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A B S T R A C T   

COVID-19 lockdowns reduced nitrogen dioxide (NO2) and fine particulate matter (PM2.5) emissions in many 
countries. We aim to quantify the changes in these pollutants and to assess the attributable changes in mortality 
in Jiangsu, China; California, U.S.; Central-southern Italy; and Germany during COVID-19 lockdowns in early 
2020. Accounting for meteorological impacts and air pollution time trends, we use a machine learning-based 
meteorological normalization technique and the difference-in-differences approach to quantify the changes in 
NO2 and PM2.5 concentrations due to lockdowns. Using region-specific estimates of the association between air 
pollution and mortality derived from a causal modeling approach using data from 2015 to 2019, we assess the 
changes in mortality attributable to the air pollution changes caused by the lockdowns in early 2020. During the 
lockdowns, NO2 reductions avoided 1.41 (95% empirical confidence interval [eCI]: 0.94, 1.88), 0.44 (95% eCI: 
0.17, 0.71), and 4.66 (95% eCI: 2.03, 7.44) deaths per 100,000 people in Jiangsu, China; California, U.S.; and 
Central-southern Italy, respectively. Mortality benefits attributable to PM2.5 reductions were also significant, 
albeit of a smaller magnitude. For Germany, the mortality benefits attributable to NO2 changes were not sig
nificant (0.11; 95% eCI: − 0.03, 0.25), and an increase in PM2.5 concentrations was associated with an increase in 
mortality of 0.35 (95% eCI: 0.22, 0.48) deaths per 100,000 people during the lockdown. COVID-19 lockdowns 
overall improved air quality and brought attributable health benefits, especially associated with NO2 improve
ments, with notable heterogeneity across regions. This study underscores the importance of accounting for local 
characteristics when policymakers adapt successful emission control strategies from other regions.   

1. Introduction 

Unprecedented public health interventions were implemented 
worldwide in early 2020 to control the COVID-19 pandemic. The 
decrease in transportation and non-essential business activities during 
the COVID-19 lockdowns temporarily led to a substantial reduction in 
air pollution in many countries, particularly nitrogen dioxide (NO2) and, 
to a lesser degree, fine particulate matter (PM2.5) (Shi et al., 2021; 
Venter et al., 2020; Zhang et al., 2022). Ambient air pollution is the 
leading environmental risk factor for mortality, contributing to over 4.5 

million deaths globally in 2019 (GBD 2019 Risk Factors Collaborators, 
2020). Therefore, the large-scale lockdown policies in early 2020 pro
vided a unique opportunity to assess the impacts of reduced air pollution 
on mortality in regions with varying air pollution levels and socioeco
nomic statuses where mortality was only mildly impacted by the early 
stages of the pandemic itself. 

Previous studies have assessed the mortality benefits attributable to 
air pollution reductions during COVID-19 lockdowns (Achebak et al., 
2021; Chen et al., 2020; Giani et al., 2020; Son et al., 2020). However, 
the reported attributable mortality benefits from these studies were 
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inconsistent in magnitude. In addition to the variation in the duration of 
the lockdown period across studies, the disparity in estimates mainly 
derived from two aspects of the assessment process: first, the quantifi
cation of air pollution changes due to lockdowns, and second, the se
lection of exposure–response functions (ERFs) to characterize the 
relationship between air pollution and mortality. Both elements make it 
challenging to accurately assess the attributable mortality benefits. 

One common approach to quantify air pollution changes due to 
COVID-19 lockdowns is the difference-in-differences (DiD) analysis 
(Chen et al., 2020; Shi et al., 2021; Son et al., 2020). This approach, 
which compares the air pollution changes before and after the imple
mentation of lockdowns versus the corresponding changes in the same 
calendar periods in previous years, controls for the long-term trend and 
seasonality of air pollution (Chen et al., 2020; Shi et al., 2021). 
Removing these impacts is essential because air quality levels typically 
vary from winter to spring (seasonality) and, in some countries, present 
a long-term decreasing trend due to air pollution mitigation policies in 
recent years (long-term trend). However, air pollution changes esti
mated with the DiD analysis cannot be fully attributed to the lockdown 
because this approach does not fully control for the influences of 
meteorological conditions (Achebak et al., 2020). Failing to decouple 
the meteorological impacts may lead to a biased estimate of air pollution 
changes due to lockdowns. 

Utilizing ERFs from existing epidemiological literature is a common 
practice in studies assessing the health impacts of lockdown-related air 
pollution changes. However, substantial spatial heterogeneity in ERFs 
exists (Chen et al., 2018; Liu et al., 2019; Meng et al., 2021), especially 
between developed and developing countries and between low-polluted 
and high-polluted regions (Chen et al., 2018; Liu et al., 2019). In addi
tion, the association between short-term air pollution exposure and 
health outcomes can vary over time in the long run (Chen et al., 2021a). 
Therefore, using localized ERFs from recent data is important when 
assessing the mortality benefits attributable to air pollution changes due 
to the lockdowns. 

This study aims first to quantify the changes in NO2 and PM2.5 due to 
COVID-19 lockdowns in early 2020 and then to assess the impacts of 
these air pollution changes on mortality in Jiangsu Province, China; 
California, U.S.; Central-southern Italy; and Germany, four regions that 
implemented lockdowns but were not severely affected by the pandemic 
in early 2020. We utilized a machine-learning-based meteorological 
normalization technique (Grange and Carslaw, 2019; Grange et al., 
2018) to account for the meteorological impacts; used the DiD approach 
to control for time trends in the quantification of air pollution changes 
due to the lockdowns; and applied region-specific ERFs estimated from 
recent data using a causal inference approach in the assessment of 
attributable mortality impacts. 

2. Material and methods 

2.1. Study regions 

To reduce the impact of COVID-19 deaths and the disruption and 
overload in healthcare systems, this study focused on four regions where 
air pollution and mortality data were available, and which implemented 
COVID-19 lockdown measures but were in general not severely affected 
by the COVID-19 pandemic in early 2020: Jiangsu Province in China, 
California in the U.S., Central-southern Italy, and Germany. To assess 
the severity of COVID-19 impacts, we mapped the excess mortality 
during the COVID-19 outbreak in early 2020 using a two-stage inter
rupted time-series analysis (Scortichini et al., 2020) and found that each 
region had a relatively small COVID-19 mortality burden (Methods S1; 
Northern Italy was excluded due to its high excess mortality). The 
region-specific spatial units used in this study were counties in Jiangsu, 
China; California, U.S.; and Germany; and municipalities in Central- 
southern Italy, which were the finest possible administrative units 
where mortality data were accessible in each region. 

2.2. COVID-19 lockdown period 

In the main analysis, we defined the COVID-19 lockdown period in 
each region using the start and end dates of national and regional 
lockdown policies that included stay-at-home requirements, strict travel 
restrictions, and closure of non-essential businesses: January 31 – March 
14, 2020 in Jiangsu, China; March 19 – May 07, 2020 in California, U.S.; 
March 09 – May 04, 2020 in Central-southern Italy; and March 22 – May 
04, 2020 in Germany. Details of the region-specific lockdown policy 
timelines are described in Methods S2. 

Given that behavioral changes in response to the COVID-19 
pandemic might have started before official lockdown policies were 
implemented and might continue after the policies ended, we utilized 
mobility data to define alternative lockdown periods as a sensitivity 
analysis. The data sources for mobility data, the calculation process, and 
the defined mobility-based lockdown periods are described in detail in 
Methods S3. 

2.3. Air pollution and meteorological data 

Hourly site-specific NO2 and PM2.5 monitoring data from 2015 to 
2020 were obtained from the China National Air Pollution Monitoring 
System for Jiangsu, China; the U.S. EPA Air Quality System for Cali
fornia, U.S.; and the official monitoring network of the German Envi
ronment Agency for Germany. For Central-southern Italy, we collected 
NO2 and PM2.5 monitoring data with daily resolution from the Italian 
Institute of Environmental Research and Protection because hourly data 
were available for only 6.54 % of PM2.5 monitoring sites, and we aimed 
to maintain a consistent temporal resolution for both air pollutants. The 
number of monitoring sites and spatial units with monitoring sites are 
listed in Table S1. 

Hourly meteorological variables, including 2 m temperature, 2 m 
dew temperature, boundary layer height, total precipitation, surface 
pressure, surface net solar radiation, surface solar radiation downwards, 
downward UV radiation at the surface, total cloud cover, 10 m u- 
component of wind, 10 m u-component of neutral wind, 10 m v- 
component of wind, and 10 m v-component of neutral wind, were ob
tained from the fifth-generation European Centre for Medium-Range 
Weather Forecasts atmospheric reanalysis of the global climate (ERA5) 
dataset (Hersbach et al., 2018). Meteorological data were extracted 
using the geographic coordinates of air quality monitoring sites and 
matched to the site-specific records of NO2 and PM2.5 concentrations in 
each study region. 

2.4. Meteorological normalization 

Rapidly changing meteorological conditions may affect air pollutant 
concentrations even when emissions remain the same. Therefore, we 
applied a machine learning-based meteorological normalization tech
nique to disentangle the impacts of meteorological conditions (Grange 
and Carslaw, 2019; Shi et al., 2021). The meteorological normalization 
was performed at the hourly and site-level for Jiangsu, China; California, 
U.S.; and Germany, and on the daily and site-level for Central-southern 
Italy due to the unavailability of hourly PM2.5 concentrations in most 
Italian monitoring stations. We first developed a Random Forest (RF) 
model independently for each pollutant and January to May each year 
(2015 to 2020), in each spatial unit where one or multiple monitoring 
sites were located, within each study region. Seventy percent of the 
dataset was randomly selected to train the RF model, and the remaining 
30 % were used to evaluate the performance of the trained model. 
Predictors included time variables (Unix time, Julian day, day of the 
week, and hour of the day), location (longitude, latitude), and all 
meteorological variables obtained from the ERA5 reanalysis dataset. In 
terms of the hyperparameters of the RF model, the number of trees was 
set to 300, the minimum node size was 5, and the number of variables 
that may split at each node was set to 4. We set these parameters based 
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on the model settings from a previous study, without performing tuning, 
because the models were found to be insensitive to the choice of pa
rameters (Grange et al., 2018). Model performance was evaluated using 
coefficient of determination (R2) and root mean square error (RMSE) in 
the testing dataset with a daily resolution. 

The meteorological normalization of the air pollution time series was 
achieved by repeatedly sampling meteorological factors and making 
predictions using the trained RF models for each year and each spatial 
unit. We randomly resampled the meteorological factors from the whole 
study period without replacement 1000 times, producing 1000 model 
predictions for each air pollution observation. These predictions were 
then aggregated using the arithmetic mean to obtain the deweathered 
air pollution concentration, representing the expected air pollution level 
when the meteorological conditions were “average” (Shi et al., 2021). 
Finally, we calculated the daily deweathered air pollution concentra
tions in each spatial unit by averaging the hourly site-specific data for 
Jiangsu, China; California, U.S.; and Germany, and daily site-specific 
data for Central-southern Italy. 

2.5. Difference-in-differences analysis 

After decoupling the impacts of varying meteorological conditions, 
we applied a DiD analysis to further account for long-term and seasonal 
air pollution trends when quantifying the air pollution changes due to 
the COVID-19 lockdowns. Specifically, for each study region, we 
calculated spatial-unit-specific changes in average deweathered air 
pollution concentrations during the COVID-19 lockdown versus a 
reference period before the lockdown in early 2020 (defined below). We 
then compared these changes with changes between the corresponding 
calendar periods during 2015 to 2019. This process was repeated for all 
1000 samples of the deweathered air pollution concentrations to 
calculate the 95 % empirical confidence intervals (95 % eCIs) of the air 
pollution changes due to the lockdowns based on the 2.5th and 97.5th 

percentiles of the distribution of the results. 
We defined the reference period as January 1, 2020 to seven days 

before the lockdown in each region started. The seven days immediately 
preceding the lockdowns were excluded because this period was 
considered a transition period. In a sensitivity analysis, we used two 
alternative reference periods: a 21-day period ending seven days before 
the start of the lockdown and a period of the same duration as the 
lockdown ending seven days before the lockdown (Methods S4). 

2.6. Assessment of mortality changes attributable to lockdown-induced air 
pollution changes 

To assess the mortality changes attributable to lockdown-induced air 
pollution changes, we obtained region-specific associations between 
short-term changes in PM2.5 and NO2 concentrations and changes in 
daily all-cause mortality rates on lag 01 or 02 days from a previous study 
(Ma et al., 2024). In brief, the ERFs were estimated using 2015–2019 
data separately for Jiangsu, China; California, U.S.; Central-southern 
Italy; and Germany, utilizing an interactive fixed effects (IFE) model. 
The IFE model, a causal modeling approach, accounted for unmeasured 
time-varying confounders across different spatial units by decomposing 
them into common time-varying factors with corresponding unobserved 
spatial unit level loading parameters (Ma et al., 2024) (see details in 
Methods S5). The coefficient of the IFE model can be interpreted as the 
change in the daily mortality rate for each unit change in the daily air 
pollution level, which was suitable for the purpose of the current study. 
The ERFs from the single-pollutant models were used in the main 
analysis, and we utilized the two-pollutant model ERFs in a sensitivity 
analysis. Spatial-unit-level population data in 2020 were collected from 
the official departments of each study region (Table S2). 

For each study region, we calculated the attributable change in total 
mortality during the lockdown period in each spatial unit as follows: 

ΔMortalityi = βΔAir pollutioni × Number of lockdown days  

ΔMortalityi is the mortality change attributable to the air pollution 
change during the lockdown in spatial unit i. β is the region-specific 
association between short-term changes in PM2.5 or NO2 concentra
tions and changes in the daily all-cause mortality rate. ΔAir pollutioni is 
the quantified air pollution change due to the lockdown in spatial unit i. 
Number of lockdown days is the duration of COVID-19 lockdown period 
in each study region. We calculated the 95 % eCIs using Monte Carlo 
simulations (n = 10,000) based on the distribution of estimates of ERFs 
and air pollution changes. We also conducted a stratified analysis of 
urban versus rural spatial units to explore potential urban/rural differ
ences in attributable mortality changes. 

2.7. Sensitivity analysis 

We performed several sensitivity analyses to test the robustness of 
our estimated air pollution changes due to the lockdown and the asso
ciated impacts on mortality: (a) we used mobility-based lockdown pe
riods instead of policy-based lockdown periods; (b) we used two 
alternative reference periods in the DiD analysis; and (c) we applied the 
ERFs from two-pollutant models instead of single-pollutant models in 
the estimation of attributable mortality changes. 

3. Results 

3.1. Description of air pollution in early 2020 

This study covered over 27 million people in Jiangsu, China; 37 
million in California, U.S.; 13 million in Central-southern Italy; and 55 
million in Germany. During the reference period in 2020, the average 
daily NO2 concentration ranged from 20.3 µg/m3 in Germany to 40.3 
µg/m3 in Jiangsu, China; and the average daily PM2.5 concentration 
ranged from 8.2 µg/m3 in California, U.S. to 72.1 µg/m3 in Jiangsu, 
China. Compared to the reference period, the average concentrations of 
both NO2 and PM2.5 were lower in the lockdown period in all study 
regions, except for PM2.5 in Germany (Table S3). However, this simple 
comparison cannot demonstrate that COVID-19 lockdowns reduced air 
pollution because both seasonality and meteorological conditions affect 
air pollution changes. 

3.2. Air pollution changes due to COVID-19 lockdowns 

The RF models demonstrated satisfactory performance, with an R2 ≥

0.80 for all years in Jiangsu, China; California, U.S.; and Germany, and 
an R2 ≥ 0.60 for NO2 and ≥ 0.50 for PM2.5 for all years in Central- 
southern Italy (Table S4). 

The temporal trends in deweathered air pollution concentrations 
were much smoother than the trends in observed concentrations, as the 
impacts from daily weather variations were normalized (Fig. S1). Fig. 1 
shows the time series of the observed and deweathered air pollution 
concentrations from January to May 2020 and the average concentra
tions in the same calendar period from 2015 to 2019 in all four study 
regions. The overall decreasing trends of 2015–2019 deweathered NO2 
and PM2.5 concentrations from January to May in all study regions 
indicated the seasonality of air pollution. In addition, in all regions, 
especially Jiangsu, China and Germany, the concentrations of both 
observed and deweathered NO2 were consistently higher from 2015 to 
2019 compared to 2020, even in the reference period, indicating a long- 
term decreasing trend. 

Using DiD analyses to further account for these long-term and sea
sonal trends, we calculated the air pollution changes due to the lock
down in each spatial unit in each region (Fig. 2). We observed significant 
reductions in average daily mean NO2 concentrations due to COVID-19 
lockdowns in all study regions except Germany: − 8.98 (95 % eCI: − 9.67, 
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− 8.30) µg/m3 in Jiangsu, China; − 2.27 (95 % eCI: − 2.65, − 1.88) µg/m3 

in California, U.S.; − 4.65 (95 % eCI: − 6.26, − 3.04) µg/m3 in Central- 
southern Italy; and 0.02 µg/m3 (95 % eCI: − 0.46, 0.51) in Germany. 
We estimated smaller reductions in average daily PM2.5 concentrations 
of − 6.62 (95 % eCI: − 7.75, − 5.49) µg/m3 in Jiangsu, China; − 0.90 (95 
% eCI: − 1.05, − 0.75) µg/m3 in California, U.S.; and − 0.63 (95 % eCI: 
− 2.14, 0.88) µg/m3 in Central-southern Italy. For Germany, the average 
daily PM2.5 level increased significantly by 2.27 (95 % eCI: 1.91, 2.63) 
µg/m3. 

Fig. 3 displays the spatial distribution of average daily air pollution 

changes due to the lockdowns in each study region. Except for the 
relatively consistent reduction in NO2 and PM2.5 concentrations in all 
studied counties in Jiangsu, China, a mixed spatial pattern was observed 
for both air pollutants in all other study regions. We observed signifi
cantly larger reductions in NO2 and PM2.5 concentrations in urban 
versus rural areas of California, U.S. and Central-southern Italy (P <
0.05). In Germany, urban counties experienced a reduction in NO2, 
whereas rural counties had an increase; in addition, the increase in 
PM2.5 in urban counties was significantly smaller than in rural counties 
(Table S5). We could not assess the urban–rural difference in Jiangsu, 

Fig. 1. Observed and deweathered daily NO2 and PM2.5 concentrations in all four study regions from January to May of 2020 versus 2015–2019 This figure 
displays the time-series of the observed and deweathered air pollution concentrations in January to May 2020 and the average concentration in the same calendar 
period from 2015 to 2019 in all four study regions. For Jiangsu, China, we used Chinese lunar calendar dates to account for the Chinese New Year holiday. 

Fig. 2. Distribution of spatial-unit-level changes in average daily mean NO2 and PM2.5 concentrations due to the COVID-19 lockdown in each region These 
box plots show the distribution of spatial-unit-level changes in average daily mean NO2 and PM2.5 concentrations (µg/m3) due to the COVID-19 lockdown in each 
study region. Lower and upper box boundaries represent the 25th and 75th percentiles of the distribution; lower and upper error lines represent 1.5 interquartile 
range below the third quartile and above the first quartile; the horizontal line and triangle inside boxes represent median and mean values, respectively. The black 
dots represent outliers. 
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China because only three rural counties had air quality monitoring sites. 
Sensitivity analyses showed that our estimated air pollution changes 

due to the lockdowns remain robust when using mobility-based lock
down periods and alternative reference periods (Fig. S2&S3). The 
magnitude of estimated air pollution changes was larger when we 
directly used observed air pollution data without weather normaliza
tion, indicating the necessity of disentangling the changes due to 
meteorological variation (Fig. S4). 

3.3. Mortality changes attributable to lockdown-induced air pollution 
changes 

Fig. 4 shows the estimated mortality changes attributable to NO2 and 
PM2.5 changes due to the lockdown in each study region. We estimated 
that the mortality changes attributable to NO2 reductions due to the 
lockdowns were − 1.41 (95 %eCI: − 1.88, − 0.94) deaths per 100,000 
people in Jiangsu, China; − 0.44 (95 % eCI: − 0.71, − 0.17) deaths per 

100,000 people in California, U.S.; and − 4.66 (95 % eCI: − 7.44, − 2.03) 
deaths per 100,000 people in Central-southern Italy. Smaller mortality 
benefits from PM2.5 reduction were observed in these three regions: 
− 0.16 (95 % eCI: − 0.29, − 0.04) deaths, − 0.23 (95 % eCI: − 0.43, − 0.03) 
deaths, and − 0.91 (95 % eCI: − 1.78, − 0.09) deaths per 100,000 people 
in Jiangsu, China; California, U.S.; and Central-southern Italy, respec
tively. For Germany, the mortality benefit attributable to NO2 changes 
during the lockdown was not statistically significant (− 0.11 deaths per 
100,000 people; 95 % eCI: − 0.25, 0.03), and PM2.5 changes were 
associated with an increase in mortality burden by 0.35 (95 % eCI: 0.22, 
0.48) deaths per 100,000 people. The total changes in mortality count in 
each region can be found in Table S6. 

The maps of attributable mortality changes are shown in Fig. 5. NO2 
changes due to the COVID-19 lockdowns were associated with mortality 
benefits for all spatial units in Jiangsu, China; most spatial units in 
California, U.S. and Central-southern Italy; and some counties, mostly 
urban, in Germany. Mortality benefits attributable to PM2.5 changes 

Fig. 3. Spatial distribution of the changes in average daily mean NO2 and PM2.5 concentrations due to the COVID-19 lockdown in each study region These 
maps display the spatial distribution of the changes in NO2 and PM2.5 concentrations (µg/m3) due to the lockdown in each spatial unit in each study region. Blank 
areas represent spatial units that were excluded from our analysis due to the lack of air quality monitoring sites. 

Fig. 4. Mortality changes attributable to air pollution changes due to COVID-19 lockdown in each region (per 100,000 people) This plot presents the 
estimated changes in mortality (per 100,000 people) attributable to NO2 and PM2.5 changes due to the lockdown in each study region. The error bars present the 95% 
confidence intervals. 
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were found for most spatial units in Jiangsu, China; California, U.S.; and 
Central-southern Italy, while the PM2.5-attributable mortality burden in 
most German counties increased. Consistent with the findings for 
lockdown-induced air pollution changes, larger mortality benefits 
attributable to changes in NO2 and PM2.5 concentrations were observed 
in urban versus rural areas of California, U.S., and Central-southern Italy 
(P < 0.05). In Germany, a reduction in NO2-attributable mortality was 
found in urban counties, in contrast to the increase in rural counties; the 
increase in mortality burden attributable to increases in PM2.5 was 
significantly smaller in urban counties than in rural counties (P = 0.018) 
(Table S7). 

In sensitivity analyses, the estimated attributable mortality impacts 
generally remained robust when using mobility-based lockdown pe
riods, alternative reference periods, and the ERFs from two-pollutant 
models instead of single-pollutant models (Fig. S5&S6, Table S8). 

4. Discussion 

Utilizing deweathered and detrended air pollution data and the most 
recent and localized estimations of the air pollution-mortality relation
ship, we reported relevant mortality benefits brought by air pollution 
reduction due to the lockdowns in Jiangsu, China; California, U.S.; and 
Central-southern Italy, with smaller magnitudes from PM2.5 reduction 
compared to NO2. In Germany, we found an increase in PM2.5-attrib
utable mortality burden during the lockdown and no significant impact 
on mortality from changes in NO2. 

We observed meaningful reductions in NO2 and PM2.5 concentra
tions due to the lockdowns in Jiangsu, China; California, U.S.; and 
Central-southern Italy, which led to mortality benefits in these regions. 
Lockdown-induced NO2 and PM2.5 reductions avoided approximately 
0.4 to 4.6 and 0.2 to 0.9 deaths per 100,000 people in these three re
gions, respectively. These magnitudes are greater than the global 
monthly mortality rate for brain cancer (0.3 per 100,000 people) and 
kidney cancer (0.2 per 100,000 people) in 2019 (GBD 2019 Risk Factors 
Collaborators, 2020). This finding is generally consistent with most 
previous single- or multi-location studies in China (Chen et al., 2021b; 
Chen et al., 2020), the U.S. (Son et al., 2020), and Europe (Achebak 
et al., 2021; Giani et al., 2020; Schneider et al., 2022). For example, a 
previous study reported a 10.05 µg/m3 decrease in PM2.5 during the 
lockdown nationwide in China, which was associated with a reduction 

of 2.01 deaths per 100,000 people in Jiangsu (Chen et al., 2021b). 
Another study in the U.S. found that PM2.5 decreased by 4.20 µg/m3 

during the lockdown in California, which avoided approximately 1.27 
deaths per 100,000 people (Son et al., 2020). However, a direct com
parison across studies is challenging due to differences in spatial 
coverage, administrative levels, reference periods, definitions of lock
down, and baseline mortality rates. The magnitudes of our study’s 
estimated air pollution reductions are lower than many of those previ
ously reported (Chen et al., 2021b; Giani et al., 2020; Son et al., 2020), 
which may be explained by the weather normalization. The difference 
between our estimated region-specific ERFs and those obtained from 
global epidemiological studies (Liu et al., 2019; Meng et al., 2021) also 
contributed to the difference in the estimated attributable mortality 
benefits. In addition, like previous studies, this study analyzed the 
changes in NO2 and PM2.5 and the associated mortality changes sepa
rately to provide full information for individual pollutants; therefore, 
the estimated mortality changes attributable to these pollutants cannot 
be summed up due to the potential overlap in their impacts. 

In Germany, we observed no overall significant NO2 reduction and a 
slight increase in PM2.5 during the lockdown in early 2020. This unex
pected finding may be explained by both local emissions and long-range 
atmospheric transport. First, although the COVID-19 lockdown in Ger
many reduced traffic overall, the number of medium and large trucks on 
the road remained almost unchanged, the public transport system was 
still operating, and the volume of delivery traffic may have increased 
(German Environment Agency, 2021). In addition, emission sources 
other than traffic, such as wood heating, energy production, and agri
culture, were unaffected (Herrmann et al., 2020). Second, long-range 
atmospheric transport of polluted air masses containing particulate 
matter reached Germany during the lockdown, including particles from 
forest and land fires in Eastern Europe in March and April (Herrmann 
et al., 2020) and Saharan dust from North Africa in March (but not Italy) 
(German Environment Agency, 2021). The magnitude of this pollution 
may have been equal to or greater than the magnitude of the local 
emissions reductions due to the lockdown. An increase in average PM2.5 
concentrations during the lockdown was also observed in some other 
European cities, such as Prague, Brussels, and Copenhagen (Putaud 
et al., 2023). The results of our study are generally consistent with a 
previous single-city study in Augsburg, Germany: Cao et al. reported 
changes of − 5.40 µg/m3 in NO2 and 1.37 µg/m3 in PM2.5 during the first 

Fig. 5. Spatial distribution of mortality changes attributable to air pollution changes due to the lockdown in each study region (per 100,000 people) These 
maps display the spatial distribution of the changes in mortality (per 100,000 people) attributable to NO2 and PM2.5 changes due to the lockdown in each spatial unit 
in each study region. Blank areas represent spatial units that were excluded from our analysis due to the lack of air quality monitoring sites. 
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lockdown (Cao et al., 2022); in our study, the estimated change in 
Augsburg was − 2.24 µg/m3 for NO2 and 1.52 µg/m3 for PM2.5. More
over, our study found a reduction in NO2, especially in urban counties, 
in contrast to an increase in rural counties. Furthermore, the increases in 
PM2.5 were significantly smaller in urban counties than in rural counties. 

The heterogeneous results in different study regions in our study 
highlight the need for localized studies to assess the effects of COVID-19 
lockdowns on air quality and the attributable health impacts. Multiple 
factors, such as the stringency of COVID-19 containment response pol
icies, the dominant emission sectors, population density, baseline air 
pollution level, socioeconomic factors, and regional economic activity, 
can influence the impacts of lockdowns on air quality changes (Bluhm 
et al., 2022; Giani et al., 2020; Zhang et al., 2022). The associations 
between air pollution and health outcomes may also vary across regions 
due to different chemical compositions of air pollution mixtures, pop
ulation characteristics related to susceptibility such as age structure, 
regional climate, and other factors (Samet, 2008). Using the COVID-19 
lockdown as a natural experiment, this study underscores the impor
tance of accounting for local characteristics when policymakers adapt 
successful emission control strategies from other regions. Designing 
effective environmental and public health policies tailored to their own 
regions is crucial, as these local factors largely influence the subsequent 
effects on air quality and the consequential health impacts. 

The findings of our study could offer important insights into the local 
environmental and public health policies in each study region. For 
example, in Jiangsu, China, the air quality has greatly improved since 
the enactment of the National Air Quality Action Plan in 2013 (Zheng 
et al., 2024). However, air pollution levels in Jiangsu remain much 
higher compared to most regions in Europe and the U.S., with daily 
average NO2 concentrations exceeding 40 µg/m3 and PM2.5 levels 
exceeding 70 µg/m3 during the reference period in 2020. The notable 
reduction in air pollution and the subsequent decrease in mortality 
burden observed during the lockdown period suggest that adopting 
stricter air quality standards and continuing efforts to reduce air 
pollution could lead to substantial health benefits in Jiangsu in the 
future. California is among the states with the highest air pollution levels 
in the U.S., with traffic exhaust as a major source of air pollution, 
especially NO2 (California Office of Environmental Health Hazard 
Assessment, 2022). Our study findings, along with evidence from pre
vious studies (Parker et al., 2020; Yang et al., 2021), suggest that 
environmental policies aimed at mitigating traffic-related air pollution, 
such as reducing vehicular traffic and promoting public and active 
transportation methods, could yield meaningful environmental and 
public health benefits in California. In Italy, air pollution levels exhibit a 
slight decreasing trend over time (European Environment Agency, 
2023b), although they are still high, particularly in the Northern regions 
and metropolitan areas such as Rome and Naples in Central-Southern 
Italy, where air pollution levels surpass the thresholds set by the latest 
WHO air quality guidelines (World Health Organization, 2021). 
Consequently, policies targeting the reduction of vehicular traffic and 
the overall mitigation of air pollutant emissions are needed to improve 
air quality, thereby yielding health benefits, as highlighted by other 
studies as well (Boniardi et al., 2022; Gualtieri et al., 2020). In Germany, 
both NO2 and PM2.5 concentrations have decreased in recent years, 
although NO2 concentrations are still considerably higher in urban 
compared to rural areas (European Environment Agency, 2023a). Dur
ing the COVID-19 lockdown, we observed a reduction in NO2 levels 
especially in urban areas, which was associated with a mortality benefit. 
This highlights the need for further policies on mitigating ambient air 
pollution, such as reducing vehicular traffic or stricter emission control 
in areas with high levels of air pollution for greater public health ben
efits in Germany. 

The strengths of this study included the selection of the first lock
down, its broad geographic scope, the use of deweathered and detrended 
air pollution data, and the application of region-specific ERFs estimated 
with recent data. First, we focused on the first lockdown period in 

response to the COVID-19 pandemic, which enabled us to identify re
gions less affected by the pandemic. Such a study became less feasible in 
subsequent lockdowns when COVID-19 cases skyrocketed with sub
stantial mortality impacts from the pandemic. Second, this study 
included regions from four distinct countries, reflecting the influence of 
COVID-19 lockdowns in regions with varying air pollution levels and 
diverse socioeconomic backgrounds. Third, we utilized a machine- 
learning-based meteorological normalization technique to decouple 
the meteorological impacts, alongside the DiD approach to account for 
time trends when quantifying air pollution changes due to lockdowns. 
Finally, we applied the association between air pollution changes and 
mortality changes estimated using a causal inference approach with 
recent data specific to each study region to assess attributable mortality 
impacts. 

Several limitations of this study should be noted. First, the spatial 
coverage within each study region was limited because we excluded 
spatial units where air quality monitoring stations were absent. 
Although approximately 96 % of the entire population of California, U.S. 
was included in the analysis, we only covered about 35 %, 54 %, and 67 
% of the population in Jiangsu, China; Central-southern Italy; and 
Germany. Relying on air quality monitoring stations, we also were un
able to fully capture variations within individual spatial units, which 
may be particularly pronounced for NO2 (Cyrys et al., 2012; Xu et al., 
2019). Other sources of air pollution data, such as highly spatially- 
resolved modeled data or low-cost air quality monitoring sensors, may 
be used in future studies to increase the spatial coverage. Second, 
although the meteorological normalization technique used in this study 
normalizes the impact of weather conditions on air quality, it does not 
account for (sudden) atmospheric long-distance transport, such as the 
Saharan dust event in Germany. Future studies should incorporate such 
transport processes in the analysis. Third, we selected regions that were 
only mildly impacted by the early stages of the COVID-19 pandemic to 
increase the applicability of ERFs estimated using pre-lockdown data 
(2015–2019). However, the relationship between air pollution and 
mortality could change during the lockdowns as human activity patterns 
change. Studies that examine the changes in air pollution-mortality re
lationships before and after the implementation of lockdowns are war
ranted. Fourth, we assumed that the ambient air pollution levels 
reflected individual exposures. This is a common assumption in air 
pollution epidemiology studies; however, this limitation becomes 
prominent in studies focusing on the lockdown period, when most 
people spent more time indoors. Further investigation is warranted into 
the personal or indoor air pollution exposure during the lockdowns. 

5. Conclusions 

In conclusion, this study documented meaningful improvements in 
air quality resulting from COVID-19 lockdowns and the associated 
mortality benefits in early 2020; however, notable heterogeneity existed 
across Jiangsu, China; California, U.S.; Central-southern Italy; and 
Germany. These findings offer robust scientific evidence to guide future 
air pollution mitigation and public health enhancement policies. 
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