded FastTrack COVIRNA project, we aimed to
apply the FIMICS panel to identify IncRNAs predictive of COVID-19
outcome. We used blood samples and clinical data from four cohorts
of COVID-19 patients totaling 1286 patients. Three cohorts with 804
patients were merged as a discovery cohort for feature selection and
choice of best performing machine learning (ML) models. The fourth
cohort of 482 patients was used for validation purposes. Here, we have
built a model based on one IncRNA and age able to predict in-hospital
mortality with an area under the receiver operating characteristic
curve (AUC) of 0.83 (0.82-0.84).

Results

Study design

The study design is illustrated in Fig. 1. The study population consisted
of a total of 1329 patients with COVID-19, shared between a discovery
cohort (n=818) and a validation cohort (n=>511) used for ML model
selection and evaluation, respectively. Three European cohorts were
included in the discovery cohort (PrediCOVID from Luxembourg,
n=141; NAPKON from Germany, n=>557; and ISARIC4C from United
Kingdom, n=120) and one cohort from Canada constituted the vali-
dation cohort (BQC19, n=511). Whole blood samples collected in PAX-
gene RNA tubes at baseline in all patients were centrally stored at -80 °C

Discovery cohort

in a NF $96-900 certified biobank. RNA extraction, quality check, library
preparation and RNA sequencing using the FIMICS panel were per-
formed in our core lab. Raw sequencing data were normalized and
merged with clinical data of patients in our central database. Data were
curated and made available for analysis using ML/AIL Patients with
RNAseq datasets that did not meet the quality criteria described in the
Materials and Methods section, or with blood samples not collected at
the time of enrolment in the study, or for which survival data were not
available, were excluded from the analysis. After curation and quality
checks, combined RNAseq datasets and clinical data from 136 Pre-
diCOVID, 556 NAPKON, 112 ISARIC4C (804 patients for the discovery
cohort) and 482 BQC19 patients for the validation cohort were available
for ML analysis. Overall, a total of 1286 full datasets representing each a
unique patient were available for analysis. After InCRNA selection by ML,
a translational study was conducted by gqPCR in a subgroup of 86
patients from the NAPKON cohort for which leftover RNA was available.

Baseline characteristics of patients in the analysis are reported in
Table 1, in which the three merged European cohorts used for dis-
covery are compared to the Canadian cohort used for validation of the
selected features and ML models. Missing data are indicated and were
imputed using missForest. The median number of days in hospital was
9 (Q1=5,Q3=19) and 8 (Ql =4, Q3=19) for the ISARIC4 and BQC19
cohort, respectively. In all cohorts, patients who died in hospital were
older than survivors, more often had cardiovascular disease, and more
often received oxygen therapy. Being a male was associated with a
higher risk of death in the merged European cohorts. Diabetes and
chronic lung disease were also risk factors in this cohort. Patients in the
Canadian cohort were older, were more often females and were less
often smokers than patients in the merged European cohorts. Sup-
plementary Table 1 shows the characteristics of the three European
cohorts individually, together with the nature of common COVID-19
symptoms across cohorts. The PrediCOVID cohort had younger
patients than the two other cohorts and none of them died during the
follow-up period. There were more smokers at the time of enrolment
in the PrediCOVID cohort than in the NAPKON and ISARIC4C cohorts.
Common baseline symptoms across the European cohorts included
fever, headache, cough and dyspnea, which were less frequent in
survivors (Supplementary Table 1). Ethnicity data was available in the
NAPKON cohort, in which most patients were Caucasian and no
apparent association between ethnicity and survival was found (Sup-
plementary Table 1). In this cohort, vaccinated people had a lower risk

Validation cohort

PrediCOVID (LU) NAPKON (DE) ISARICAC (UK) BQC19 (CA)
(n=141) (n=557) (n=120) (n=511)
(n=138) (n=557) (n=119) P:Z:i‘:y":::iiq (n=510)
(n=136) (n=557) (n=119) co?::;‘i:i’:‘::; . (n=509)

¢ i With in-hospital i
(n=136) (n=556) (n=112) mortality information (n=482)

T

!

Discovery cohort (n=804)
62 non-survivors
742 survivors

Fig. 1| Study design.

Validation cohort: (n=482)
59 non-survivors
423 survivors
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Chronic lung disease (n [%])

3.6E-15
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The p values for continuous variables are from 2-sided Student'’s t test. The p values for categorical variables are from 2-sided Fisher exact test.

Oxygen therapy (n [%])

of death as compared to non-vaccinated people (Supplementary
Table 1). Vaccination data was unavailable in other cohorts.

Machine learning model building and characterization

We performed feature selection on the training set and evaluated five
different ML classifiers (RF, kNN, Logit, MLP, SVM, XGB) on the dis-
covery cohort derived from the 3 combined European cohorts
(n=804) in each of the 100 iterations as described in the Materials and
Methods section and in Supplementary Fig. 1. The median number of
features selected in each iteration was 21 (Q1=16, Q3 =25). The per-
formance of each model to predict in-hospital mortality is shown in
Table 2. The logistic regression model (Logit) with the selected fea-
tures in each iteration provided the most accurate prediction of in-
hospital mortality with an AUC of 0.83 (95% CI 0.81-0.84), an accuracy
of 0.74 (95% CI1 0.73-0.76), a sensitivity of 0.77 (95% Cl1 0.74-0.79), and
a specificity of 0.72 (95% CI 0.69-0.75).

The analysis yielded the selection of two features, age and the
IncRNA LEF1-AS1, which appeared in 82 and 63 iterations out of the 100
iterations performed, respectively (Fig. 2A). LEF1-AS1 is a IncRNA of
3,360 nucleotides transcribed from the lymphoid enhancer binding
factor 1 (LEF1) locus located on chromosome 4. In the merged Eur-
opean cohorts (discovery cohort, n = 804), patients who survived were
younger and had higher expression levels of LEF1-AS1 than patients
who died (Fig. 2B, C). There was a significant albeit moderate negative
correlation between age and LEF1-AS1 in this cohort (Fig. 2D), as well as
in the Validation cohort (r=-0.35, p <0.01). Also, LEF1-AS1 was dif-
ferentially expressed between males and females in the Discovery
(Fig. 2E) and in the Validation cohort (p <0.01 and p=0.02, respec-
tively). The expression of LEFI-AS1 was associated with cancer diag-
nosis with an odds ratio of 0.71[0.55-0.90] and 0.66 [0.52-0.84] in the
NAPKON and BQCI19 cohorts, respectively. The Shapley beeswarm
plots shown in Supplementary Fig. 2 attest that higher age and lower
expression of LEF1-AS1 led to positive SHAP values and thus had
positive impacts on model output.

The five different ML classifiers with the two selected features (age
and LEF1-AS1) were then evaluated on the discovery cohort in 100
iterations, using the same data splits as for feature selection. The model
MLP exhibited the highest AUC of 0.82 (95% CI: 0.80-0.84) (Table 3 and
Supplementary Fig. 3). There was no significant difference in perfor-
mance between the models with the features from each iteration and
the model with age and LEF1-AS1 (Tables 2 and 3). Adding the third best
predictor selected during the feature selection step did not improve the
performance of the prediction model in the balanced (AUC 0.84
[0.82-0.86]. p=0.11 for comparison with the model without oxygen
therapy) and imbalanced (AUC=0.83 [0.82-0.84], p=0.91 for com-
parison with the model without oxygen therapy) discovery dataset.

When predicting in-hospital mortality for the balanced datasets
from the validation cohort (i.e., same number of survivors and
deceased patients, Supplementary Fig. 1), the MLP model achieved an
AUC of 0.84 (95% CI 0.82-0.86), an accuracy of 0.76 (95% CI
0.74-0.78), a sensitivity of 0.77 (95% Cl 0.75-0.79), and a specificity of
0.75 (95% CI 0.72-0.78) (Table 4). We extended the testing to the
original imbalanced datasets using the 2 selected features, yielding the
following metrics for the discovery cohort: AUC 0.83 (95% CI
0.82-0.84), balanced accuracy 0.78 (95% CI 0.77-0.79), sensitivity
0.86 (95% Cl 0.84-0.88), and specificity 0.71 (95% Cl 0.70-0.71); for the
validation cohort, the metrics were AUC 0.83 (95% CI 0.82-0.84),
balanced accuracy 0.75 (95% CI 0.74-0.77), sensitivity 0.79 (95% CI
0.76-0.82), and specificity 0.72 (95% CI 0.71-0.73). The model with age
alone yielded AUC 0.78 (95% ClI 0.77-0.80), 0.79 (95% Cl 0.78-0.80),
0.78 (95% CI 0.76-0.79), and 0.78 (95% CI 0.76-0.79) in balanced/
imbalanced discovery and balanced/imbalanced validation cohort,
respectively. Adding LEF1-AS1 significantly improved the model per-
formance (Fig. 3, Supplementary Fig. 4). Adding sex and/or the other 2
features which were selected more than 40 times in the feature
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Table 2 | Performance of different classifiers to predict in-hospital mortality in the discovery cohort (n = 804) using the features
from each iteration

Classifier AUC (95% CI) Accuracy (95% CI) Sensitivity (95% Cl) Specificity (95% CI) Brier score (95% Cl)
RF 0.81(0.8-0.83) 0.73 (0.71-0.75) 0.74 (0.72-0.76) 0.73 (0.7-0.76) 0.18 (0.17-0.19)
kNN 0.82(0.8-0.84) 0.74 (0.72-0.76) 0.74 (0.71-0.76) 0.74 (0.71-0.77) 0.18 (0.17-0.19)
Logit 0.83 (0.81-0.84) 0.74 (0.73-0.76) 0.77 (0.74-0.79) 0.72 (0.69-0.75) 0.18 (0.17-0.19)
MLP 0.81(0.8-0.83) 0.73 (0.71-0.75) 0.76 (0.73-0.78) 0.71(0.68-0.73) 0.19 (0.18-0.20)
SVM 0.76 (0.73-0.8) 0.75 (0.73-0.76) 0.78 (0.75-0.8) 0.72 (0.69-0.74) 0.19 (0.18-0.20)
XGB 0.74 (0.72-0.76) 0.67 (0.65-0.69) 0.7 (0.67-0.72) 0.64 (0.61-0.67) 0.26 (0.24-0.27)
A Age C LEF1-AS1
p=6.5E-17
(7]
i}
=
" g 81 FDR=1.4E-8
£ ®
: E
[
g 3 o
» c
£
g
S 4]

T T
Survivors(n=742) Non-survivors(n=62)

101 R=-0.21, p=1.1E-9 E
10
(72}
g
81 i
- > 8-
2 3
] E
b S
6 1 -
g 2 5
©
=
g
4 _
>O 4

T
Survivors(n=742)

LEF1-AS1

T
Non-survivors(n=62)

20

Age

T
Female(n=324)

T
Male(n=480)

Fig. 2 | Feature selection on the discovery cohort (n = 804 patients). A Line plot
of the selected times of the 10 most selected features. X-axis: the name of the

features. SEQXXXX are the codes of the probes of the FIMICS panel. SEQ0235 probe
recognizes the IncRNA LEF1-AS1. Y-axis: the number of times a feature appeared in
the 100 iterations of the feature selection process. B, C Box/violin plots of age and
LEF1-AS1 expression, which were significantly increased and decreased in the non-
survivors group (n = 62 patients) of the European cohorts, respectively. P-value is

from 2 sided Student'’s ¢ test. FDR (false discovery rate) is from DESeq2 algorithm.
D Correlation between age and LEF1-AS1. A Pearson Correlation coefficient and a
two-sided t-test p-value are indicated. E Comparison between expression levels of
LEF1-AS1 in males (n = 480 patients) and females (n = 324 patients). P-value is from a
two-sided Student’s ¢ test. In B, C and E, the box is drawn from Q1 (25th percentile)
to Q3 (75th percentile) with a horizontal line inside it to denote the median. The
length of the whiskers indicate 1.5 times of IQR (Interquartile range Q3-Ql).

Table 3 | Performance of different classifiers to predict in-hospital mortality in the discovery cohort using the two selected

features (age and LEF1-AS1)

Classifier AUC (95% CI) Accuracy (95% ClI) Sensitivity (95% CI) Specificity (95% CI) Brier score (95% CI)
RF 0.78 (0.76-0.80) 0.73 (0.71-0.75) 0.76 (0.73-0.78) 0.71(0.68-0.74) 0.19 (0.18-0.20)
kNN 0.81(0.79-0.83) 0.75 (0.73-0.77) 0.85 (0.83-0.87) 0.65 (0.62-0.68) 0.18 (0.17-0.19)
Logit 0.81(0.79-0.83) 0.76 (0.74-0.77) 0.81(0.78-0.84) 0.70 (0.67-0.73) 0.18 (0.17-0.19)

MLP 0.82 (0.80-0.84) 0.77 (0.75-0.79) 0.82(0.80-0.84) 0.72 (0.69-0.75) 0.18 (0.17-0.18)

SVM 0.67 (0.62-0.72) 0.74 (0.72-0.76) 0.82(0.80-0.84) 0.67 (0.63-0.70) 0.21(0.20-0.22)
XGB 0.74 (0.72-0.76) 0.68 (0.66-0.70) 0.69 (0.66-0.71) 0.67 (0.64-0.70) 0.25 (0.24-0.26)
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Table 4 | Performance of the MLP model to predict in-hospital mortality in the balanced/imbalanced discovery and validation

cohorts
Dataset AUC Balanced accuracy Sensitivity Specificity Brier score
(95% ClI) (95% CI) (95% ClI) (95% CI) (95% CI)
Balanced Validation cohort 0.84 (0.82-0.86) 0.76 (0.74-0.78) 0.77 (0.75-0.79) 0.75 (0.72-0.78) 0.17 (0.16-0.18)
Imbalanced Discovery cohort 0.83 (0.82-0.84) 0.78 (0.77-0.79) 0.86 (0.84-0.88) 0.71(0.70-0.71) 0.18 (0.18-0.18)

Validation cohort 0.83 (0.82-0.84)

0.75 (0.74-0.77)

0.79 (0.76-0.82) 0.72 (0.71-0.73) 0.18 (0.18-0.18)

Balanced accuracy means accuracy for balanced data.

Discovery cohort

age M LEF1-AS1 Age+LEF1-AS1

1.0 1
p=1.2E-04
09- p=4.3E-34 =2 3E-06
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Fig. 3 | Comparison of the performance of the models with age alone, LEF1-AS1
alone and the two features using the discovery (n = 804 patients) and the
validation cohort (n = 482 patients), respectively. The evaluation was performed

Validation cohort

age I LEF1-AS1 Age+LEF1-AS1

1.0 1
p=3.0E-18
0.9+
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" p=9.0E-14
0.8 4 p=4.0E-03
I p=1.4E-07
0.7 4
0.6 4
0.5 1
AUC Balanced Sensitivity Specificity
accuracy

on the imbalanced data with 20 repeated 5-fold cross-validation. The error bars
display the confidence interval. We indicated the significant (p < 0.05) difference
compared to the model with 2 features using a two-sided Student’s ¢ test.

selection iterations (oxygen therapy and SEQ0986, Fig. 2A) did not
significantly improve the model performance (Supplementary Fig. 5).
Missing data imputation did not significantly influence results since
the MLP model run without prior imputation of missing age data
(concerning only 4 patients of the Discovery cohort, Table 1) reached
an AUC of 0.83 (95% CI 0.81-0.85) and a balanced accuracy of 0.78
(95% CI1 0.76-0.80) (Supplementary Table 3).

We compared the predictive performance of the MLP model with
age and LEF1-AS1 to a previously published model involving age, sex,
C-reactive protein (CRP) and lactate dehydrogenase (LDH). As shown
in Supplementary Fig. 6, our MLP model and the four-parameter model
had similar capacity to predict mortality in the BQC19 cohort (AUC
0.83 [0.82-0.84] vs 0.85 [0.84-0.86], respectively). Our MLP model
outperformed the four-parameter model in the NAPKON cohort (AUC
0.82[0.81-0.83] vs 0.78 [0.76-0.79], respectively). Brier score analysis
was used to assess the calibration of our MLP model, where a lower
Brier score indicates a more calibrated model. This analysis revealed a
similar (for BQC-19 data) and a lower score (for NAPKON data) for our
MLP model compared to the previously published four-parameter
model (Supplementary Fig. 6).

Survival analysis

We then evaluated the association between the IncRNA LEF1-AS1 and
in-hospital mortality using survival analysis. Patients with high levels of
LEF1-AS1 were at low risk of death (age-adjusted HR 0.59, 95% CI
0.36-0.96) in the ISARIC4C subgroup of the discovery cohort (Fig. 4A).
In the validation cohort, the HR was 0.54 (95% CI 0.40-0.74) (Fig. 5A).
Kaplan-Meier curves using different cut-offs for LEF1-AS1 expression
demonstrate the observed association of high expression levels of
LEF1-AS1 with low risk of death (Figs. 4B and 5B).

Translational perspective

To gain further insights into the feasibility of LEFI-ASI testing in the
hospital environment, e.g., for the development of a molecular diag-
nostic assay, we set-up a quantitative PCR protocol to measure blood
levels of LEF1-AS1 in a subgroup of 84 patients of the NAPKON cohort.
Patient characteristics are shown in Supplementary Table 2. 41 patients
survived and 43 died in hospital. The two groups were age-matched,
sex-balanced and had similar average body mass index (BMI). We first
validated that expression levels of LEF1-AS1 as assessed by quantitative
PCR were correlated with the levels obtained by RNAseq using the
FIMICS panel (Fig. 6A). Moreover, as shown in Fig. 6B, patients who died
during their hospital stay had a lower expression of LEF1-AS1 compared
to survivors (p=0.003). A patient was ~1.4 times as likely to survive at
hospital discharge for every 1 unit (log2 transformed expression)
increase in LEF1-ASI (OR 1.39 95% CI 1.10-1.76). When we dichotomized
the log2-transformed expression levels of LEF1-AS1 using a cut-off
determined by the Youden’s index (to maximize specificity and sensi-
tivity), patients who had LEF1-ASI levels above 0.043 were 5 times more
likely to survive after hospital discharge (OR 5.08 95% CI 2.02-12.73).

Discussion
We hereby report the characterization of a machine learning model
based on age and the IncRNA LEFI1-ASI able to predict in-hospital
mortality of COVID-19 patients with clinically relevant accuracy.
COVID-19 pandemic has impacted peoples’ lives in many different
ways. Healthcare management during the pandemic has been chal-
lenging, partly due to lack of preparedness and ability to triage the
large numbers of people with infection arriving at the Emergency
Department. Methods to help triage and risk stratify patients would
have greatly facilitated the work of healthcare providers. Being able to
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Fig. 4 | Survival analysis in the ISARIC4C cohort (n =112 patients). A Forest plot
of the Hazard Ratio (HR) from Cox regression analysis shows a higher risk of death
for older patients and a lower risk for patients with higher LEF1-AS1 expression
level. The dots and the error bars display the HR and the confidence interval,
respectively. The p values are from a two-sided Wald test. B Kaplan-Meier curves

using the stratified LEF1-AS1 expression with the first quartile (Ql), the median and
the third quartile (Q3), respectively. Patients with LEF1-AS1 expression levels below
or equal to the first quartile (Q1) are at a high risk of death. The p values are from a
two-sided log-rank test.
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Fig. 5 | Survival analysis in the BQC19 cohort (n = 438 patients). Note that 44

patients of the 482 patients of the BQC19 cohort did not have information on the
number of hospitalized days, yet had information on in-hospital mortality. A Forest
plot of the Hazard Ratio (HR) from Cox regression analysis shows a higher risk of
death for older patients and a lower risk for patients with higher LEF1-AS1 expres-
sion level. The dots and the error bars display the HR and the confidence interval,

respectively. The p values are from a two-sided Wald test. B Kaplan-Meier curves
using the stratified LEF1-AS1 expression with the first quartile (Ql), the median and
the third quartile (Q3), respectively. Patients with LEF1-AS1 expression levels below
or equal to the first quartile (Q1) are at a high risk of death. The p values are from a
two-sided log-rank test.

identify patients at high-risk of poor outcome or death, or on the other
hand patients with a high chance of survival, would have allowed a
more personalized approach to the use of healthcare that could have
improved outcomes overall.

Initiated in March 2020 during the first phase of the pandemic,
this study aimed to cope with the above issue and design a new
method to identify patients at high risk of poor outcome after being

infected with SARS-CoV-2. We applied our previously developed
FIMICS panel of IncRNAs’” to whole blood samples of COVID-19
patients collected from four different European cohorts and a Cana-
dian cohort. This panel allows for targeted sequencing, which is about
70 times more sensitive than whole genome sequencing, and therefore
more suitable to detect and quantify potentially weakly expressed
IncRNAs. Other studies have identified biomarkers of disease severity
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Fig. 6 | Quantitative PCR assessment of LEF1-AS1 in whole blood samples col-
lected in PAXgene tubes from 84 NAPKON patients (41 survivors and 43 non-
survivors). A Correlation between qPCR and RNAseq data obtained with the
FIMICS panel. The gray area displays the confidence interval. A Spearman’s rank
correlation coefficient and a two-sided ¢-test p value are indicated. B Box/violin
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plots of LEF1-AS1 expression, which was decreased in deceased patients (n=43
patients). The box is drawn from Q1 (25th percentile) to Q3 (75th percentile) with a
horizontal line inside it to denote the median. The length of the whiskers indicate
1.5 times IQR (Interquartile range Q3-Ql). P-value is from a two-sided Student’s
t-test.

and outcome of COVID-19°". We previously reported that LEF1-AS1
expression in peripheral blood cells was negatively associated with
disease severity and mortality in a modestly sized cohort of COVID-19
patients'?, which is consistent with our present investigation in whole
blood samples. Models to predict mortality of COVID-19 patients have
been previously developed, yet they suffer from a high risk of bias"”.
The MLP model reported in the present study with only two features
(age and LEF1-ASI1) showed similar predictive performance in the BQC-
19 cohort and higher performance in the NAPKON cohort compared to
a model including age, sex, CRP and LDH. As compared to previous
reports”, the strength of our study relies on its methodological aspects
which reduce the risks of bias. We conducted a multi-center and well
powered study, with patient numbers well above previous studies. We
have used a machine learning pipeline including feature selection and
testing of multiple machine learning models with Discovery and Vali-
dation cohorts, each split into training and testing subgroups. In each
cohort, we have evaluated models on the imbalanced datasets using
twenty times repeated 5-fold cross validation.

Even though we observed a consistently low expression of LEF1-AS1
in patients with high risk of death, a functional role of LEF1-AS1 in
COVID-19 outcome has still to be demonstrated. LEF1-AS1 is an antisense
RNA to the lymphoid enhancer binding factor 1 (LEF1) gene encoding a
transcription factor expressed in pre-B and T cells which is involved in
proliferation, activation of genes in the Wnt/B-catenin pathway and in
regulating systemic inflammation. Consistent with our observed lower
expression of LEF1-AS1 in severe patients, recent studies have illustrated
that B cells undergo significant depletion following SARS-CoV-2
infection. Additionally, pulmonary fibrosis stems from damage to
alveoli and is a hallmark of SARS-CoV-2 infection. Recent work has
demonstrated that alveolar damage can be suppressed through activa-
tion of LEF1, which is mediated by the transcription factor kriippel-like
factor 4, thus hinting at a possible protective role of LEF1 following
alveolar injury and SARS-CoV-2 infection®. These studies suggest a link
between LEF1/LEFI1-ASL, T or B cell proliferation, alveolar protection and
COVID-19 severity which warrants further investigation.

The machine learning protocol used in the present study was
inspired by the method from ref. 16, which used Boruta, a random
forest-based algorithm, to select features from electronic health
records and evaluate a quantitative marker of coronary artery disease.
We adapted their design to suit RNAseq data by adding DESeq2 for
differential expression analysis. Many conventional statistical

methods, such as t-tests and ANOVA, assume normal data distribu-
tions, which is often not the case for data generated by high
throughput platforms, such as sequencing. New machine learning
methods are able to deal with scale, diverse data distributions, and
non-linearity, such as large omics datasets”. Multiple machine learning
algorithms, including deep learning algorithms, have been developed
to build powerful predictive models linking omics data to prediction of
clinical outcomes'®". While benefiting from the modeling flexibility
and robustness, these models often suffer from difficulty in inter-
preting the role of each individual feature. Identifying biomarkers
functionally associated with disease progression could help establish
novel hypotheses regarding prevention, diagnosis, and treatment of

complex human diseases™.

Translational perspectives

The present investigation was conducted using patient’s whole blood
samples collected in PAXgene RNA tubes, which are certified for
in vitro diagnostics. Other matrices could also be used and we do not
exclude that other biomarkers may be found with relevant predictive
value. Using quantitative PCR, a technique available in most hospital
labs and cost-effective, we confirmed that LEF1-AS1 was readily and
reliably detected. Furthermore, we validated that low levels of LEF1-AS1
were associated with a high risk of death. These data support the
potential translation of our findings to clinical application.

With the current excitement for the use of RNA as both biomarker
and therapeutic targets, IncRNAs may constitute a novel generation of
actionable disease-monitoring biomarkers and drugs. Our data show-
ing that IncRNAs are associated with mortality of COVID-19 patients
support their potential as theranostic drugs, usable for both risk
assessment and treatment of COVID-19. Circular RNAs particularly
raised interest for future drug development since these closed RNA
molecules are not only able to more stably induce therapeutic protein
production compared to linear RNAs, they also have potential to
capture and sequester unwanted molecules and thereby function as
antisense RNAs, or they can regulate RNA editing”. Whether IncRNAs
find utility for COVID-19 remains to be determined, as well as whether
circRNAs hold similar or superior value to reduce disease burden. It
will be interesting in such endeavors to develop multimodal approa-
ches taking into account not only baseline clinical characteristics and
biomarkers but also mental health indicators, considering the impor-
tance of pre-existing health problems and especially psychological
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problems in the development of post-COVID condition®. It would be
interesting to apply a similar approach to see whether IncRNAs are
associated with the long term impact of COVID-19, such as long
COVID*. Considering the prevalence and devastating consequences of
this novel disease*, setting-up methods to predict the risk of devel-
oping long COVID symptoms would have a significant impact on the
enormous burden of long COVID or post-COVID symptoms.

Limitations

This work has some limitations. First, since patients enrolled in this
study were from the first phase of the pandemic, we assume that most
if not all patients were infected by the original SARS-CoV-2 variant.
Also, there was limited information on vaccination status due to the
fact that there were no widely available vaccines at the time of study
enrolment. However, we cannot exclude that some patients were
infected by other variants. Hence, we could not test the performance
of the model in patients infected by different viral variants. Second,
only limited clinical descriptions of the patients enrolled in the study
could be provided due to heterogeneity of cohorts and difficulty to
merge the clinical data from different cohorts. Third, none of the
participants of the Luxembourg PrediCOVID cohort died in hospital,
most probably due to the nationwide mass screening program, which
allowed an improved control of the virus and an earlier hospitalization
of patients®. Since this cohort was included at project inception and
despite that the main aim of this study was to predict in-hospital
mortality, it was kept in analyses and we verified that its removal does
not affect study findings. Fourth, survival analysis using Cox regression
and Kaplan-Meier curves could be conducted only in the ISARIC4C
and BQC19 subgroups for which we had data on time to death. Fifth,
even though we tested five different ML classifiers, others could pro-
vide stronger predictive value. Lastly, a full functional characterization
of the role of LEFI1-ASI in post COVID-19 outcome remains to be done.
We identified a machine learning-supported model combining age and
the IncRNA LEF1-AS1 predictive of COVID-19 in-hospital mortality. This
model may find utility for the management of COVID-19 patients. Its
usefulness for long COVID patients remains to be tested.

Methods

Patient cohorts

This study was performed in full compliance with the Declaration of
Helsinki. Involved cohorts comprise COVID-19-positive patients aged
18 years and older from Luxembourg (PrediCOVID study), Germany
(NAPKON study), United Kingdom (ISARIC4C study), and Canada
(BQC19 study). The Luxembourg PrediCOVID study was approved by
the National Research Ethics Committee of Luxembourg (study
Number 202003/07) and was registered under ClinicalTrials.gov
(NCT04380987)*. The ISARIC-4C study was approved by the Oxford C
Research Ethics Committee (Reference 13/SC/0149) (details on study
design, registration and approvals are available in the online supple-
ment). For the NAPKON Cross-Sectoral Platform, a primary ethics vote
was obtained at the Ethics Committee of the Department of Medicine
at Goethe University Frankfurt, Germany (local ethics ID approval 20-
924). All further study sites received their local ethics votes at the
respective ethics committees. The NAPKON Cross-Sectoral Platform is
registered at ClinicalTrials.gov (Identifier: NCT04768998)”. The Bio-
banque québécoise de la COVID-19 (BQC19) study has been approved
by the Research Ethics Board of the Center Hospitalier de I'Université
de Montréal (CHUM) (#13.389)%. Periods of patient enrolment and
biological samples collection were as follows: May 2020 - Present for
PrediCOVID, July 2020 - Present for NAPKON, February 2020 - Sep-
tember 2020 for ISARIC4C, March 2020 - Present for BQC19. Informed
consent was signed by all patients enrolled in these studies. Legal
agreements for material and data sharing have been signed between
each cohort and COVIRNA project coordinator Luxembourg Institute
of Health (LIH).

Sample storage and RNA extraction

All procedures were performed in the ISO 17025, ISO 9001, and CAP
accredited facility of Firalis. Whole blood samples collected in PAX-
gene™ Blood RNA tubes (PreAnalytiX, Cat. #762165; BD Biosciences,
Aalst, Belgium) were shipped from the different patient cohorts to our
central NF $96-900 certified Biobank and were stored at -80 °C. Whole
blood samples were randomized according to age and sex in batches
of 64 prior to RNA extraction. Total RNA was extracted with the
KingFisher Apex instrument (Cat. #5400930P, Thermo Scientific,
Waltham, MA, USA) using the MagMAX™ for Stabilized Blood Tubes
RNA Isolation Kit (Cat. #4451894, Invitrogen, Thermo Scientific).
Extracted RNA samples were quantified using the Qubit 3.0 fluo-
rometer (Cat. #Q33216, Invitrogen, Thermo Fisher Scientific) with the
RNA high sensitivity Assay kit. Sample quality was assessed using a
TapeStation 4150 electrophoresis platform (Cat. #G2992AA, Agilent,
Santa Clara, CA, USA).

Library preparation, targeted RNA sequencing and raw data
analysis

An extended version of this section is available in the Supplementary
Material. Briefly, a second stratified randomization by age and sex
was performed in batches of 46 samples prior to library preparation.
The libraries were generated by the EpMotion 5075t NGS solution
(Cat. #5075000962, Eppendorf, Hamburg, Germany) using the
KAPA Stranded RNAseq Kit with RiboErase (HMR; Cat. #634444,
Roche diagnostics, Basel, Switzerland) for ribosomal RNA (rRNA)
depletion and total RNA libraries construction. The clean-ups were
performed with Celemag clean-up beads (Cat. #CMCB57.6, Cele-
mics, Seoul, Korea) and the purified libraries were dual indexed
during a 13-cycle PCR using the library preparation box #2 (Cat. #
LI20D96, Celemics).

The indexed libraries were then captured using the FIMICS panel
targeting 2906 IncRNAs’ (Cat. #B05096, Celemics) and purified using
Celemag streptavidin coated magnetic beads (Cat. #CMSB5.76, Cele-
mics) and Celemics wash buffer (Cat. #TC4096, Celemics). The on-
beads captured sequences were enriched by a 14 cycle PCR and pur-
ified using Celemag clean-up beads before quality assessment and
quantification. The libraries were then normalized and pooled prior to
being sequenced on the NextSeq 2000 platform (Cat. #20038897,
Illumina Inc., San Diego, CA, USA) using the NextSeq 2000 P2 kit (Cat.
#20046811, lllumina Inc.). Raw sequencing data were analysed using
the Firalink pipeline®.

Data management and curation

RNA sequencing (RNAseq) datasets with a relative standard deviation
<0.46 and with a number of IncRNAs detected with more than 10 reads
in less than 10% of the total FIMICS IncRNAs were excluded. LncRNA
data were merged with age, sex, and smoking status for the feature
selection process. The missing values of these clinical data were
imputed using the missForest function from the missForest R
package”. Voom-transformed RNAseq data was used for ML analysis™.

Machine learning models

The three European cohorts (PrediCOVID, NAPKON, ISARIC4C) were
combined and used as a discovery cohort, on which a machine learning
procedure was iterated 100 times (Supplementary Fig. 1), following
these steps: (1) random selection of 80% of deceased patients and a
balanced set of living patients to construct a training dataset; (2) use of
the remaining 20% of deceased patients along with a balanced set of
the remaining living patients to form a test dataset; (3) identification of
differentially expressed IncRNAs in the training dataset with a false
discovery rate (FDR) < 0.00001 using the DESeq2 algorithm®; (4) fea-
ture selection in R on clinical variables (age, sex, and smoking status)
and differentially expressed IncRNAs from the training dataset using
the Boruta function from the Boruta package® and the vif function
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from the rms package (https://CRAN.R-project.org/package=rms) with
a cut-off of 5 to avoid multi-collinearity; (5) use of repeated (2x) 5-fold
cross-validation to fine-tune various machine learning models,
including random forest (RF), k-nearest neighbor (kNN), logistic
regression (logit), multilayer perceptron (MLP), XGBoost (XGB) and
support vector machine (SVM) model in the training dataset using
scikit-learn package in Python; (6) evaluation of the model in the test
dataset. Features that appeared more than 70 times during the 100
iterations were retained as the selected features that were used to train
and evaluate ML models by repeating steps 1, 2, 5 and 6 within 100
iterations with the same seed. The algorithm yielding the model with
the highest AUC with the selected features in the test cohort was
retained for use in the validation cohort.

The BQC19 cohort was used as the validation cohort. We repe-
ated steps 1 and 2 described above 100 times to split the validation
cohort into training and test datasets. In each iteration, a model was
trained with the algorithm selected in the discovery cohort using
with the features selected there, and evaluated. We also evaluated
the selected model on the original imbalanced datasets from the
discovery and validation cohort respectively using repeated (20x)
5-fold cross-validation. To test the model robustness, we compared
the selected model to the model after adding the top 4 ranked but
not selected IncRNAs. The performance metrics, including the AUC,
balanced accuracy (accuracy for balanced dataset), sensitivity, and
specificity, were reported for the mean and 95% Cls across 100
iterations or the cross-validation. The sensitivity and specificity were
determined using 0.5 as the threshold for the predicted class
probability.

Quantitative PCR (qPCR)

RNA samples extracted from whole blood samples collected in
PAXgene tubes were used to assess the expression levels of LEF1-
ASL. 200 ng of each RNA sample were reverse transcribed with the
High-capacity cDNA reverse transcription kit (ThermoFisher Scien-
tific, Cat # 4368814). To avoid any batch effect, cDNA samples were
then randomized in 3 different batches prior to being assessed by
quantitative PCR using the CFX-OPUS-96 Dx qPCR device (Biorad,
Temse, Belgium) with IQ SYBR Green Supermix (Biorad). Each
sample was quantified in duplicate. The following primer sequences
designed with the Beacon Designer software (Premier Biosoft) were
used for LEF1-AS1: forward 5’- GTCCATGCTATGACCATCTCCA -3/,
reverse 5- ACACGAGTTAAGGCACATTCA -3’; and for SF3A1 which
was used as normalizer: forward 5- GATTGGCCCCAGCAAGCC-3,
reverse 5- TGCGGAGACAACTGTAGTACG-3'. Splicing Factor 3a
Subunit 1 (SF3A1) was chosen as a housekeeping gene for normal-
ization. Expression levels were calculated by the relative quantifi-
cation method (AACt) using the CFX Manager 2.1 software (Bio-Rad).

Statistical analysis

Continuous and categorical variables were compared with two-sided
unpaired Student’s ttest and Fisher’'s exact test, respectively. A
Mann-Whitney test was used to compare non-normally distributed
datasets, as assessed by the Shapiro-Wilk test. Correlation between
gPCR and RNAseq data was evaluated using the Spearman’s rank test.
Cox proportional hazards regression was used to test the association
of IncRNAs with survival using the coxph function from the survival R
package (https://cran.r-project.org/web/packages/survival/index.
html). For survival time, the start date was the date of admission,
and the end date was the date of death or the date of discharge.
Association between IncRNAs and survival is reported as hazard ratio
(HR), along with a measure of precision (95% confidence interval, CI).
The significance level was set at 0.05. Kaplan-Meier curves stratified
by IncRNA quartile were generated for survival analyses using the
ggsurvplot function from the survminer R package (https://cran.r-
project.org/web/packages/survminer/index.html).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Due to legal and ethical issues related to General Data Protection
Regulation guidelines, the data used in this study is available upon
request to the COVIRNA consortium. Please email the corresponding
author for more details and information about data access
(yvan.devaux@lih.lu).

Code availability

Code accompanying the paper “Development of a long noncoding
RNA-based machine learning model to predict COVID-19 in-hospital
mortality” is available here: https://doi.org/10.24433/C0.6166592.v1*,
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