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Abstract
Aims  Aim of this study was to investigate in type 2 diabetes whether expression level of GALNT2, a positive modulator of 
insulin sensitivity, is associated with a metabolic signature.
Methods  Five different metabolite families, including acylcarnitines, aminoacids, biogenic amines, phospholipids and sphin-
golipids were investigated in fasting serum of 70 patients with type 2 diabetes, by targeted metabolomics. GALNT2 expres-
sion levels were measured in peripheral white blood cells by RT-PCR. The association between GALNT2 expression and 
serum metabolites was assessed using false discovery rate followed by stepwise selection and, finally, multivariate model 
including several clinical parameters as confounders. The association between GALNT2 expression and the same clinical 
parameters was also investigated.
Results  GALNT2 expression was independently correlated with HbA1c levels (P value = 0.0052), a finding that is the likely 
consequence of the role of GALNT2 on insulin sensitivity. GALNT2 expression was also independently associated with 
serum levels of the aminoacid glycine (P value = 0.014) and two biogenic amines phenylethylamine (P value = 0.0065) and 
taurine (P value = 0.0011). The association of GALNT2 expression with HbA1c was not mediated by these three metabolites.
Conclusions  Our data indicate that in type 2 diabetes the expression of GALNT2 is associated with several serum metabo-
lites. This association needs to be further investigated to understand in depth its role in mediating the effect of GALNT2 on 
insulin sensitivity, glucose control and other clinical features in people with diabetes.
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signature

Introduction

Insulin resistance is a common pathogenic ground for many 
highly prevalent diseases. These include atherogenic dys-
lipidemia [1], type 2 diabetes, obesity, hypertension [1], 
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and closely related cardiovascular disease and renal dys-
function [1, 2], all major causes of morbidity and mortality 
worldwide [3]. Unraveling the intimate molecular signature 
of insulin signaling would contribute to understanding the 
pathogenesis of all the above-mentioned diseases and is 
therefore urgently needed.

In the last few years several evidences suggested that 
GALNT2 (coding for ppGalNAc-T2, involved in the ini-
tiation step of O-linked glycosylation [4, 5]), modulates 
insulin sensitivity [6]. In fact, in cultured human liver cells 
(HepG2) GALNT2 down-regulation reduces insulin-induced 
insulin receptor, IRS-1 and protein kinase beta Akt2 phos-
phorylation, as well as expression of gluconeogenic enzyme 
phosphoenolpyruvate carboxykinase (PEPCK) [7]. Also, 
GALNT2 over-expression in mouse pre-adipocytes fibro-
blasts (3T3L1) stimulates adipocyte maturation and enlarge-
ment, through increasing insulin signaling [8]. Although, the 
biological mechanism through which GALNT2 affects insu-
lin signaling  is  still unknown, the inverse correlation 
between GALNT2 and ENPP1 (a negative modulator of 
insulin signaling) expression, suggests that ENPP1 down-
regulation mediates, at least in part, the effect of GALNT2 
on insulin sensitivity [9–14].

In addition, several data from both humans and ani-
mal models consistently demonstrated the contribution of 
GALNT2 to several highly prevalent metabolic abnormali-
ties related to insulin resistance, namely atherogenic dyslipi-
demia [6, 15–23], type 2 diabetes [24, 25], obesity [6, 17, 
26] and polycystic ovary syndrome [27]. Unfortunately, the 
exact biological mechanisms through which GALNT2 affect 
insulin signaling is not completely understood [6].

Thanks to the recent advances in bioinformatics and tech-
nology, measuring hundreds or thousands of metabolites in 
biological samples has unraveled specific signatures related 
to altered metabolic states, including insulin resistance, type 
2 diabetes and obesity [28].

We investigated whether GALNT2 expression is char-
acterized by a specific metabolic signature. In details, five 
different metabolite families were investigated, including 
acylcarnitines, aminoacids, biogenic amines, phospholipids 
and sphingolipids.

Research design and methods

Participants

The study cohort consisted of 70 patients with type 2 diabe-
tes (according to the American Diabetes Association 2003 
criteria), belonging to the Gargano Mortality Study 2 (GMS, 
[29]) including individuals recruited from 2008 to 2010 at 
the Endocrine Unit of Fondazione Istituto di Ricovero e Cura 
a Carattere Scientifico “Casa Sollievo della Sofferenza” in 

San Giovanni Rotondo. Our 70 study patients were randomly 
selected among those whose RNA sample at recruitment 
was available. The study protocols and the informed consent 
procedures were approved by the local Institutional Ethic 
Committee.

Metabolite quantification and normalization

Metabolites were measured in baseline fasting serum at the 
Genome Analysis Center, Helmholtz Zentrum München 
with a targeted metabolomics approach by AbsoluteIDQ 
p180 Kit (Biocrates Life Sciences AG, Innsbruck, Austria), 
as previously described [29]. The assay includes free carni-
tine, 40 acylcarnitines (Cx:y), 21 amino acids (19 proteino-
genic + citrulline + ornithine), 21 biogenic amines, hexoses 
(sum of hexoses: ∼ 90 to 95% glucose), 90 glycerophos-
pholipids (14 lysophosphatidylcholines [lysoPC] and 76 
phosphatidylcholines [PC], and 15 sphingolipids [SMx:y]). 
Three quality control samples (sex-mixed human plasma 
provided by the manufacturer) and one zero sample (PBS) 
were included in each randomized plate.

GALNT2 expression levels

Gene expression levels were measured in peripheral white 
blood cells by using Gene Expression Assay on Demand 
Kit Reagents (Applera Life Technologies, Carlsbad, CA), by 
means of RT-PCR as previously described [24]. Expression 
levels of GALNT2 were calculated by using the compara-
tive DCT method normalizing, the amount of GALNT2 was 
normalized to GAPDH, B actin and 18S considered together 
(geometric mean) [30] and related to a control RNA as cali-
brator (2−ΔΔCT).

Statistical analysis

Patients’ baseline characteristics are reported as mean ± SD, 
or median and interquartile range for continuous skewed 
variables (|skewness| > 1) and frequency and percentage for 
categorical variables. Values of serum metabolites below 
the limit of detection have been replaced by the limit of 
detection itself.

For pre-processing of data, normal distribution and skew-
ness were tested in all metabolites and covariates. Since the 
metabolites’ distributions were skewed, all concentrations 
were log2 transformed and standardized. The 2−ΔΔCT data 
of GALNT2 expression levels were also standardized. Clini-
cal parameters with percentage of missing value less than 
5% (i.e., BMI 1.4% and HbA1c 2.8%) were imputed with 
random forest method [31].

The association between GALNT2 expression and serum 
metabolites within each metabolite family (i.e., acylcarni-
tine, amino acids, biogenic amines, glycerophospholipids 
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and sphingolipids), was firstly assessed in a univariate model 
by using false discovery rate (FDR) to take into account mul-
tiple comparisons and then in a multivariate model including 
age, sex, smoking habits, BMI, HbA1c, diabetes duration, 
eGFR, and anti-hypertensive, anti-hyperglycemia and lipid-
lowering therapies. Finally, in order to minimize potential 
multicollinearity issues, metabolites that were independently 
associated with GALNT2 expression, entered jointly a step-
wise selection (SSE criterion: p value of the F-statistic to 
enter and to remove term to the model less than 0.05 and 
greater than 0.10 respectively). A P value < 0.05 was con-
sidered statistically significant.

All analyses were performed using SAS 9.4 (SAS Insti-
tute, Cary, NC) and Matlab R2022—Statistics and Machine 
Learning Toolbox (The MathWorks, Inc., Natick, MA).

Results

Study patients

Clinical features as well as diabetes duration and ongoing 
treatments of the 70 study participants with type 2 diabetes 
are reported in Table 1.

In univariate analyses, GALNT2 expression levels 
were correlated with HbA1c (β ± SE = − 0.198 ± 0.069; 

P value = 0.0052) and BMI (β ± SE = − 0.045 ± 0.22; P 
value = 0.044) but not with other features (Table 2). Only 
the association with HbA1c remained significant in a fully 
adjusted model comprising all available clinical information 
(Table 2).

GALNT2 and metabolites

Five out of 188 metabolites measured (i.e., carnosine, 
DOPA, dopamine, nitrotyrosine, cis-4-Hydroxyproline) were 
excluded from the analyses because their value was below 
the detection limit in > 80% samples.

Correlation between GALNT2 expression and metabo-
lites was investigated separately in the five metabolite 
families. After adjusting for multiple comparisons with 
false discovery rate (FDR) procedure [32], GALNT2 was 
associated with two aminoacids (asparagine and glycine: 
β ± SE = − 0.37 ± 0.11 and − 0.38 ± 0.11, P values = 0.014 
for both) and three biogenic amines (ADMA, phenylethyl-
amine and taurine: β ± SE = − 0.34 ± 0.11, 0.33 ± 0.11 and 
− 0.39 ± 0.11, P values being 0.023, 0.023 and 0.011, respec-
tively) (Fig. 1A). Conversely, no associations with acylcarni-
tines, phospholipids and sphingolipids were observed (Sup-
plementary Table 1).

All five metabolites remained significantly associated 
with GALNT2 mRNA levels in a multivariate model that 
included age, gender, smoking habits, BMI, HbA1c, diabetes 
duration, eGFR, and current treatments (P values = 0.0027, 
0.000049, 0.013253, 0.035 and 0.00067, for glycine, aspara-
gine, ADMA, phenylethylamine and taurine, respectively), 
thus indicating that their correlation with GALNT2 expres-
sion is independent of the most important clinical variables 
(Fig. 1B).

Table 1   Clinical characteristics of study patients (n = 70)

Continuous variables were reported as mean ± SD or as median 
(interquartile range) for skewed variables (skewness > |± 1|), whereas 
categorical variables as total frequencies
BMI, Body Mass Index; HbA1c, glycated hemoglobin; eGFR, esti-
mated glomerular filtration rate as CKD-EPI formula [51]; HDL, high 
density lipoprotein; OA, Oral agents

Women (%) 28.6
Age (years) 55.3 ± 10.1
Current smokers (%) 24.3
Diabetes duration (years) 11 ± 7.8
BMI (kg/m2) 30.5 ± 5.4
HbA1c (%) 7.7 ± 2.1
eGFR (mL/min/1.73 m2) 101.2 (74.5–109.6)
HDL-cholesterol (mg/dL) 43.2 ± 11.4
Triglycerides (mg/dL) 125.5 (88–173)
Anti-hypertensive therapy (%) 72.9
Anti-hyperglycemia therapy
 Diet (%) 4.3
 OA (%) 42.8
 Insulin ± OA (%) 52.9

Lipid-lowering therapy
 None (%) 21.4
 Statins (%) 75.7
 Others (%) 2.9

Table 2   Association between GALNT2 expression levels and 
patients’ clinical features

BMI, Body Mass Index; HbA1c, glycated hemoglobin; eGFR, esti-
mated glomerular filtration rate as CKD-EPI formula [51]
*P value in a multivariate model including all variables listed in the 
table
Italic font indicate a nominal statistical significance

β ± SE P value P value*

Age (years) − 0.001 ± 0.012 0.95 0.89
Gender 0.36 ± 0.26 0.18 0.29
Current smokers (%) − 0.41 ± 0.28 0.15 0.17
BMI (kg/m2) − 0.045 ± 0.02 0.044 0.15
Diabetes duration (years) − 0.011 ± 0.016 0.47 0.79
HbA1c (%) − 0.198 ± 0.069 0.0052 0.026
eGFR (mL/min/1.73 m2) 0.009 ± 0.005 0.061 0.36
Anti-hypertensive therapy (%) − 0.329 ± 0.268 0.22 0.24
Anti-hyperglycemia therapy − 0.287 ± 0.205 0.17 0.89
Lipid-lowering therapy − 0.319 ± 0.261 0.23 0.38
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After a stepwise (forward–backward) analyses aimed 
at taking into account the correlations among metabo-
lites from the same family, the aminoacid glycine (P 
value = 0.0014) and two biogenic amines phenylethylamine 
(P value = 0.0065) and taurine (P value = 0.0011) remained 
associated with GALNT2 expression levels.

Finally, none of the three metabolites correlated with 
HbA1c (data not shown) nor influenced the observed cor-
relation between HbA1c and GALNT2 expression (β ± SE 
and P values moving to − 0.190 ± 0.064, P value = 0.004; 
− 0.165 ± 0.067; P value = 0.017 and − 0.203 ± 0.063; P 
value = 0.0018 after adjusting for glycine, phenylethylamine 
and taurine, respectively).

Discussion

Our study investigated whether in patients with type 2 
diabetes GALNT2 expression is characterized by a spe-
cific signature belonging to several metabolite families, 
including acylcarnitines, amino acids, biogenic amines, 

glycerophospholipids and sphingolipids. We also inves-
tigated the association between GALNT2 expression and 
several clinical variables. Firstly, GALNT2 expression was 
independently and negatively correlated with HbA1c levels, 
a finding that may well be secondary to the reported posi-
tive effect of GALNT2 on insulin sensitivity [6]. This link is 
also suggested by the negative association between GALNT2 
and BMI, which however did not survive a multivariable 
model comprising several additional clinical variables. The 
expression of GALNT2 was also independently associated 
with serum levels of the aminoacid glycine and arginine and 
the biogenic amines phenylethylamine, taurine and ADMA. 
When collinearity within the same metabolite family was 
taken into account, only glycine, taurine and phenethylamine 
remained associated with GALNT2 expression levels. Inter-
estingly, the association between GALNT2 expression and 
HbA1c was not modified taking into account these three 
latter metabolites, thus suggesting they do not mediate the 
positive effect of GALNT2 on glucose control.

Previous studies have highlighted that glycine, is con-
sistently and negatively associated with reduced insulin 
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Fig. 1   Associations between GALNT2 expression levels and serum 
metabolites. β (per 1 SD increase GALNT2 expression) and 95% CIs 
were estimated in univariate (A) and in multivariate (B) regression 

models, adjusting for age at recruitment, sex, smoking habit, BMI, 
HbA1c, eGFR, diabetes duration, and ongoing treatment
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sensitivity [33, 34], impaired glucose homeostasis [33, 
35–39] and liver steatosis [38]. In addition, low glycine lev-
els have been reported to predict prospectively the develop-
ment of type 2 diabetes [36, 37, 39–41]. Also plasma taurine 
is reduced in subjects with metabolic syndrome [42], diabe-
tes [43, 44] and obesity [45, 46] as well as in obese animals 
[47]. All these previous evidences on the role of glycine 
and taurine make our present correlative findings compatible 
with the belief that GALNT2 is involved in insulin sensitivity 
and resistance [6]. On the other hand, we acknowledge that 
their interpretation is not straightforward. Indeed, if the posi-
tive effect of GALNT2 on insulin sensitivity were mediated 
by the above-mentioned metabolites, one would expect an 
association with glycine and taurine in the opposite direc-
tion to that observed in our study (i.e., positive rather than 
negative correlation). This makes unlikely that glycine or 
taurine mediate the positive effect of GALNT2 on glucose 
control as also suggested by the observation that the associa-
tion between GALNT2 and HbA1c does not change much 
after adjusting for these two metabolites. It can therefore 
be hypothesized that the counterintuitive associations we 
here report represent a homeostatic mechanism in which 
GALNT2 upregulation acts as a fine tuner to counteract 
insulin-resistance induced (or simply marked) by low levels 
of glycine and taurine. Conversely, no published data are 
available on circulating phenethylamine levels in different 
conditions related to metabolic abnormalities. Interestingly, 
fecal phenethylamine levels, derived from bacterial fermen-
tation of amino acids in the gut, are correlated positively 
with glucose intolerance and negatively with improved diet-
induced insulin sensitivity [48] while urinary phenylethyl-
amine levels were higher in obese women as compared to 
their normal/underweight counterparts [49]. These reports 
suggest that phenethylamine also plays a role in several 
clinically relevant insulin resistance phenotypes. Unfortu-
nately, it is not known whether and how fecal and urinary 
phenethylamine levels are correlated with serum levels, thus 
making difficult the interpretation of the positive associa-
tion we observed between GALNT2 expression and circu-
lating phenethylamine. In all, we do acknowledge that the 
associations of GALNT2 expression levels with HbA1c and 
several circulating metabolites may imply more than a sin-
gle and unambiguous interpretation and, consequently, does 
not allow, yet, to define a clear metabolic signature link-
ing GALNT2, circulating metabolites and clinical features 
related to insulin resistance.

Among limitation of our study, we do recognize that 
expression data in peripheral white blood cells may not 
mirror those of other tissues, including the most impor-
tant ones for glucose homeostasis maintenance. On the 
other hand, this cell model has been successfully used in 
cis-eQTL, trans-eQTL analyses from the eQTLGen con-
sortium (https://​www.​eqtlg​en.​org/) aimed at understanding 

the genetic architecture underlying complex traits includ-
ing insulin resistance-related abnormalities [50]. Further-
more, we recognize that the small sample size of our study 
impacts statistical power, thus making it possible that we 
missed additional associations between GALNT2 expression 
and circulating levels of other metabolites as well as subtle 
effects of the associated metabolites on the role of GALNT2 
on HbA1c and other clinical features (i.e., false-negative 
results).

In conclusion, our data indicate for the first time that in 
type 2 diabetes the expression of GALNT2 is associated with 
several serum metabolites. This association needs to be fur-
ther investigated. To understand in depth its role in mediat-
ing the effect of GALNT2 on insulin sensitivity, glucose 
control and other clinical features in people with diabetes. 
If our current findings are confirmed and deepened by other 
studies to gain a better comprehension of the molecular 
effects of GALNT2 on insulin sensitivity, this will likely 
become instrumental in the discovery of hitherto unknown 
pathogenic nodes that can be targeted with new therapies in 
patients with insulin resistance and related anomalies.
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