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A roadmap to the molecular human linking
multiomics with population traits and
diabetes subtypes
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In-depth multiomic phenotyping provides molecular insights into complex
physiological processes and their pathologies. Here, we report on integrat-
ing 18 diverse deep molecular phenotyping (omics-) technologies applied to
urine, blood, and saliva samples from 391 participants of the multiethnic
diabetes Qatar Metabolomics Study of Diabetes (QMDiab). Using 6,304
quantitative molecular traits with 1,221,345 genetic variants, methylation at
470,837 DNA CpG sites, and gene expression of 57,000 transcripts, we
determine (1) within-platform partial correlations, (2) between-platform
mutual best correlations, and (3) genome-, epigenome-, transcriptome-,
and phenome-wide associations. Combined into a molecular network of
> 34,000 statistically significant trait-trait links in biofluids, our study por-
trays “The Molecular Human”. We describe the variances explained by each
omics in the phenotypes (age, sex, BMI, and diabetes state), platform com-
plementarity, and the inherent correlation structures of multiomics data.
Further, we construct multi-molecular network of diabetes subtypes. Finally,
we generated an open-access web interface to “The Molecular Human”
(http://comics.metabolomix.com), providing interactive data exploration
and hypotheses generation possibilities.

The quote “Learn how to see. Realize that everything connects to
everything else” by Leonardo Da Vinci becomes substantive in the
context of high-throughput deepmolecular phenotyping technologies
that enable the measurement of hundreds or even thousands of
quantitative readouts of the genome, transcriptome, proteome,
metabolome, andglycomeaswell as related intermediate omics layers,
such as the epigenome, and microRNA-ome1. Integrated into a single

study, these readouts simultaneously can provide complementary
insights into the molecular interactions that define the physiological
and pathophysiological processes in the human body.

Indeed, molecular processes have been monitored in human
biofluids through the integration of various omics approaches,
including genomics, methylation, transcriptomics, proteomics, and
metabolomics2–11. However, studies that deploy a broader range of
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omics techniques tend to have a smaller sample size, typically invol-
ving 1–36 individuals. For instance, these studies investigate dynamic
changes in diverse molecular components in response to factors such
as viral infection10, spaceflight8, aswell as extensive exercise9. In contrast,
larger cohort studies (≥100 individuals) tend to focus on amore limited
spectrum of omics measurements2–4,6. For example, the impact of life-
style changes was monitored at the molecular level in processes related
to obesity, diabetes, liver function, or cardiovascular disease using
genomics, proteomics, and metabolomics3. Similarly, proteomics and
metabolomics were deployed to determine molecular signatures asso-
ciated with schizophrenia2, while metabolomics and lipidomics were
used for studying HIV infection6. The limited array of omics approaches
was also used in a very large population study where the cohort size
exceeds 1000 subjects. For instance, genomics, proteomics, and meta-
bolomics, were used to monitor metabolite-protein interactions in over
3,600 healthy subjects5. Additionally, they were also employed to
investigate the molecular network related to Alzheimer’s disease based
on the molecular alterations measured in over 1200 subjects7.

Thus, deep molecular phenotyping at large-scale using multiple
platforms and matrices (“multiomics”) in large cohort studies is
becoming increasingly attractive. It is already being driven by the UK
Biobank consortia, which genotyped 500,000 participants and are
currently acquiring transcriptomics, proteomics, and metabolomics
data for a large fraction of them. However, with many different tech-
nologies andplatformsavailable, questions arise as to the choiceof the
platforms to use, their complementarity, and in particular, how to
integrate these complex data sets once they have been collected.

Here, we report on what is arguably one of the most deeply phe-
notyped cohort studies to date. The Qatar Metabolomics Study of Dia-
betes (QMDiab)12 was originally designed as a diabetes case-control
study in the multiethnic population of Qatar. We collected multiple
aliquots of blood, urine, and saliva samples from 391 volunteers, with
and without diabetes, of predominantly Arab, Filipino, or Indian ethnic
backgroundswith the goal of acquiring sufficientmaterial formultiomic
analysis (see methods). The collected samples were subsequently
characterized on 18 different high-throughput omics platforms. The
methods included analyses of blood circulating micro-RNAs, proteins,
molecular levels of IgG- and IgA- glycosylations, N-glycosylation of total
protein, metabolites in urine, saliva, and plasma measured on targeted
and non-targeted Nuclear Magnetic Resonance (NMR)- and mass spec-
trometry (MS)-basedmetabolomics platforms, and lipid composition by
size-resolved lipo-proteomics as well as complex lipid profiles. Over
6300 individual omics data points were collected for each of the 391
participants. In addition, sampleswere genotyped for 1.2million genetic
variants, thewhite blood cell transcriptomewas sequenced at a depthof
20 million reads to quantify the expression of 57,000 transcripts, and
DNA methylation levels for 450,000 CpG sites were determined.

We previously utilized an individual layer of the generated omics
data to answer questions concerning the metabolic signatures of
T2D12,13, provide insight into the epigenetic regulation of molecular
processes related to smoking, obesity, and T2D14, connect genetic risk
to disease endpoints while utilizing proteomics genome-wide asso-
ciation studies (GWAS)15, and proteomics epigenome-wide association
studies (EWAS)16, as well as basis for developing various systems biol-
ogy tools for data analysis17–19. Our data sets have also already served as
replication cohorts for multiple large-scale studies16,20,21. The summary
of previously published work utilizing QMDiab cohort is outlined in
Supplementary Fig. 1.

However, an integrative multiomics analysis of all 18 multiomics
layers has not been conducted with this study set.

Here, we combine all data that we ever generated on the QMDiab
study with the aim to simultaneously answer technical questions
related to omics platform complementarity and data integration. We
also asked biological questions related to the interrelationships
between these molecular traits and their association with various

phenotypes including T2D. Further, we visualized the molecular
interactions in the form of interactive network to which we provide
free access. The primary goal of our investigation was to utilize these
biofluid-based omics’ layers to draw an image of what we call “The
Molecular Human”.

To achieve this goal, we connected all multiomics traits using
appropriate measures. This included partial correlations to construct
Gaussian Graphical Models (GGMs) within individual omics-layers22,
mutual best hits (MBH) of between-platform correlations23,24, and
genome-wide (GWAS), epigenome-wide (EWAS) and transcriptome-
wide (TWAS) associations between the high-dimensional genomics
readouts and the other omics layers25–27. Finally, we integrated all
obtained connections into a multiomics network with clinical end-
points through phenome wide disease associations and GWAS catalog
lookups.We evaluated each omics layer for its potential to explain the
inter-individual variability of the study participants’ age, sex, BMI, and
diabetes state. We further quantified the between-layer degree of
shared mutual information. We subsequently utilized these data to
comprehensively characterize the multiomics layers underlying T2D.

To facilitate rapid sharing of our results and also to provide the
user with the possibility of testing the interactions of their molecules
of interest in the context of other omics layers, we developed a web-
based tool called Connecting Omics (COmics) (http://comics.
metabolomix.com) together with a blog (http://www.metabolomix.
com/comics/) on which we continue to document new case-studies
(depicted as Comics take on…). Finally, to show the generalizability of
the COmics approach and the capability of utilizing COmics for
hypothesis generation we present four distinct use cases by creating
molecular network for 5-methyluridine, lactate, LILRA5, and IGFBP6,
which extend on their potential involvement in various pathologies.

Results
Deep phenotyping of 391 individuals with 18 omics platforms
Urine, saliva, and blood samples from 391 subjects in the QMDiab
study were analyzed on 18 technically distinct platforms (see Table 1
for platform abbreviation) relying on sequencing-, microarray-, mass
spectroscopy (MS)-, nuclear magnetic resonance (NMR)-, affinity
binding-, chromatography-, and biochemistry assay-based technolo-
gies (see Methods, Table 1, Fig. 1, and Supplementary Data 1 for all
molecules measured on the non-genomics platforms). The number of
quantitative molecular traits determined by the non-genomics plat-
forms ranged from 36 to 1201, and the number of samples shared
between every two platforms from 229 to 356 (Table 2). In total, we
determined quantitative measures for up to 6304 molecular traits per
sample alongwith genotypes for 1,221,345 autosomal SNPs, expression
levels of 57,773 transcripts, andDNAmethylation of 470,837CpG sites.

Complex correlation structures within and between platforms
pose major challenges to integrating these datasets. For example,
correlations between complex lipid species may be driven by the
abundance of common precursor fatty acids, but also by factors
determining interconversion between different classes. To cope with
these challenges, and based on prior experience15,22, we adopted a
strategy using partial correlations within platforms by deploying
GGM’s, MBHs correlation between platforms, and linear model asso-
ciations for genomics traits (GWAS, EWAS, and TWAS hits). In total, we
identified 6183 partial correlations GGM’s (Supplementary Data 2),
2103 unique MBHs between platforms (Table 2 and Supplementary
Data 3), 1381 associations of SNPs with methylation levels (meQTL’s)
(Supplementary Data 4), 15,991 association of methylation levels with
mRNA expression levels (eQTM’s) (Supplementary Data 5), 17 asso-
ciation of SNPs with mRNA expression (eQTL’s) (Supplementary
Data 6), 768 GWAS with multiomics (moQTLs) at 586 independent
genetic loci (Supplementary Data 7), 3772 EWAS with multiomics
(moEWAS) (Supplementary Data 8), and 1660 TWAS with multiomics
(moTWAS) (Supplementary Data 9). All the included associations were
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limited to statistically significant once at stringent Bonferroni correc-
tion levels (see methods) and serve as the foundation to portray “The
Molecular Human”.

Mutual best hits deployed for between platforms assessment
In the biological system, homology reflects on molecular, structural, or
physiological similarity in different species28. Genetic elements inher-
ited in two species by a common ancestor are defined as homologs29,
and are further classified as orthologs if they diverged through specia-
tion or as paralogs if they evolved through duplication30,31. The gene
orthologs are typically the most similar genes in the respective species
in terms of sequence, structure, and function32. Among different
approaches, deployed for identification of orthology, the most used is
bidirectional best hit (BBH),whichdefines asorthologs all pairs of genes
between two species that are reciprocally similar to one another than to
any other gene in a sequence similarity search23,24. Inspired by this
concept, we hypothesized that BBH, which is hypothesis-free approach,
could be utilized beyond genomics to identify molecular orthologs
between platforms. Here we define the BBH applied for multiomics as
MBHs and use this approach to identify ortholog readouts between two
platforms. This can be challenging when the platforms capture related
features using different techniques and at varying depth. Examples are
the analytical resolution to differentiate between lipid side chains or
protein glycosylation. Examining these individual MBHs could assist in
revealing potential issues with molecule annotations and help define
the general overlap between platforms.

The number of MBHs between every two platforms (⇔) is pre-
sented in Table 2, and the correlation levels of all statistically sig-
nificant MBHs are provided in Supplementary Data 3. The number of
traits determined by each platform varies, so the relative information
content provided by one platform compared to another is also dif-
ferent. For example, 60 urine metabolites were measured using the
NMR-based platform (CM; see Table 1 for platform abbreviations), and

805 molecules were quantified on the MS-based platform (UM). We
identified 43 significant MBHs between the two platforms, accounting
for 72% of the traits determined by the CMplatformbut only 5% by the
UM platform. This exemplifies the substantial difference in the extent
of trait determination and, thus, information content provided by each
platform.

While analyzing MBH between platforms capturing overlapping
set of molecules (PM ⇔ HDF, OLINK ⇔ SOMA, and IgG ⇔ IgA) but
utilizing different detection strategies (e.g., GC vs. LC; aptamer vs.
antibody) we found that those display between 72% and 93% of con-
cordance in respect of detected molecules, which underscores good
quality of the selected methods applied in different laboratories
(Supplementary Note 1 and Supplementary Data 10).

Evaluation of platform performance through GWAS hits
Even though GWAS studies are preferably conducted in large sample
cohorts to ensure that the study is sufficiently powered to identify hits,
the strength of a genetic association also depends on the effect size
and the technical and biological variability of the phenotype. Repli-
cation of genetic signals across platforms provides an additional
independent assessment of the utility of that platform. This is espe-
cially so when sample aliquots from the same study are evaluated and
where technical variability is the only factor that differs between
platforms. Thus, the calculated association p values for eachQTLswith
different omics phenotypes, conductedon an identical genetic variant,
could serve as an objective measure, enabling the comparison of
readouts from two platforms.

Exploiting this property, we monitored p values of GWAS asso-
ciations with identical molecules, measured across different platforms
(see Supplementary Note 2). We found none of the platforms to gen-
erally outcompete its alternative when considering strength of genetic
association. Instead, we observed that individual platforms exhibited
superior performance for certain subsets of molecules.

Table 1 | Overview on applied omics technologies

Omics Measurement/Output Technique/Platform Matrix Label

GENOMICS Genotype Infinium Human Omni 2.5–8 v1.2 BeadChip kit DNA extracted from buffy coat
fraction from whole blood

DNA

METHYLOMICS DNA methylation Illumina Infinium HumanMethylation450 BeadChip kit DNA, same as for genomics MET

TRANSCRIPTOMICS Gene expression RNA-sequencing based Illumina ~20M reads RNA extracted from PaxTube RNA

microRNA expression microRNA profiling based multiplex qPCR, Exiqon RNA extracted fromEDTAplasma miRNA

PROTEOMICS Relative protein abundance Slow Off-rate Modified Aptamer (SOMAmer), Somalogic 1,1k EDTA plasma SOMA

Relative protein abundance Proximity Extension Assay (PEA) based Olink Target 96 Meta-
bolism & Cardiometabolism panels

Heparin plasma OLINK

GLYCOMICS Total plasma
N-glycosylation

Hydrophilic interaction ultra-performance liquid chromato-
graphy (HILIC-UPLC) based Genos pipeline

EDTA plasma PGP

IgG glycosylation Liquid chromatography mass spectrometry (LC-MS) based
Genos pipeline

EDTA plasma IgG

IgA & IgG glycosylation LC-MS based124 pipeline EDTA plasma IgA

LIPOPROTEOMICS Lipoproteins Proton nuclearmagnetic resonance (1H NMR) based Nightingale
technology

EDTA plasma BRAIN

LIPIDOMICS Absolute lipid concentration LC-MS based on Lipidyzer technology at Metabolon EDTA plasma LD

Lipids and other metabolite
concentration

Flow injection analysis (FIA)- MS based Biocrates technology EDTA plasma BM

METABOLOMICS Metabolite level (HILIC-MS) & (UPLC-MS) based HD4 Metabolon EDTA plasma HDF

Metabolite level Gas chromatography (GC)-MS (UPLC-MS) based HD2
Metabolon

EDTA plasma PM

Metabolite level (GC-MS) & (UPLC-MS) based HD2 Metabolon Saliva SM

Metabolite level GC-MS & UPLC-MS based HD2 Metabolon Urine UM

Metabolite level 1H NMR deploying Chenomx for annotation, based on131 pipeline Urine CM

CLINICAL Clinical biochemistry andblood
counts

Cobas 6000; Roche Diagnostics Blood/Urine CLIN
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Platform-defined variance in age, sex, BMI, and diabetes state
The molecular composition of the body at different omics layers is
usable to explore effects of sex33–35, measure biological age36–42, or
study diabetes progression43–45. Here we investigated which of the
molecular traits and platforms most accurately characterize pheno-
types such as age, sex, BMI, and type 2 diabetes (T2D). First, we
determined molecules associated with the phenotypes age, sex, BMI,
and T2D and identified 194, 325, 60, and 129 associated molecules,
respectively (Supplementary Data 11–14). Next, we examined the per-
centage of age, sex, BMI, and T2D variance, whichmay be explained by
data from each individual platform.We trained a random forestmodel
for two continuous (age and BMI) and two dichotomous traits (sex and
diabetes state) on each platform.We estimated the variation explained
by the respective omics phenotype (Table 3). We found that both
metabolomics and proteomics accurately describe the variation of
these investigated phenotypic traits. For instance, the variations in sex
(95%) and T2D (86%) were most precisely captured by the HDF

platform, age (54% and 52%) by the OLINK and SOMA platforms
respectively, and BMI (42%) by the SOMA platform. The molecules
measured on clinical chemistry data (CLIN) were accurate towards age
(55%), sex (93%), and T2D (92%).

This data identifies individual platform capability to explain var-
iance in age, sex, BMI, and T2D phenotypes.

Crosstalk between metabolites of urine, saliva, and plasma
MBH between urine, saliva, and plasmametabolites, measured onMS-
based platform, is capturing dependencies between those matrices,
and thus informs about the interactions between them.We found 174,
24, and 14 MBHs between urine and plasma metabolites, plasma and
salivametabolites, and urine and salivametabolites, respectively.Most
MBHs connected identical molecules, reflecting on homeostasis
between saliva and plasma and the detoxification processes that occur
in the kidney. Yet, MBHs found between metabolites from different
matrices, could potentially be used to inform on physiological
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Fig. 1 | Overview of the subject and data sets. A Study cohort and collected
samples; B Data and omics platforms used for data generation; C Calculation
strategies used to define: Within platform significant associations GGM—(Gaus-
sian Graphical Model); Between platform significant associations MBH—(Mutual
best hit); Multiomics GWAS—(Genome-wide association studies); Multiomics
EWAS—(Epigenome-wide association studies); and Multiomics TWAS—(Tran-
scriptome-wide association studies); as well as statistical associations between
each platform and the phenotype such as SEX, AGE, type 2 diabetes (T2D) and
body mass index (BMI). CLIN clinical chemistry parameters, DNA genotype data,
MET DNA methylation sites, RNA RNA transcripts determined with RNA-sequen-
cing, miRNA microRNA profiles, SOMA blood circulating proteins measured with

aptamer-based technology (SomaLogic), OLINK blood circulating proteins mea-
sured using high-multiplex immunoassays (Olink), PGP glycan traits N-glycosy-
lation, IgG IgG-glycopepdides, IgA IgA and IgG-glycopeptides BRAIN plasma
lipoproteins, LD plasma lipids quantified using Lipidyzer, BM plasma lipids
quantified with Biocrates p150 kit, HDF plasma metabolic traits profiled on HD4
platform (Metabolon), PM plasma metabolic traits profiled on HD2 platform
(Metabolon), SM saliva metabolic traits profiled on HD2 platform (Metabolon),
UM urine metabolic traits profiled on HD2 platform (Metabolon), CM urine
metabolites quantified with 1H NMR deploying Chenomx. N number of subjects, F
female, B blood, U urine, S saliva. The source data for (C) is available in the
Supplementary Data (SD) 2−9 and 11−14.
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processes as well as disease-related pathologies. For instance, caffeine
metabolism may serve as an example showcasing organ molecular
diffusion between saliva, blood, and urine. The caffeine ismetabolized
in ~80% to paraxanthine, ~12% into theobromine, and ~ 4% theophylline
which are all further metabolized whereas ~4% of caffeine is excreted
without transformation46. We found MBH between paraxanthine [SM]
⇔ 1,7-dimethylurate [UM] and theobromine [SM]⇔ 3,7-dimethylurate

[UM]. Identified MBH are depicting substrate/product relation
between those molecules47.

The components of caffeine metabolism identified with MBH can
be further substantiated with the GGM’s associations22 which we cal-
culated separately for each platform (Supplementary Note 3). We find
multiple substrate/product associations from caffeine metabolism
(e.g., PM: caffeine/paraxantine, caffeine/theophylline or UM: para-
xanthine/5-acetylamino-6-formylamino-3-methyluracil, theobromine/
3,7-dimethylurate), which shows how GGMs provide a simplified
overview of the actual biological processes.

The caffeine network reassembled by using MBH and GGM’s
reflects on caffeine metabolism across body biofluids, in which all
three pathways of caffeine metabolism can be found (Fig. 2).

Thus, we demonstrated that MBH’s and GGM’s capture biological
processes accurately. We further showed that data between different
sample matrices could be integrated and interpreted to provide fur-
ther insights into molecular processes and thereby inform about
system-rich biology.

Omics associations reflect on biological process
We further investigated the relevance of MBH for capturing biologi-
cally relevant process. For example, HbA1C [CLIN], known marker for
diagnosis and monitoring of Type 2 Diabetes (T2D)48,49, was showing
association with the elevated blood glucose level measured on dif-
ferent platforms as well as othermolecules previously described in the
context of diabetes including betaine50, mannose51 and X-1433113

(Supplementary Fig. 2A). We also found MBH between thyroxine and
SERPINA7, a thyroxine-binding globulin, which in the bloodstream
carries thyroxine and triiodothyronine into thyroid gland52; the MBH
was found independently of used technical platform (thyroxine (HDF)

Table 2 | Mutual best hits (MBH) between platforms

miRNA SOMA OLINK PGP IgG IgA&IgG BRAIN UM PM SM HDF BM CM LD RNA CLIN

miRNA 169 6 2 1 0 1 2 0 2 0 7 0 2 0 0 2

SOMA 337 1129 73 14 8 19 20 26 32 0 36 17 5 18 12 16

OLINK 309 323 184 10 1 7 18 12 18 0 23 20 1 15 8 12

PGP 326 344 313 36 10 14 7 3 8 0 7 4 2 4 4 6

IgG 326 340 310 331 60 31 5 4 4 0 7 2 2 3 3 4

IgA&IgG 325 341 322 330 291 178 5 9 9 2 11 7 3 4 2 7

BRAIN 333 350 317 339 337 335 224 15 19 1 28 18 5 8 1 10

UM 314 331 301 319 316 319 325 805 174 14 214 26 43 22 2 8

PM 321 339 308 327 323 326 333 347 600 24 369 45 21 43 3 15

SM 254 267 242 258 250 252 262 273 281 434 21 1 7 0 0 4

HDF 295 308 290 300 299 306 307 285 292 229 1020 75 21 96 1 14

BM 319 337 306 326 322 324 331 345 356 279 290 163 5 44 0 6

CM 308 324 296 313 310 313 318 353 340 269 281 338 60 4 1 4

LD 310 323 303 313 312 320 322 300 307 241 302 305 293 1201 0 5

RNA 296 311 287 301 299 301 306 297 300 235 270 299 291 285 1239* 7

CLIN 321 339 307 327 323 323 332 358 357 274 293 355 351 306 304 41
*Note Genotype (DNA) and methylation (MET) data were not included in the MBH computation. Transcriptome (RNA) was limited to 1239 transcripts that are also covered by the two proteomics
platforms (SOMA, OLINK).
The upper triangle of thismatrix indicates the number ofmutual best hits identifiedbetween the respective platforms, the diagonal contains the number of traits evaluated for that platform, and the
lower triangle reports the number of samples for which data was available for both platforms in parallel. Platform abbreviations are explained in Table 1.

Table 3 | Percentage of the variance explained in age, sex,
BMI, and diabetes state by platform

AGE [%] SEX [%] BMI [%] DIAB [%]

CLIN 54.9 92.5 17.7 92.0

RNA 24.6 70.6 9.4 67.2

miRNA 9.7 61.4 3.3 58.4

OLINK 53.8 85.4 22.1 79.6

SOMA 52.5 93.3 41.7 82.3

PGP 44.3 73.3 26.6 72.5

IgG 46.3 63.9 4.3 71.9

IgA 45.1 73.0 7.0 73.0

BRAIN 28.7 77.4 16.5 76.6

LD 26.5 76.9 18.9 68.2

BM 22.4 77.5 23.9 83.2

HDF 50.9 95.2 28.6 86.4

PM 51.7 91.6 24.7 86.3

SM 20.7 64.3 5.1 71.0

UM 50.3 89.4 27.3 81.9

CM 37.0 83.9 16.3 81.9
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⇔ SERPINA7 (OLINK) (p = 1.4 × 10−28; r = 0.62); thyroxine (HDF) ⇔
SERPINA7 (SOMA) (p = 2.8 × 10−18; r = 0.51)) (Supplementary Fig. 2B).
The MBHs detected between Apolipoprotein E (APOE), involved in
lipid metabolism, and different lipid molecules across various plat-
forms e.g., APOE (SOMA) ⇔ Total cholesterol in VLDL (BRAIN)
(p = 1.9 × 10−38; r = 0.65); APOE (SOMA) ⇔ Total [FA16:0] (LD)
(p = 4.2 × 10−37; r = 0.62); APOE (SOMA) ⇔ palmitoyl-linoleoyl-glycerol
(16:0/18:2) (HDF) (p = 5.5 × 10−20; r =0.58); APOE (SOMA) ⇔
1-palmitoylglycerol (1-monopalmitin) (PM) (p = 1.9 × 10−19; r =0.49);
APOE (SOMA) ⇔ PC.aa.C34.2 (BM) (p = 1.0 × 10−11; r =0.34), further
suggest that actual biological processes can be captured by the MBH
(Supplementary Fig. 2C). The majority of MBH identified between
proteomics and glycomics replicated the associations reported by us
previously53. The MBH’s between proteomics and transcriptomics
showed frequently the gene transcripts and corresponding proteins
SIGLEC14 (RNA) ⇔ SIGLEC14 (SOMA) (p = 1.1 × 10−37; r = 0.60); GNLY
(RNA)⇔GNLY (SOMA) (p = 9.6 × 10−22; r =0.49); LILRA5 (RNA)⇔ LILRA5
(OLINK) (p = 2.0 × 10−9; r =0.33). This data indicates that associations
depictedby theMBH reflect on the actual biological processes. Yet, the
MBH could be also used in different capacities. In Supplementary
Note 4we showed thatMBH linking lipidomicswithmetabolomics can
provide further insight into the structure of complex lipids.

MultiomicsGWAS, EWAS, andTWAS—relevant for humanhealth
GWAS with intermediate phenotypes such as metabolomics, pro-
teomics, or epigenomics have already been numerously conducted

across different populations providing insight into human physiology
and various pathophysiological processes54–58. Similarly, our previous
EWAS were conducted using data from 10 out of 18 platforms (Sup-
plementary Fig. 2) leading to identification of associations between
epigenetic variations and different biological traits14,16.

Here, we showed that our multiomics GWAS and EWAS replicate
multiple previous findings Supplementary Note 5 and resulted in
identification of new hits (Supplementary Note 6 for GWAS and Sup-
plementary Note 7 for EWAS). We also briefly describe the identified
interplay between SNP genotype, DNA methylation, and gene expres-
sion (Supplementary Note 8).

Previous TWAS studies focus mainly on gene–trait associations
fromGWASdatasets27,59,60. Yet, to thebest of our knowledge, the TWAS
with multiomics phenotype which we report on here represents the
first of its kind conducted to date.

Below, we present examples of findings from multiomics GWAS,
EWAS, and TWAS, that hold potential relevance for human health and
were not reported previously.

While analyzing our GWAS hits, we found previously unreported
GWAS associations between multiple variants near ST3GAL1
(rs6995270, rs17721179, rs2945738, rs13264936) and 14 molecules
including 2 sialic acid molecules and 12 different glycans, which all
were IgA glycans and included N-acetylneuraminic acid (sialic acid).
ST3GAL1 is glycosyltransferase, an enzyme involved in carbohydrate
metabolism, that catalyzes the transfer of sialic acid from Cytidine-5′-
monophospho-N-acetylneuraminic acid (CMP-sialic acid) to galactosyl
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Fig. 2 | The cross-talk between human body fluids captured by Mutual Best Hit (MBH) and Gaussian Graphical Model (GGM) reassembles caffeine metabolism.
Green indicates measurements conducted with metabolomics. The Supplementary Data (SD) 2 and 3 serves as data source for this figure.
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Fig. 3 | Examples of findings from multiomics GWAS, EWAS, and TWAS asso-
ciations. A Glycome GWAS revealed associations between ST3GAL1 variants and
IgA1 glycosylation. (Referee to SD2 andSD7 as thedata source);BmiRNAregulation
throughout genetic and epigenetic changes as determined with GWAS and EWAS.
(Referee to SD2, SD4, and SD8 as the data source); C Venn diagram showing an
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pathway analysis (IPA) revealed potential interaction betweenGATA2,HDC,MS4A3,
and FCER1Abut notPDK4;EThemolecules associatedwith PDK4. (Referee to ST9 as
the data source); F Associations between lipids structures and GATA2, HDC,MS4A3
and FCER1A. (Referee to SD9 as the data source). Molecules measured across
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(green) form the multiomics network.
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β(1,3)-N-acetylgalactosamine] Galβ1-3GalNAc61,62. The molecular net-
work generated from those 4 variants (Fig. 3A) shows different asso-
ciation directionality between genetic variants and IgA glycans. Our
finding suggests that IgA glycan composition is genetically driven,
which is of significant relevance for autoimmune diseases, given that
IgA effector functions were shown to depend on sialylation, where loss
of sialic acid increases pro-inflammatory effects63.

Genetic and epigenetic changes directly affecting miRNA tran-
scription may provide further insight into regulatory mechanisms
associated with the pivotal role of microRNAs in complex human
diseases64,65. We identified threemiR’s (miR-133b, miR-1, andmiR-133a-
3p), showing association with cg11682508 (C20orf166) out of which
two (miR-133b andmiR-1) associated with rs45552131 (near C20orf166-
AS1) (Fig. 3B). The observed association between cg11682508 and
rs45552131 replicates previous independent findings66. The expression
of miR-1 and miR-133a is modulated by insulin and may be involved in
insulin signaling. Given that both miRNA’s are derived from introns of
protein-coding transcripts (C20orf166)67, it may be reasoned that
cg11682508 is also involved in insulin modulation and signaling.
Interestingly, cg11682508 was previously described as one of the
methylation sites being dysregulated in pancreatic islets of T2D
subjects68. By investigating the interplay between genetic variants,
methylation, and miRNA we identified a novel CPG—miRNA axis
beyond replication of previous findings.

To the best of our knowledge, this is the first, conducted to date,
multiomics TWAS, that includes proteomics, metabolomics, lipi-
domics, lipoproteomics and glycomics in addition to methylation and
miRNA. To our surprise, we discovered that the majority 67% (1114 out
of 1660) of the identified TWAS associations were with lipids and
lipoproteins, while fewer (Supplementary Note 9 and Supplementary
Data 15) were with proteins (300) and metabolites (157). Those gene
expressions—lipid/lipoprotein associations were found to be grouped
predominantly around five gene transcripts including GATA Binding
Protein 2 (GATA2), HistidineDecarboxylase (HDC), Fc Epsilon Receptor
1 alpha (FCER1A), Pyruvate Dehydrogenase Lipoamide Kinase 4 (PDK4),
and Membrane Spanning 4-Domains A3 (MS4A3), showing association
with 590, 516, 36, 18, and 18 lipids/lipoproteins respectively. Anoverlap
between molecules associated with gene transcripts of GATA2, HDC,
MS4A3, and FCER1A but not with PDK4 (Fig. 3C) reproduces ingenuity
pathway analysis (IPA) that suggests potential interaction between
GATA2, HDC, MS4A3, and FCER1A but not PDK4 (Fig. 3D). Lipids asso-
ciated with PDK4 were largely fatty acids with various chain lengths
(Fig. 3E). Changes inPDK4 expressionwere shown toplaya role in lipid-
related metabolic adaptation by stimulating fatty acids oxidation69,
which explains the findings. For GATA2, HDC, MS4A3, and FCER1A we
observed associations, exhibiting diverse directionalities, with a var-
ious high-density lipoproteins (HDL), low-density lipoproteins (LDL),
and very-low-density lipoproteins (VLDL), as well as triacylglycerols
(TAG) containing different fatty acid chains. Additionally, apolipo-
protein A (APOA) and APOE were associated only withGATA2 andHDC
(Fig. 3F). This observation couldbe of relevance for cardiovascular and
autoimmune (systemic lupus, psoriasis, or rheumatoid arthritis) dis-
ease where lipids and lipoproteins are strongly altered. Importantly,
we monitored gene expression from blood, which constitutes of
immune cells. GATA2, HDC, MS4A3, and FCER1A but not PDK4 are
predominantly expressed by basophils (70, Human Protein Atlas pro-
teinatlas.org), further suggesting the interplay between basophils and
circulating lipoproteins. Thus, we potentially identified an array of
lipids/lipoproteins with immunostimulatory properties throughout
our lipidomics TWAS, which is of importance for cardiovascular and
autoimmune disease.

The molecular human—insight into T2D via multiomics
Diseases such as diabetes, cardiovascular, and autoimmune disorders
are multifactorial71–73. Thus, molecular relationships, as defined by the

correlation across and between different omics and reported here,
may substantiate previous discoveries related to a disease as well as
any singlemolecule association (e.g., gene, protein, metabolite) or the
interactions between them, defined by e.g., pQTLs or mQTLs.

To address diabetes heterogeneity, Ahlqvist et al. used clinical
parameters and defined new diabetes subgroups including four
defining T2D: (1) mild age related (MARD) characterized by low insulin
resistance, but a much lower age of onset of T2D; (2) mild obesity
related (MOD) characterized by high BMI with low insulin resistance;
(3) severe insulin resistant (SIRD) characterized by highest level of
insulin resistance (HOMA2-IR) and high BMI; and (4) severe insulin
deficient (SID) characterized by young age at onset, low BMI, low
insulin secretion (HOMA2-B) and poor glycemic control (high
HbA1c)74. In our latest study, we deployed metabolomics and pro-
teomics to further characterize those diabetes subgroups in Qatar
Biobank (QBB) cohort75. However, when focusing solely on the protein
andmetabolite signatures, without a context of theirmolecularmilieu,
the understanding of pathologies associated with these diabetes sub-
groups remains limited.

Here, to contextualize the molecular milieu of metabolic and
protein signatures of T2D subgroups (MARD, MOD, SIDD, and SIRD),
we utilized all our calculated multiomics associations and generated
subgroup-specific multiomic networks. The list of metabolic and pro-
tein signatures defining T2D subgroups, detected in our previous
study75, and overlapping with our multiomics dataset, is presented in
Supplementary Data 16.

We found differences in the number of molecules forming net-
works for MARD (Fig. 4, and Supplementary Data 17), MOD (Supple-
mentary Fig. 3, and Supplementary Data 18), SIRD (Supplementary
Note Fig. 4, and Supplementary Data 19), and SIDD (Supplementary
Fig. 5, and Supplementary Data 20), which was expected given various
number of proteins and metabolic signatures characterized each
subgroup75. The molecular network generated around the protein and
metabolic signatures of MARD subcluster, detailed below, as well as
MOD, SIDD, and SIRD in Supplementary Note 10 offer additional
valuable insights pertinent to the pathological process in which those
proteins and metabolites are involved.

MARD network indicates risk to cardiovascular calcification
TheMARDnetwork comprises 108molecules detected on 11 platforms
(Supplementary Data 19 and Fig. 4) forming fivemolecular subclusters
around osteomodulin, glutamine, bone morphogenetic protein
receptor type 1A (BMPR1A), kallikrein 7 (KLK7), and fructose. Those
subclusters can reflect on specific molecular processes. For instance,
the molecules clustered around osteomodulin consist of bone sialo-
protein 2 (IBSP), the noncollagenous bonematrix protein, indicated as
a component actively regulating aortic valve calcification76, a circu-
lating Wnt inhibitory factor 1, which is associated with IBSP, was pre-
viously shown to be involved in the development of cardiovascular
disease and atherosclerotic plaque formation77, and FAP propyl
endopeptidase directly associated with osteomodulin was shown as a
negative regulator of cardiac repair78. The glycine, also found in
osteomodulin cluster, was reported as a major quantitative and
structural constituent of collagen molecule79, which was found to
promote cardiovascular calcification80. We also identified and
replicated81 glycine association with rs1047891 near CPS1, carbamoyl-
phosphate synthase 1. Thus, the molecular network around the
osteomodulin indicates mechanisms underlying cardiovascular com-
plications, particularly calcification, which might be relevant for the
MARD subgroup. The comprehensive characterization of processes
related to osteomodulin was feasible after the deployment of
multiomics data.

Overall, monitoring of complex diseases such as diabetes through
multiomics layers results in a more accurate description of the
pathological processes aswe showedbydefiningmolecular networkof
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diabetes subgroups. Now, the molecular interactions established
across omics layers by our study can provide further insight into var-
ious pathological processes beyond T2D. We provide the full network
in digital format (Cytoscape82) for free download.

COmics—server to explore multiomics interactions
AlthoughCytoscape82 is a powerful tool that could be deployed for the
exploration of molecular networks, it requires specialized knowledge
and software familiarity. To simplify data access and result
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visualization, we integrated all associations along with GWAS catalog
information. We constructed a molecular network consisting of over
34,000edges and6304nodes,whichwemade available ason anopen-
access COmics server (http://comics.metabolomix.com) (Fig. 5A). This
server is intuitive to use, requiring minimal skills, resources to explore
molecular interactions related tophysiological andpathophysiological
processes, and can also serve as a tool for hypothesis generation. We
present examples defining molecular milieu of IGFBP6 (“COmics takes
on IGFBP6: ”, Fig. 5B), LILRA5 (“COmics takes on LILRA5: ”, Fig. 5C),
lactate (“COmics takes on lactate: ”, Figs. 5D), and 5-methyluridine
(“COmics takes on 5-methyluridine (ribothymidine):”, Fig. 5E) which
extend on our understanding related to their potential role in human
health, including T2D and autoimmune diseases.

COmics takes on IGFBP6
http://comics.metabolomix.com/?focus=OLINK:IGFBP6_
P24592&maxnodes=1

Insulin-like growth factor-binding protein-6 (IGFBP6) is a high-
affinity IGFBP shown to play a role in multiple processes, including
tissue remodeling and repair, fibrosis, and immunological responses83.
Nevertheless, its molecular interactome was not previously described
and could shed light on the pathophysiology related to IGFBP6. The
network (Fig. 5B) consists of eight direct associations with IGFBP6
including six molecular associations (IGFBP6 [SOMA], creatinine
[CLIN], creatinine [BRAIN], N,N,N-trimethyl-alanylproline betaine
[HDF], PM: X-17299 [PM], rs6952900 near SOSTDC1 [GWAS]) and two
phenotypic associations (SEX and DIAB). Given that creatinine and
N,N,N-trimethyl-alanylproline betaine were recognized as markers
defining kidney function84 it could be reasoned that IGFBP6 is impli-
cated in physiological or pathophysiological kidney processes. Indeed,
elevated levels of IGFBP6were identified in children with chronic renal
failure85. Additionally, IGFBP6 was associated with the diabetes phe-
notype, for which a compromised kidney function was identified in
~40% of T2D patients86. The identified network further indicates the
involvement of IGFBP6 in kidney pathology, which could be relevant
for T2D.

COmics takes on LILRA5
http://comics.metabolomix.com/?focus=OLINK:LILRA5_
A6NI73&maxnodes=1

Leukocyte immunoglobulin-like receptor 5 (LILRA5) was shown to
be expressed by monocytes as well as neutrophils1, and recent study
reported on its expression by macrophages87. LILRA5, expressed by
macrophages of synovial tissue, was shown to trigger selectively pro-
inflammatory cytokines and IL-10 in rheumatoid arthritis patients88.
We created the molecular network of LILRA5 (Fig. 5C) to further
understand themolecular process related to LILRA5.We identified five
molecules directly associated with LILRA5 (ENSG00000187116_ LILRA5
[TWAS], miR-106b-5p [miRNA], LILRB1 [OLINK], PGP32 [PGP] and
IgGIV1H3N4F1 [IgA]). The identified TWAS associations between
LILRA5 [OLINK] and ENSG00000187116 indicate translational pro-
cesses, whereas LILRA5/miR-106b-5p [miRNA] suggest that miRNA
might be involved in the regulation of LILRA5 levels or function.
Recently, miR-106b-5p was reported as a molecule released by mac-
rophages involved in inflammation and communication between
macrophages and renal juxtaglomerular cells89. The association iden-
tified here extends the miR-106b-5p-related knowledge. Interestingly,
we also found an association between LILRA5 and another protein
from the same family, LILRB1, known to be involved in the immune
response modulation90, suggesting a potential interaction between
those molecules. Indeed, a recent study reported and validated
protein-protein interactions between LILRA5 and LILRB191, further
confirming our finding. Identification of glycans (total N-glycans and
IgG) in the LILRA5 clusters is not surprising, given their extensively

described involvement in inflammation and rheumatoid arthritis92, but
informatively pointing towards glycan-protein axis in this regard.

COmics takes on lactate
http://comics.metabolomix.com/?focus=HD4:lactate&maxnodes=1

Lactate is a critical metabolite for proper physiology, and altera-
tions in lactate metabolism are involved in various diseases, including
cancer, cardiovascular diseases, inflammation, and many others93.
Here we describe molecular interaction with lactate in blood using
COmics (Fig. 5D). This molecular network identified expected
metabolite-metabolite interactions as the one observed between lac-
tate andmetabolites ofTCA cycle (succinate and private) aswell as less
expected lactate association such as the one observed with laminin
(LAMA) [SOMA], and as well as cg07611106 and cg05840750 (detected
by EWAS). LAMA is one of the largest non-collagenous glycoproteins in
the basement membrane and is an essential component of the extra-
cellular matrix (ECM). A previous study described that high glucose
and insulin levels trigger increased LAMA production by renal cells,
further suggesting its relevance in diabetes94. We also found a sig-
nificant association between diabetes phenotype and LAMA (Supple-
mentary Data 15). Thus, it could be reasoned that the association
identified between lactate and LAMA might relate to glucose and
insulin metabolism. This hypothesis could be supported by our pre-
vious study showing elevated lactate levels in diabetes patients with
acute disease onset13, thus suggesting the lactate-LAMA association as
relevant for disrupted glucose-insulin axis in diabetic subjects. Yet, it
would be important to understand the mechanistic nature of lactate-
LAMA association.

COmics takes on 5-methyluridine (ribothymidine)
http://comics.metabolomix.com/?focus=HD4:5-methyluridine
(ribothymidine)&maxnodes=1

5-methyluridine, is endogenous methylated nucleoside metabo-
lized from uridine in the reaction catalyzed by methyltransferase in
which S-adenosylmethionine (SAM) serves asmethyl donor95. Although
5-methyluridinewas reported in context of various conditions including
respiratory process in asthma96, major adverse cardiovascular events97,
as well as COVID-1998, the actual impact of alterations in levels of plasma
5-methyluridine is unclear. Using COmics we found 28 molecules
associated with 5-methyluridine (Fig. 5E). The associations between
metabolites (uridine and 2-deoxyuridine) were expected and reflected
in substrate-product relation in uridine metabolism. The associations
identified between 5-methyluridine and 20 cpg sides near 13 different
genes (SMC4, TRAF2, NLRC5, IFITM1, OAS2, IRF7, PLSCR1, PARP9, IFI44L,
MX1, EPSTI1, IFIT3, CMPK2), as well as 4 gene expressions (IFI44L, RSAD2,
LY6E, EPSTI1) were more intriguing, mainly because we also identified
eQTM between the gene transcripts and methylation sides suggesting
interplay between those molecules. To assess whether the network
identifiedwith COmics reflects on protein-protein interactions involved
in biological processes, we used STRING database99. Indeed, supportive
evidence for the interactions between molecules identified in the clus-
ter genes was found. Moreover, majority of those molecules were
involved in immune responses predominantly innate immunity and
interferon signaling (Fig. 5F), which we further assessed and confirmed
with Interferome database100. Thus, the negative association, which we
observed between 5-methyluridine and all 4 gene transcripts, and the
positive association between 20 methylation sides, suggests immuno-
suppressive properties of 5-methyluridine. With COmics we also iden-
tified a protein SERPINA4 (Kallistatin) to be associated with
5-methyluridine. Interestingly, kallisterin was reported in context of
rheumatoid arthritis as a molecule with anti-inflamatory properties,
inhibiting accumulation of immune cells101. Thus, themolecules directly
associate with 5-methyluridine reveal multiomics axis extending on the
mechanisms with regulatory effect on the immune system.
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These examples demonstrate the utility of COmics (http://comics.
metabolomix.com) as a resource to explore highly complex molecular
relationships related tophysiological processes anddiseasephenotypes.

Discussion
The Molecular Human could be considered as holistic description of
molecular interactions in the human body, which we achieved here by
integrating molecules detected across 18 platforms and 8 omics.
Although, to date this is the largest effort in terms of the number of
measurements conducted in the relatively big human cohort (391 sub-
jects), we are aware that future attempts might extend the molecular
interactome towards process concerning in greater detail secretomeby
focusing on sweat and tears, exhalome focused on the molecular
composition of the breath as well as microbiome aiming to provide
comprehensive description of the gut and skin microbiota and their
interactions with the host. Thus, we see our approach as an overture
into future large-scalemultiomics study forwhichwe are setting a stage.

Understanding inter-molecular relationships and platform com-
plementarity is central to working with large genetic and epidemio-
logical meta-analyses, evaluating data integration options, and
extracting additional information. Deployment of MBH across omics
platforms covering different and overlapping molecular traits, which
we investigated here, can indeed be used to define molecular orthol-
ogy bridging different platforms and omics. While investigating MBH
between platforms containing overlapping molecular traits (e.g.,
SOMA ⇔ OLINK; HDF ⇔ PM; IgG ⇔ IgA) and identifying association
between them we showed good platform performance regarding
components identification. On the other hand, MBH applied to mole-
cular traits between different omics (e.g., thyroxine (HDF)⇔ SERPINA7
(OLINK); APOE (SOMA) ⇔ Total cholesterol in VLDL (BRAIN)), reveal
biologically relevant molecular interactions. Those examples under-
score the value of the measurements and suggests the utility of sug-
gested here data integration.

However, ~28% of common protein targets were not detected by
theMBH for the two affinity-basedplatformsused for proteomics. This
suggests that integrating the measurement approaches can be chal-
lenging and may require special attention for the molecules that MBH
did not identify. Many of our observations are in line with previous
studies assessing proteomics methods in multiple cohorts102. They
could be linked to differences in their analytical performance for
common protein targets.

Complex and multifactorial conditions such as diabetes, cardio-
vascular, and autoimmune diseases require comprehensive char-
acterization for proper diagnostics and treatment. This is particularly
relevant when the disease progression is not well defined, as well as
when various comorbidities occur. For instance, treatment of T2D
diabetes patients depends on multiple factors including their blood
glucose level (tested with HbA1C or 1,5-AG), insulin resistance status
(tested with hyperinsulinemia-euglycemic clamp or HOMA-IR), cap-
ability to produce insulin (e.g., fasting insulin or C-peptide test) as well
as presenceof other diseases (e.g., cardiovasculardisease, neuropathy,
kidney disease, and retinopathy)103. The identification of five sub-
groups among diabetes patients, stratifying individualswith respect to
disease progression and diabetic complication risks, adds to the
complexity but could further navigate more personalized treatment
options74. The multiomics analysis offers a powerful framework that
could be utilized to better phenotype patients with complex diseases
by defining molecular interactions across omics layers with functional
relevance for disease endpoints. GWAS or EWAS with intermediate
phenotypes e.g., miRNA, protein, glycan, or metabolite, has shown a
potential to provide insight into human physiology and complex dis-
eases in the past4,10,104–107. The integration of additional multiomics
layer resulted in identifying processes relevant to human biology,
including biochemical reactions and metabolism of the components
involved, as well as molecular interactions previously identified by

multiomics GWAS, EWAS, and TWAS. In our cohort study, we repro-
duced a plethora of literature-reported hits which proves the robust-
ness of our approach. Moreover, we identified previously unreported
associations shedding a light on a range of biological processes rele-
vant for diabetes, autoimmune, and cardiovascular disease.

We further utilized the integrated multiomics data to describe
molecularmilieuofproteins andmetabolites, recognized as signatures
of T2D subgroups75, which enabled us to provide further insight into
potential pathologies, relevant for those subtypeswhichwould require
further investigation. For instance, based on the integrated analysis,
we suggest cardiovascular complications such as calcification could be
a risk factor for theMRAD subgroup.We also describe othermolecular
events relevant to MOD, SIDD, and SIRD subgroups which were not
suggested before as the multiomics component was missing in the
previous analysis. For instance, the multiomics network applied to
MOD subgroup resulted in the identification of known as well as pre-
viously unreported interactions as the one found between leptin and
CXCL5, cytokine implicated in the chemotaxis of inflammatory cells
(Supplementary Note 10). Given that CXCL5was recently implicated in
the browning of WAT108 and leptin was determined as a molecule
enabling browning of white adipose tissue (WAT)109,110, our identified
association might suggest interplay between CXCL5 and leptin in the
processes ofWAT remodeling. This further extends our understanding
of metabolically healthy obesity, characterized, among others, by high
BMI and low insulin resistance111, which to some extent is characteristic
of MOD subgroup. Despite the valuable insights provided by this
multiomics integration, it is essential to note that the associations
observed are hypothesis-generating in nature. Thus, further study
would be required to provide definitive biological conclusions.
Nevertheless, the perspective obtained through utilizing multiomics
layers in understanding humanbiology in this study is relevant and can
serve as a foundational framework for future multiomics initiatives.

Additionally, our multiomics network, created based onmolecular
interactions across 18 platforms, is giving possibilities beyond mole-
cular characterization of diabetes subtypes. It can be utilized in more
generalizable approach to better understand molecular milieu (both
direct and distant) of each measured molecule and consequently, for
hypothesis generation as we outlined in Fig. 5 and under vignette
“COmics takes on”. For instance, while analyzing themolecular network
of 5-methyluridine we pointed out its potential immunosuppressive
properties and suggested involvement of methylation and alteration in
expression of e.g., IFI44L, EPSTI1, and LY6E genes, relevant in context of
autoimmune diseases such as systemic lupus and rheumatoid
arthritis112,113. We extend the effort of documenting new molecular case
studies where a multiomics approach provides further insight into
molecule function and their potential involvement in various patholo-
gies through identified omics associations. These case studies are pre-
sented in the form of a blog (http://www.metabolomix.com/comics/),
depicted as ‘Comics take on …’. Finally, we provide the scientific com-
munity with access to this multiomics network via the developed web
server COmics (http://comics.metabolomix.com) to facilitate global
testing of the interactions of molecules of interest in the context of
other omics layers. This can contribute to more rapid hypothesis gen-
eration, followed by its testing, and thus progress in the field.

Yet, it is crucial to bear in mind that the implementation of such a
broad array of platforms is frequently not feasible and not always
necessary. The selection of specific omics and platforms should be
driven by the scientific question, as well as the process or phenotype
requiring investigation. Asdemonstrated in this study, phenotypes such
as age, sex, or diabetes necessitate omics that closely recapitulate the
specific phenotype. For example, metabolomics, glycomics, or pro-
teomics were identified as the main molecular hubs enabling the con-
struction of networks for diabetes subtypes, whichwas not feasiblewith
transcriptomics or methylation alone, even though they are also com-
ponents of the network. In contrast, associations revealed by TWAS,
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reflecting on immunostimulatory processes, were predominantly cap-
tured by transcriptomics and lipidomics/lipoproteomics, with other
omics not contributing significantly to this discovery. This underscores
the importance of 2-way comparisons rather than fully multiomics
approaches in capturing certain processes. Now, with access to this
data, each investigator has the freedom tomonitor themolecularmilieu
of the molecule or phenotype of interest, allowing them to decide on
the most suitable omics/platform approach for their study. Our study
has strengths andweaknesses. The diversity of theQMDiab participants
provides access to a wide range of individuals from various ethnicities
including Arabs, South Asians, and Filipinos Given that the majority of
the study focusses on Caucasian population, multiethnic nature of our
work especially in multiomics context is truly unique and is adding to
the previously conducted omics research on Asian and Middle eastern
population114–116. Yet, mixed ethnicity in the QMDiab might result in
population-specific stratification and thus in inflated p values. Indeed,
our previous study showed that the first three principal components
(PC’s) of the genotype variants capture self-reported ethnicity15.
Therefore, we added the first three principal components of the gen-
otyping data (genoPCs) to represent accurately the ethnicity. Addi-
tionally, participants were enrolled continuously on an availability basis
(i.e., without selection for diabetes state, age, sex, BMI or ethnicity) at
the dermatology department of the major public hospital in Doha,
Qatar, using identical collection kits and protocols, to avoid batch
effects between cases and controls, which could occur during the initial
phase of patient enrollment and sample collection. The fact that parti-
cipants were from diverse ethnic backgrounds introduces variations on
multiple levels, including lifestyle, dietary habits, physical activity levels,
and health behaviors, among other factors. This diversity may be
advantageous when investigating correlations between omics layers, as
it could potentially increase the signal-to-noise ratio. Similarly, the fact
that study participants were not fasting implies further biological var-
iation in the data, which may strengthen correlation signals related to
processes confounded by fasting when case-control studies are con-
ducted. Noteworthy, while the average time between meals for indivi-
dualswith orwithout T2Dwasnot assessed, and the fasting status of the
participants was not defined, our previous study demonstrated that the
increased variability is random and does not tend to bias the
associations13. Because our cohort consists of healthy and T2D subjects
some of the observed associations could be driven by the molecular
alterations which are known features of T2D (e.g., elevated carbohy-
drates, lipids, and branch chain amino acid levels). For instance, iden-
tified TWAS associations, dominated by 5 genes linked to various lipids
could reflect on the enrolled participants’ characteristics, which might
be recognized as study limitation. Nevertheless, such an experimental
setting enabled us to uncover a range of lipids/lipoproteins with
immunostimulatory properties in our lipidomics TWAS, which holds
significance for cardiovascular disease.

Taken together, we have drawn a multiomic image of the Mole-
cular Human by providing a comprehensive description of biological
processes based on the integrated data generated by 18 technologi-
cally diverse platforms in human samples obtained from 391 subjects.
We provide open access to this resource via the COmics web server
and Github. Our study describes the complementarity of various
omics layers and demonstrates the capacity for integrated omics
data to mirror biological processes. It sets the stage for future studies
that utilize such resources to understand the molecular networks
surrounding molecules of interest that link them to the disease
endpoints.

Methods
Ethics
The study was approved by the Institutional Review Boards of HMC
and Weill Cornell Medicine-Qatar (WCM-Q) under research protocol
#11131/11 and complies with all relevant ethical regulations. For

ongoing work related to this study, a non-human subjects research
determinationwas obtained. The studydesign and conduct adhered to
all relevant regulations regarding the use of human material and data
and was conducted in accordance with the criteria set by the
Declaration of Helsinki.

Cohort characteristics
The subjects were enrolled in the framework of the Qatar Metabo-
lomics Study on Diabetes (QMDiab), a cross-sectional diabetes case-
control study at the Dermatology Department of HMC in Doha, Qatar
as previously described12. Written informed consent was obtained
from all participants. No compensation was given to the participants.
The study enrolled 391 participants with at least one omics phenotype
and includes 17 additional subjects that were not a part of Mook-
Kanamori et al. The cohort consists of 193 females and 198 males. The
average participants age was 46.5 years (s.d. = 12.9) and the average
BMI was 29.7 kg/m2 (s.d. = 6.0). This cohort includes 195 participants
with T2D and 196 without T2D.

Sample collection
Non-fasting blood, saliva and urine were collected according with
standard protocols as previously described12. Blood was collected
using EDTA, Heparin, citrate and PAXgene Blood RNA tubes. Blood
collected in EDTA and Heparin was centrifuged at 2500 g for 10min,
plasmawas collected aliquoted and stored at −80 °Cuntil analysis. The
blood collected into PAXgene Blood RNA tubes was centrifuged for
10min at 4000 g. The supernatant was removed, and the pellet was
used for the RNA extraction. The saliva was collected using Salivette
system (Salivette®, SARSTEDT AG & Co. KG) according with manu-
facturer’s protocol. Collected saliva samples were centrifuged at
2000 × g for 2min, aliquoted and stored at −80 °C until analysis. The
urine was collected into the URINE CAPS mixed transferred into the
falcon tube, centrifuged at 2500 g for 10min, aliquoted and stored
at −80 °C.

Deep molecular phenotyping
The obtained samples were submitted for deep molecular phenotyp-
ing which utilized clinical chemistry parameters along with omics
measurements across 18 technically diverse platforms. All the cases
and controls were measured simultaneously on each analytical plat-
form to minimize measurements biases. We determined: 41 clinical
chemistry parameters (CLIN); genotype data of 1,221,345 variants
(DNA); 450k DNA methylation sites (MET); (4) 57,942 transcriptomic
traits, including 57,773 RNA transcripts (RNA) using RNA-sequencing
(Illumina, 20M reads), and 169 microRNA profiles (miRNA) with mul-
tiplex qPCR (Exicon); 1313 blood circulating proteins using two dif-
ferent technologies 1129 proteins (SOMA) from aptamer-based
technology (SomaLogic) and 184 proteins (OLINK) from high-
multiplex immunoassays (Olink); 274 glycan traits including 36 total
plasma N-glycosylation (PGP) using HILIC-UPLC and 60 IgG-
glycopepdides (IgG) deploying LC-MS, both profiled at Genos Ltd. as
well as 178 IgA and IgG-glycopeptides (IgA) measured with LC-MS in
Wuhrer lab; 225 plasma lipoproteins (BRAIN) quantified with 1H NMR
(Nightingale), 1494 lipids including 1,331 plasma lipids (LD) quantified
using Lipidyzer deploying LC-MS system (Metabolon), and 163 plasma
lipids and other metabolites (BM) quantified with FIA-MS (Biocrates
p150 kit); 3415 metabolic traits profiled with different approaches and
matrixes including 1104 plasma metabolites (HDF) determined with
HILIC-MS and UPLC-MS on HD4 platform (Metabolon), 2251 metabo-
lites (758 in plasma (PM), 602 in saliva (SM) 891 in urine (UM),) mea-
sured using GC-MS and UPLC-MS on HD2 platform (Metabolon), and
60 urine lipids (CM) quantified with 1H NMR deploying Chenomx
(University Greifswald). For the cross-platform analyses we limited the
RNAprofiles to 1239 transcripts, whichwere also assayed by SOMAand
OLINK platforms.
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Clinical chemistry data
The obtained blood samples were analyzed within 4 h of blood col-
lection at the Department of Laboratory Medicine and Pathology of
HMC with the Cobas® 6000 (Roche Diagnostics, Basel, Switzerland).

Genotyping
The genotypingwas conducted by theGenomics Core atWCM-Q aswe
previously reported15. Briefly, the Illumina Omni 2.5 array (version 8)
was used. Out of 359 genotyped samples, high-quality genotype data
(2,338,671 variants) was obtained for 353 samples, and six samples,
which displayed overall low call rate (<90%), were excluded. After
duplicate variants removal, 2,327,362 variants left. Variant removal due
to (1) Themissing genotype data(in all 134,830 variants) (PLINK option
-geno 0.02) resulting in 2,192,532 variants; (2) minor allele threshold
(in all, 941,058variants) (PLINKoption -maf0.05), resulting in 1,251,474
variants; (3) Violation of Hardy-Weinberg equilibrium (in all, 28,175
variants) (PLINK option -hwe 1E-6), leaving 1,223,299 variants out of
which 1,221,345 were autosomal variants. The total genotyping rate of
these remaining variants was 99.7%.

Methylation
The methylation analysis was conducted by Genomic Core at WCM-Q
as previously described14. Samples were probed for genome-wide DNA
methylation profiling of over 485,000 methylation site using the Illu-
mina Infinium HumanMethylation450 (450K) BeadChip array. The
assay performance was assessed with implemented in the Genome
Studio software and all the samples passed the quality control. The
obtained data was further normalized using the Lumi: BMIQ pipeline,
which includes color bias adjustment, quantile normalization (QN),
and beta mixture quantile dilation normalization (BMIQ).

Transcriptomics (RNA-seq)
Theobtainedpellets from the PAXgeneBloodRNA tubeswere used for
the isolation of total RNAwith PAXgene BloodmiRNA Kit (Qiagene). In
brief, the obtained pellets were mixed with RNaze-free water, and
vortexed until the pellets dissolved. The samples were centrifuged for
10min at 4000 × g and pellet was formed. The supernatant was
removed and 350 µL of BM1 buffer provided with the kit was added
into the pellet. The samples were vortexed until the pellet dissolved,
and mixed with 300 µL of BM2 buffer as well as 40 µL of proteinase K,
provided with the kit. The samples were incubated for 10min. at 55 °C
under constant shaking followed by transfer onto the PAXgene
shredder spin column placed in a processing tube. The samples were
centrifuge for 3min at 15,000 × g and the supernatant was placed into
the fresh tube,mixedwith 700 µL of 100% isopropanol and transferred
onto PAXgene RNA spin column. The samples were centrifuged for
1min at 15,000× g the flow-throw was removed, and 350 µL of BM3
buffer was placed onto PAXgene RNA spin column. The samples were
centrifuged for 15 s. at 15,000× g, the PAXgene RNA spin column was
placed in the fresh collection tube and 80 µL of RDD buffer containing
DNase-I was placed onto PAXgene RNA spin column followed by
15min. incubation at room temperature. 350 µL of BM3 buffer was
placed onto PAXgene RNA, the samples were centrifuged for 15 s at
15,000× g, the flow-throwwas removed, and 500 µL of BM4 buffer was
added. The samples were centrifuged for 15 s at 15,000 × g, the flow-
throw was removed, and additional 500 µL of BM4 buffer was added.
After centrifugation for 2min. at 15,000× g, the PAXgene RNA spin
column was placed into the fresh collection tube, and the samples
were eluted from the column with 80uL of BR5 buffer. The obtained
eluent was incubated for 5min at 60 °C, and afterwards chilled on ice.
The integrity and quantity of the isolated RNA was measured using
Qubit RNA HS Assay Kit (high sensitivity, 5 to 100ng quantification
range) Assay Kit and Qubit 3.0 fluorometer (Life Technologies)
according to the manufacturer’s protocol. The samples were kept at
-80 °C until measurements.

The samples containing total RNA (400ng) were submitted to the
Genomics Core at WCMQ for the RNA-sequencing. The total RNA was
depleted of rRNA and Globin using the NEBNext rRNA & Globin Deple-
tion Kit for Human/Mouse/Rat (New EnglandBioLabs, Ipswich,MA). The
depleted RNA was used to generate strand-specific libraries with BIOO
NEXTflex Rapid Directional RNA-Seq Kit (Bioo-Scientific, Austin, TX).
Library quality and quantity were analyzed with the Bioanalyzer 2100
(Agilent, Santa Clara, CA) on a High Sensitivity DNA chip. 10 libraries
were thenpooled in equimolar ratios andpaired-end sequenced at 75 bp
onone laneof an IlluminaHiSeq4000 (Illumina, SanDiego, CA). Total of
57,773 RNA transcripts were measured in 320 subjects.

microRNA quantification
RNA extraction. The miRNAs were isolated from 200 µL EDTA-plasma
sample using the miRNeasy serum/plasma kit (Qiagen) following the
manufacturer’s instructions. Briefly, the samples were lyzed using
QIAzol Lysis Reagent and spiked with 3.5μl miRNeasy Serum/Plasma
Spike-In Control included in the kit. The chloroform was added, sam-
ples were mixed and the centrifuged. The obtained after centrifuga-
tion upper aqueous phase was transferred into the fresh tube, mixed
with 1.5 volume of 100% ethanol, and transferred into an RNeasy
MinElute spin column in a 2ml collection tube, provided in the kit. The
samples were centrifuged, the flow-throw was removed, and RWT
buffer provided with the kit was added onto the RNeasy MinElute spin
column. The samples were centrifuged, the flow-throw was discarded,
RPE buffer, providedwith the kit, was added onto the RNeasyMinElute
spin column. The samples were centrifuged and flow-throw was
removed. The 80% ethanol prepared in RNaze-free water was placed
onto theMinElute spin column, the samples were centrifuged until the
spin columnmembrane dried. TheMinElute spin columnwasplaced in
fresh collection tube and the total RNA including miRNA was eluted
with 14μl RNase-free water.

miRNA profiling. Prior the profiling, the isolated RNA samples were
reverse transcribed to cDNA using the Exiqon Universal cDNA Synth-
esis Kit II (Exiqon Inc., MA, USA) according with the manufacturer
instruction. Briefly, 2μL of total RNA (5 ng/μL) were used for cDNA
synthesis. All processes were conducted in 384 well plate format. The
quality and integrity of the synthesized cDNA was assessed using the
miRNA QC PCR Panel (V4.M; Exiqon Inc.). Obtained cDNA was 50-fold
diluted andmixedwith 2x Exilent SYBRGreenmastermix (Exiqon Inc.),
andROX reference dye (4μl/2ml) (Thermo Fisher Scientific,MA, USA).
The samples were loaded onto human serum/plasma focus miRNA
PCR panels, and quantitative real-time PCR was performed using the
QuantStudio 12 K Flex real-time PCR System (Applied Biosystems, CA,
USA). The PCR data were processed using Exiqon GenEx qPCR analysis
software (version 6). The inter-plate calibration was performed using
themean valueofUniSp3 interplate calibrator. The sampleswith a high
degree of hemolysis were identified after monitoring of calculated ΔCt

between hsa-miR-23a-3p and hsa-miR-451a. The samples with ΔCt > 7
were removed from the analysis. Only microRNA assays with Ct ≤ 35,
expressed in at least 60% of the samples were counted and the
remaining samples were removed from the analysis. The global aver-
age of all expressed microRNAs with Ct < 35 was used to normalize
individual assays. Total of 169 miRNAs were profiled in 339 subjects.

Proteomics measurements using SOMAscan technology
The EDTA-plasma samples were used for proteomics analysis based on
SOMAscan assay (version 1.1) technology, which was conducted at the
WCM-Q Proteomics Core15. The method employed protein-capture by
Slow Offrate Modified Aptamers (SOMAmer)117. Briefly, undepleated
EDTA-plasma was diluted and the following assay steps were per-
formed: (1) Binding: analytes and SOMAmers, carrying a biotin moiety
via a photocleavable linker were equilibrated; (2) Catch I: analyte/
SOMAmer complexes were immobilized on streptavidin‐support,
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followed by washing steps to remove proteins not stably interacting
with SOMAmers; (3) Cleave: release of analyte/SOMAmer complexes
from streptavidin beads through exposure to long‐wave ultraviolet
light resulting in linker cleavage; (4) Catch II: biotinylation of proteins
in analyte/SOMAmer complexes and subsequent repeated immobili-
zation on streptavidin support followed by washing steps to select
against non‐specific analyte/SOMAmer complexes; (5) Elution: dena-
turation of analyte/SOMAmer complexes and SOMAmer release; (6)
Quantification: hybridization to custom arrays of SOMAmer‐com-
plementary oligonucleotides. The primary data were submitted to
Somalogic for normalization of raw intensities, across-batch calibra-
tion and steps of quality control. In total 1129 molecules were quanti-
fied in 356 samples.

Proteomics measurements using Olink technology
Heparin-plasma samples were used for the proteomics measurements
based on the Olink® technology (Olink Proteomics AB, Uppsala, Swe-
den) at the WCM-Q Proteomics Core. The technology is based on a
proximity extension assay (PEA)118, and enables for simultaneous ana-
lysis of 92 analytes in 1 µL of sample. We used two different Olink®
panels, namely Cardiometabolic and Metabolism, for measurements of
184 unique proteins. The samples were processed along with 8 control
samples according to the manufacturer’s protocol using the following
steps: (1) Immunoassay: the sample was mixed and incubated with 92
supplier-provided optimized antibody pairs labeled individuallywith
oligonucletotides (PEA probes). Pair coupled oligonucleotides carry
unique annealing sites that allows specific hybridization of matching
probes; (2) Extension: Target binding by antibody pairs brings the
correspondingprobeoligonucleotides in close proximity and allows for
hybridization. Hybridized templates are extended by DNA polymerase,
which generates a DNA template for amplification; (3) Preamplification:
Universal primers enable parallel preamplification of all 92 DNA tem-
plates by PCR; (4) Detection: The resulting DNA sequence is subse-
quently detected and quantified using a microfluidic real-time PCR
instrument (Biomark HD, Fluidigm, South San Francisco, CA, USA). The
data obtained were normalized using an internal extension control and
an inter-plate control, to adjust for intra- and inter-run variation. In total
184 proteins were quantified in 328 samples.

Total plasma N-glycosylation (Genos platform)
Sample processing. he EDTA-plasma samples were analyzed by Genos
Ltd. (Zagreb, Croatia) using ultra-performance liquid chromatography
(UPLC) glycoprofiling as previously described53,119. Briefly, the sample
processing for total plasma N-glycosylation measurements was con-
ducted in 96-well plate format out of 10μL of plasma sample in fol-
lowing steps: (1) Release of N-glycans fromplasma proteins: The plasma
proteins were denaturated with 20 µl of sodium dodecyl sulfate (SDS)
2% (w/v) (Invitrogen, USA) for 10min at 65 °C, followed by cooling to
room temperature for 30min, and mixing with 10 µl of 4% (v/v) Igepal-
CA630 (Sigma-Aldrich, USA) under constant shaking for 15min.
N-glycans were released after incubation of samples with enzyme, N-
glycosidase-F (1.2 U of PNGase F (Promega, USA)) overnight at 37 °C; (2)
Fluorescent labeling of released plasma glycans: The obtained
N-glycansweremixedwith freshlyprepared labelingmixture containing
(70: 30 v/v) 2-aminobenzamide and 2-picoline borane in dimethylsulf-
oxide (Sigma-Aldrich) and glacial acetic acid (Merck, Germany) for
15min followed by 2h incubation at 65 °C; (3) Cleaning and elution of
labeled N-glycans: The excess free label and reducing agent were
removed from the samples using hydrophilic interaction liquid chro-
matography solid-phase extraction (HILIC-SPE). The samples were loa-
ded into the wells of 0.2 µm 96-well GHP filter-plate (Pall Corporation,
USA),whichwas used as stationary phase, andwerewashed 5 timeswith
cold 96% acetonitrile (ACN). Glycans were eluted with 2 × 90μL of
ultrapurewater under constant shaking for 15min at roomtemperature.
The eluates were combined and stored at −20 °C until use.

Samplemeasurements. Total plasma N-glycans were measured using
HILIC-UPLC as previously described120. Briefly, the labeled N-glycans
were gradient eluted from Waters BEH Glycan chromatography col-
umn (Waters UPLC BEH particles 2.1 × 150mm, 1.7μm) using 100mM
ammonium formate at pH 4.4, and ACN. The flow rate was0.56ml/min
in a 23min of the analytical run. The fluorescence was measured at
420 nm with excitation at 330 nm using Waters Acquity UPLC H-class
system consisting of a fluorescence (FLR) detector set with 250nm
excitation and 428 nm emission wavelengths.

The data processing was performed using an automatic proces-
sing method enabling to obtain chromatograms separated into 39
peaks. The data was further quantified and annotated into 36 primary
glycan traits120. All N-glycans have core sugar sequence consisting of
two N-acetylglucosamines (GlcNAc) and three mannose residues; F
indicates a core fucose α1–6 linked to the inner GlcNAc; Ax indicates
the number of antennas (GlcNAc) on trimannosyl core; Gx indicates
the number of β1–4 linked galactoses on antenna; G1 indicates that the
galactose is on the antenna of the α1–6 mannose; Sx indicates the
number (x) of sialic acids linked to galactose. In total 36 total plasmaN-
glycans were measured in 345 subjects.

IgG glycosylation (Genos platform)
Sample processing. The IgG isolation and measurements were con-
ducted by Genos, Ltd as previously described21,121. Briefly, the sample
processing for plasma IgG-glycosylation measurements was con-
ducted in the following steps: (1) Preparation of protein G monolithic
plates: the 96-well protein G monolithic plate (BIA Separations,
Ajdovščina, Slovenia)waswashedwith 10 columnvolumesof ultrapure
water, 10 column volumes of binding buffer (1 x PBS), and 5 column
volumes of 0.1M formic acid (pH 2.5). The protein G plate was equi-
librated with 10 column volumes of 10 x binding buffer and 20 column
volumes of 1 x binding buffer; (2) Isolation of IgG from human plasma:
For the IgG isolation the protein G monolithic plate was used. The IgG
were obtained from 70 to 100 µl of plasma. The samples were diluted
10 timeswith binding buffer andfiltered throughGHPAcroPrep96-well
filter plates. The samples were applied onto the protein G monolithic
plates and instantly washed three times with PBS to remove the
unbound proteins; (3) Elution of IgGs: The IgG were eluted from the
protein Gmonoliths into 96-well plate with 5 column volumes of 0.1M
formic acid (Merck, Germany) followed by immediate neutralization
with 1M ammonium bicarbonate (Merck, Germany)122; (4) IgG diges-
tion and purification: Aliquots of 40 µl from the obtained samples,
containing isolated IgG, were used for further processing. The samples
were incubated with 2% SDS [20 µL (w/v)] for 10min at 60 °C, and
followed by overnight incubation with 200ng trypsin at 37 °C. The
obtained IgG tryptic glycopeptides samples were purified by
reverse phase solid phase extraction using Chromabond C18
beads applied to each well of an OF1100 96-well polypropylene
filter plate. The beads were activated with 80% ACN containing
0.1% trifluoroacetic acid (TFA); (5) IgG elution: The tryptic digests
were diluted 10 times in 0.1% TFA, loaded onto the C18 beads in
vacuum manifold and washed 3 times with 0.1% TFA. IgG glyco-
peptides were eluted into an PCR 96 well plate with 120 µl of 20%
ACN containing 0.1% TFA by 5min centrifugation at 105 × g. Elu-
ates containing glycopeptides were dried by vacuum centrifuga-
tion and −20 °C until analysis by MS.

Sample measurement. Purified tryptic IgG glycopeptides were ana-
lyzed as previously described121. For the separation andmeasurements
nanoACQUITY UPLC system (Waters, Milford Massachusetts, USA),
consisting of binary pump, auxillary pump, autosamplermaintained at
10 °C and column oven compartment set at 30 °C coupled to and the
Bruker Compact Q-TOF-MS were used. 9μL of purified IgG glycopep-
tides sample was applied to a Thermo Scientific PepMap 100 C8
(5mm× 300μmi.d., 5μm) SPE trap column. After sample loading the
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trap column was switched in-line with the gradient and C18 nano-LC
column (150mm× 100μm i.d., 2.7 μm HALO fused core particles;
Advanced Materials Technology, Wilmington, Delaware, USA) for
9.5min while sample elution took place. IgG glycopeptides were
reconstituted in 20 µl MQ water before nano-LC-ESI-MS analysis.
Separation was achieved at 1ml/min using the following gradient of
mobile phase A and mobile phase B (80% ACN and 20% 0.1% TFA):
0.5min 12% B, 0.5–4min 12% B - 17% B, 4–5min 17% B. The column
outlet tubing was directly applied as sprayer needle. Quadrupole and
collision energy was set at 4 eV. Spectra were recorded from m/z 600
to 1900 with 2 averaged scans at a frequency of 0.5 Hz. Per sample the
total analysis time was 15min.

The nanoACQUITY UPLC system and the Bruker Compact Q-TOF-
MS were operated under HyStar software version 3.2.

Glycan data was first normalized (total area normalization) and
then batch corrected using Combat. Batch correction was performed
on the log-transformed normalized data. After batch correction, the
data was inverse transformed so all values were between 0 and 100.
Finally, the data was z-scored. Glycan structural features are given in
terms of number of galactoses (G0, G1, and G2), fucose (F), bisecting
N-acetylglucosamine (N) and N-acetylneuraminic acid (S). Total of 60
IgGs were measured in 341 samples.

IgA and IgG glycosylation (Univ. Leiden platform)
Sample processing. The purification, separation, and measurements
of IgA and IgG was conducted at Leiden University Medical Center as
previously described123,124. Briefly, 2μL and 5μL of plasmawas used for
IgG and IgA analysis, respectively. The samples were diluted with PBS
to obtain final volume of 200μL. The samples purification was con-
ducted in duplicate on separate plates using affinity bead chromato-
graphy. The samples designated for IgG analysis were purified using
15μL/well of ProteinG Sepharose 4 Fast Flowbeads (GEHealthcare) on
an Orochem filter plate, followed by three washing steps with PBS. The
samples designated for IgA analysis were purified using 2μL/well of
CaptureSelect IgAAffinityMatrix beads (ThermoFisher Scientific). The
plates were incubated for 1 h under constant shaking.

The samples were washed three times with PBS followed by three
additional washes with purified water using vacuum manifold. The
IgGs and IgAs were eluted from the beads using 100mM formic acid
under constant shaking for 10min, followed by 1min centrifugation at
100 × g. The obtained eluates were dried for 2 h at 60 °C in a vacuum
centrifuge.

The samples designated for IgG analysis, were resolubilized by
addition of ammonium bicarbonate (50mM) under constant shaking
for 5min. The samples were digested by overnight incubation with
tosyl phenylalanyl chloromethyl ketone (TPCK)-treated tryp-
sin at 37 °C.

The samples designated for IgA analysis were reduced and alky-
lated prior to digestion to obtain peptides covering all glycosylation
sites. The samples resolubilization was conducted with ammonium
bicarbonate (30mM) containing 12.5% of acetonitrile under constant
shaking for 5min. The samplesweremixedwith dithiothreitol (35mM)
and incubated for 5min at room temperature followed by additional
incubation for 30min at 60 °C. The samples were cooled to room
temperature, mixed with iodoacetamide (125mM), incubated in the
dark under shaking for 30min andmixedwith dithiothreitol (100mM)
to quench the iodoacetamide. The samples were digested with TPCK-
treated trypsin by the incubation over night at 37 °C.

Sample measurement. The samples designated for IgG and IgA were
measured at different days. The sample separation andmeasurements
were conducted on Ultimate 3000 RSLCnano system (Dionex/Thermo
Scientific) equipped with an Acclaim PepMap 100 trap column (parti-
cle size 5 μm, pore size 100Å, 100 μm×20mm) and an Acclaim Pep-
Map C18 nano analytical column (particle size 2 μm, pore size 100Å,

75μm× 150mm) coupled to aquadrupole-TOF-MS (ImpactHD; Bruker
Daltonics). 250μL of sample was injected into the flow (25μL/min) of
aqueous solvent and was trapped on the trap column (Dionex Acclaim
PepMap100 C18, 5mm×300μm; Thermo Fisher Scientific, Breda, The
Netherlands). The analytes were eluted on the analytical column
(Ascentis Express C18 nanoLC column, 50mm× 75μm, 2.7μm fused
core particles; Supelco, Bellefonte, PA) under flow rate of 0.9μL/min
and separated in linear gradient from 3% to 30% solvent containing
95% (v/v) ACN. The samples weremeasured in positive-ionmode using
aCaptiveSprayer (BrukerDaltonics) electrospray source at 1300V.The
mass spectra were acquired with a frequency of 1 Hz and the MS ion
detection window was set at mass-to-charge ratio (m/z) 550–1800.
Fragmentation spectra were recorded with a detection window ofm/z
50–2800.

Obtained LC-MS data were examined according with pipeline
developedbyManfredWuhrer lab aspreviously described123,124. In total
178 molecules including IgGs and IgAs were measured in 344 samples.

Untargeted metabolomics—Metabolon HD2 platform
The EDTA-plasma, saliva, and urine samples were used for untargeted
metabolic profiling as we previously described12,13. The measurements
were conducted at Metabolon Inc, deploying HD2 platform based on
ultra-high-performance liquid chromatography-mass spectrometry
(UPLC-MS) and gas chromatography-mass spectrometry (GC-MS)
technology125. In brief, the sample was mixed with the recovery stan-
dards prior to the extraction for quality control (QC) purposes. The
resulting sample extract was divided into aliquots designated for
the analysis using the following: (1) UPLC-MS/MS with positive ion
mode electrospray ionization (ESI); (2) UPLC-MS/MS with negative ion
mode ESI; (3) hydrophilic interaction chromatography (HILIC)/UPLC-
MS/MS; (4) GC-MS. The sample extract was dried under nitrogen flow
and reconstituted in solvents compatible with each of the four analy-
tical methods.

Three out of the four sample aliquots were designated for LC-MS
measurements and were reconstituted in acidic or basic solvents. The
first sample aliquot was reconstituted in acidic conditions, and gra-
dient eluted from a C18 column (Waters UPLC BEH C18-2.1 × 100mm,
1.7 µm) with water andmethanol containing 0.1% formic acid (FA). The
second sample aliquotwas reconstituted in basic solvent, and gradient
eluted from C18 column (Waters UPLC BEH C18-2.1 × 100mm, 1.7 µm)
with water and methanol containing 6.5mM ammonium bicarbonate.
The third aliquot was gradient eluted from a HILIC column (Waters
UPLC BEH Amide 2.1 × 150mm, 1.7 µm) using water and acetonitrile
with 10mM ammonium formate. The flow rate was 350μL/min, and
the sample injection volume was 5μL.

The separation and measurements of the sample aliquots desig-
nated for LC-MS were performed on Waters ACQUITY UPLC in-line to
Thermo Scientific Q-Exactive high resolution/accurate mass spectro-
meter interfaced with a heated electrospray ionization (HESI-II) source
and an Orbitrap mass analyzer. In the MS analysis, the scan range
varied between methods but fell within the range of 70–1000m/z.

The remaining fourth sample aliquot was designated for
GC-MS measurements. The sample aliquot was derivatized with
N,O-Bis(trimethylsilyl)trifluoroacetamide (BSTFA) followed by
drying under nitrogen flow. Separation was conducted under tem-
perature ramp from 60 to 340 °C over a period of 17.5min, using
a 5% diphenyl/95% dimethyl polysiloxane fused silica column
(20m×0.18mm ID; 0.18 μm film thickness) and helium at flow rate
of 1ml/min as the carrier gas. The measurements were performed on
a Thermo-Finnigan Trace DSQ fast-scanning single-quadrupole mass
spectrometer using electron impact ionization (EI), and the MS scan
range was from 50 to 750m/z. The number of measured metabolites
in given sample matrix was following: 758 metabolites in 358 EDTA-
plasma samples, 602 metabolites in 283 saliva samples, and 891
metabolites in 360 urine samples.
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Untargeted metabolomics—Metabolon HD4 platform
The EDTA-plasma samples were used to conductmetabolic profiling at
Metabolon Inc on technologically advanced, in comparison with HD2,
HD4platformenabling for increased sensitivity and accurate detection
of more metabolites. The main technical difference between HD2 and
HD4platformswas replacement ofGC-MSwith hydrophilic interaction
chromatography (HILIC) method. The method was described in great
detail previously126. In brief, sample processing was conducted as we
described in “Untargeted profiling - HD2 platform: LC-MS and GC-MS”
section, except of the sample dedicated for GC-MSmeasurement. This
sample aliquot instead was gradient eluted from a HILIC column
(Waters UPLC BEH Amide 2.1 × 150mm, 1.7μm) using water and acet-
onitrilewith 10mMammonium formate atpH 10.8. Themeasurements
were conducted using Waters ACQUITY ultra-performance liquid
chromatography (UPLC) and a Thermo Scientific Q-Exactive high-
resolution/accurate mass spectrometer interfaced with a heated elec-
trospray ionization (HESI-II) source and Orbitrap mass analyzer126.
Total of 1104 metabolites were measured in 309 plasma samples.

Targeted metabolomics—Biocrates p150 platform
The EDTA-plasma samples were used for targeted metabolomics ana-
lysis. The samples weremeasured at theMetabolomics Platformof the
Helmholtz CenterMunich using AbsoluteIDQTM kit p150 (Biocrates Life
Science AG, Innsbruck, Austria) as previously described127,128. For the
lipid molecules including PC, lysoPC, SM, and AC, measured with
AbsoluteIDQTM kit the information on the sum of the carbons of the
fatty acid chains is provided but not the fatty acid chain actual com-
position. Total of 10 µL of plasma was used to conduct the assay. The
samples were applied on the assay kit 96-well plate consisting of filters
with internal standards and were dried under a nitrogen stream at
room temperature (RT). The samples were derivatized with a reagent
containing 5% phenylisothiocyanate (PITC), dryed under a nitrogen
streamatRT, andextractedwith 300μL of 5mMammoniumacetate in
methanol. Next, the samples were filtered by centrifugation, the
resulting flow-through was diluted 1:6 with running solvent and placed
into fresh deep-well plate. The plate was coveredwith the siliconemat,
and mixed. Sample handling was performed by a Hamilton Microlab
STARTM robot (Hamilton Bonaduz AG, Bonaduz, Switzerland) and a
Ultravap nitrogen evaporator (Porvair Sciences, Leatherhead, U.K.),
beside standard laboratory equipment. Metabolites were measured in
positive and negative multiple reaction monitoring (MRM) scan mode
by direct infusion to an API 4000 triple quadrupole system (SCIEX
Deutschland GmbH, Darmstadt, Germany) equipped with a 1200 Ser-
ies HPLC (Agilent Technologies Deutschland GmbH, Böblingen, Ger-
many) and a HTC PAL autosampler (CTC Analytics, Zwingen,
Switzerland) controlled by the software Analyst 1.6.2. The metabolite
concentrations were calculated using internal standards and the
MetIDQ software providedwith AbsoluteIDQTM kit, and are reported in
μmol/L. For the lipid molecules including PC, lysoPC, SM, and AC,
measured with AbsoluteIDQTM kit the information on the sum of the
carbons of the fatty acid chains is provided but not the fatty acid chain
actual composition. For example, PC.aa.36.1 describes phosphati-
dylcholine (PC) where two glycerol residues are bound in diacyl (aa)
binding into the fatty acid moiety; the sum of carbons of both fatty
acid chains is 36, and there is one double bound (.1). Total of 163
metabolites were quantified in 356 samples.

Lipidomics—Lipidyzer platform
The EDTA-plasma samples were used for in depth profiling of lipids,
which was conducted at Metabolon Inc. deploying LipidyzerTM plat-
form of AB Sciex Pte technology as previously described129,130. In
brief, the samples were extracted in the presence of internal stan-
dards using butanol:methanol (BUME) mixture (3:1) followed by two-
phase extraction into 300 µl heptane:ethyl acetate (3:1) using 300 µl
1% acetic acid as buffer. The obtained extracts were dried under

nitrogen flow and reconstituted in ammonium acetate dichlor-
omethane:methanol. The samples were analyzed in both positive and
negative mode electrospray using Sciex SelexIon-5500 QTRAP. The
molecules were detected in MRM mode with a total of more than
1100 MRMs. Individual lipid species were quantified by the ratio of
the signal intensity of each target compound to that of its assigned
internal standard, followed by the multiplication of the concentra-
tion of internal standard added to the sample. Lipid class con-
centrations were calculated from the sum of all molecular species
within a class, and fatty acid compositions were determined by cal-
culating the proportion of each class comprised by individual fatty
acids. Total of 1331 lipids were measured in 324 samples.

NMR metabolomics—urine
1H-NMRspectra analysis of urine sampleswas conducted at Institute of
Clinical Chemistry and Laboratory Medicine, University of Greifswald,
Germany as previously described14,131. In brief, Bruker DRX-400 NMR
spectrometer (Bruker BioSpin GmbH, Rheinstetten, Germany) oper-
ating at 400.13MHz 1H frequency equipped with 4mm selective
inverseflowprobe (FISEI, 120 µL active volume) was used to record the
spectra. 500 µL of sample volume was delivered via automatic flow
injection. The sample acquisition temperature was 300K. A standard
one-dimensional 1H NMR pulse sequence with suppression of water
peak (NOESYPRESAT) was used (Budde et al. 131). The free induction
decays (FIDs) were collected into data points using spectral width of
20.689 ppm. The FIDs were multiplied by an exponential function
corresponding to 0.3 HZ line-boarding prior to Fourier-transformed
(FT). For the assessment of the spectra quality, the line width and
signal-to-noise ration of Trimethylsilylpropanoic acid (TSP) signal,
used as a reference, was analyzed. Additionally, quality control was
carried out by analyzing the standard error of creatinine concentration
and the potential variability of selected signals. The obtained spectra
were processed within TOPSPIN 1.3 (Bruker BioSpin GmbH) and the
metabolites annotation and quantification was conducted in semi-
automated manner by spectral pattern matching using Chnomx NMR
suit 7.0 (Chenomx Inc.). A total of 60 lipidmoleculesweremeasured in
353 samples.

NMR metabolomics—plasma
The EDTA-plasma (300 µL) was used formetabolite quantification by a
high-throughput NMR metabolomics platform (Nightingale Ltd, Hel-
sinki, Finland)14,132. The sample preparation was conducted auto-
matically using Gilson Liquid Handler 215. Each sample after brief
centrifugation was transferred to SampleJet NMR tubes and mixed
with 300 µL of sodium phosphate containing 0.08% of TSP. The mea-
surements were conducted on Bruker AVANCE III 500MHz and Bruker
AVANCE III HD 600MHz spectrometers. The lipoprotein (LIPO) and
low-molecular-weight metabolites (LMWM) were measured in the
samples using either 500MHz or 600MHz spectrometers. The same
samples were further extracted with multiple extraction steps as pre-
viously detailed133. The extracted lipid (LIPID) data was evaluated in full
automation with the 600MHz instrument using a standard parameter
set133 (Soininen et al. 133). The FT and automated phasing of NMR
spectra was conducted followed by automated spectral processing
and quality control steps132. The subclasses for the lipoproteins are
categorized according to size following this classification: chylomi-
crons and extremely large VLDL particles (average particle diameter at
least 75 nm); five VLDL subclasses—very large VLDL (average particle
diameter of 64.0nm), large VLDL (53.6 nm), medium VLDL (44.5 nm),
small VLDL (36.8 nm) and very small VLDL (31.3 nm); intermediate-
density lipoprotein (IDL; 28.6 nm); three LDL subclasses—large LDL
(25.5 nm), medium LDL (23.0nm) and small LDL (18.7 nm); and four
HDL subclasses—very large HDL (14.3 nm), large HDL (12.1 nm), med-
ium HDL (10.9 nm) and small HDL (8.7 nm). Total of 225 molecules
were measured in 350 samples.

Article https://doi.org/10.1038/s41467-024-51134-x

Nature Communications |         (2024) 15:7111 17



Statistical data analysis
All statistical analyses were conducted using R (version 4.1.0 and
above) and Rstudio (version 1.4.1717 and above). If not otherwise sta-
ted, the omics data was converted “as-received” into R Summarized
Experiment format, representing processed final data. The saliva
metabolomics data has been further normalized by saliva osmolality,
and the urine metabolomics data has been normalized by urine
creatinine.

Cross-platform correlations (omicsMBHs). The association between
each two platforms was described using mutual best hit (MBH) aiming
to identify pairs of features (e.g., genes, proteins) that exhibited a sig-
nificant correlation with each other. Spearman correlation coefficients
between unscaled raw omics data were computed. Next, mutual best
hits were identified; only those pairs demonstrating a significant and
reciprocal relationships were retained. Reciprocity implies a two-way
relationship, where the correlation is bidirectional. Platform-pairwise
Bonferroni significance cutoffs (p <0.05/(nPLTA1 * nPLAT2/2)) were
obtained after cross-platform correlation.

Within-trait partial correlations (GGMs). Partial correlations within
platforms were computed as follows: Saliva and urine metabolites
were normalized by saliva osmolality and urine creatinine obtained
from the respective platform, respectively. The omicsdata was then
inverse-normal scaled. Metabolites and then samples with more than
50% missing values were removed. Association statistics and residuals
were then computed using the linear model “lm(OMICS ~AGE + SEX +
BMI +DIAB+ genoPC1+ genoPC2 + genoPC3 + somaPC1 + somaPC2+
somaPC3)”. Missing values were imputed using the K-nearest-
neighbors method134. Partial correlation coefficients were computed
using the pcor function from the R-package GeneNet (version 1.2.15).
Platform-wise Bonferroni significant correlations (p < 0.05/
(NPLAT*(NPLAT-1)/2)), where NPLAT represents the number of traits
measured on the respective platform, were retained.

Association between DNA – RNA –METH (eQTLs, eQTMs,meQTLs).
Genetic variants (SNPs) were coded 0, 1, 2 for major allele homo-
zygotes, heterozygotes, and minor allele homozygotes, respectively.
Expression data was log-scaled, with all values off-set by the smallest
occurring value in the dataset in order to avoid taking the log of zero,
and z-scored. Methylation d(CpG) were b-values. The following linear
models were used to compute the associations:

eQTL: lm(transcriptomics ~ SNP +AGE+ SEX + BMI +DIAB +
genoPC1+ genoPC2 + genoPC3)

meQTL: lm(CpG ~ SNP +AGE + SEX +BMI +DIAB + genoPC1 +
genoPC2+ genoPC3)

eQTM: lm(transcriptomics ~CpG + SNP +AGE+ SEX + BMI +DIAB +
genoPC1+ genoPC2 + genoPC3)

A significance cut-off of p < 5 × 10−8 was used.

Genetic variation—omicsdata associations (omicsQTLs). Omicsdata
was inverse-normal scaled and residual were computed using the lin-
ear model “lm(Omicsdata ~ SEX +AGE +BMI +DIAB + genoPC1+
genoPC2+ genoPC3 + somaPC1 + somaPC2+ somaPC3)”. After QC,
excluding non-autosomal SNPs, MAF < 5%, HWE pvalue < 10-6, or gen-
otyping rate <98%15, 1,221,345 SNPs for 353 samples were available.
Additive linear models using Plink version 1.9135 were computed.
Genomic inflation was lambda<1.04 for all traits. All associations with
p < 5 × 10−8 were lumped, treating variants with R2 < 0.1 as
independent15. Phenoscanner136, accessed 9 April 2019, was used to
annotate the sentinel variants with GWAS hits, metabolomics and
proteomics QTLs, and genes encodes at the locus, using R2 >0.8 (LD
from EUR), and limiting associations to p < 5 × 10−8. Genetic variants
were annotated to human genome build 37.

Methylation—omicsdata association (omicsQTMs). Residuals of
methylation beta values (CpG) were computed using the linear model
“lm (CpG ~ AGE + SEX +BMI +DIAB + Gran +NK +CD4T +CD8T +
Mono + Bcell + genoPC1 + genoPC2 + genoPC3)” and then z-scored. Sal-
iva and urine metabolites were first normalized by saliva and urine
osmolality, respectively. All omics variables were then inverse normal-
scaled and residuals computed using the linear model “lm (Omicsdata
~ AGE+ SEX + BMI +DIAB + genoPC1 + genoPC2 + genoPC3)” and then
z-scored. Association statistics were then computed using the linear
model “lm(CpG_residual ~ Omicsdata_residual)”. Associations reaching
an ad hoc significance level of 5×10-8 were retained. CpG sites were
annotated for gene names andCpGposition relative to the genes using
the Illumina provided HumanMethylation 450k annotation file.

RNA expression—omicsdata association (omicsQTRs). RNA expres-
sion data with less than 100 valid data points or median expression
levels below 1 TPMwere removed. Expression data was log-scaled, with
all values off-set by the smallest occurring value in the dataset in order
to avoid taking the log of zero, and z-scored. Saliva and urine metabo-
lites were normalized by saliva osmolality and urine creatinine obtained
from the respective platform, respectively. The omicsdata was
then inverse-normal scaled. Metabolites and then samples with more
than 50%missing values were removed. Association statistics were then
computed using the linear model “lm(OMICS ~ transcriptomics +
AGE + SEX +BMI +DIAB+ genoPC1 + genoPC2 + genoPC3 +CD8 +CD4+
NK +Bcell+Mono +Gran + Eos)”. Associations reaching an ad hoc sig-
nificance level of 5 × 10−8 were retained.

Potential to predict age, sex, BMI, and diabetes state by platform.
For continuous variables we use the “pseudo-R2” reported by the R
package randomForest as an estimate of how well a given omics phe-
notype can predict age, sex, BMI, and diabetes state. For continuous
variables this “pseudo-R2” is defined as one minus the mean square
error of the regression divided by the variance of the dependent
variable. Note that the “pseudo-R 2” is not a strict measure of the
explained variance and is used here to provide an intuition for the
quality of the model fit that can be obtained using the different omics
datasets.

For categorial variables we use the “Out-Of-Bag Error” (OOBErr)
estimate from R, scaled to range between zero and one (1-OOBerr)/(1-
OOBerrrnd), where OOBErrrnd was estimated by randomizing the
sample identifiers.

Disease/trait associations from the GWAS catalog. We downloaded
the GWAS catalog (gwas_catalog_v1.0.2-associations_e100_r2021-01-
14.tsv) and identified 6,694 variants that are in LD (r2 > 0.8) with one of
the 587 sentinel SNPs (incl. the SNPs themselves). We then identified
2294 records in the GWAS catalog that reported on one of the 6,694
SNPs.Wheremultiple associationswith a same traitwere reported for a
same locus, we kept only the strongest association.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The sourceof data generated by eachplatform is provided on Figshare
(https://doi.org/10.6084/m9.figshare.25975627.v2). The data can be
downloaded as an excel file. Additionally, we are also providing data
in.rda format for which we prepared R script that downloads the rda.
data. The genetic data and methylation data access is not deposited
because the informed consent given by the studyparticipants does not
cover posting of participant genotype and methylation data in public
databases.Researcher affiliatedwith a research institutionmay request
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access to genetic data on an individual basis from the corresponding
author (Karsten Suhre and Anna Halama, Weill Cornell Medicine—
Qatar, Doha, Qatar). Access is subject to approval by the institutional
research board of Weill Cornell Medicine—Qatar. The data sets
deployed in this study were previously utilized as follows: Genomics
data depicted as DNA14–16,20,137,138; Methylation data depicted asMET14,16;
Transcriptomics data depicted as RNA139; Proteomics data measured
on SOMA platform depicted as SOMA14–16,20,53,137,140; Glycomics data
reflecting on total plasma N-glycosylation depicted as PGP14,53; Gly-
comics data reflecting on plasma IgG levels depicted as IgG14,138; Lipo-
proteomics data depicted as BRAIN14; The broad lipidomics data
depicted as LD130; The targeted lipidomics data depicted as BM14,130;
The untargetedmetabolomicsmeasured on HD4 platformdepicted as
HDF19,75,141; PM12–14,16–18,141,142; SM12–14,16–18,142; UM12–14,16–18,142; and CM16.
Transcriptomics data covering microRNA depicted as miRNA, pro-
teomics data measured on OLINK platform depicted as OLINK, and
Glycomics data reflecting on plasma IgA levels depicted as IgA were
not published before.

Code availability
We are also providing access to the source code used to generate
COmicsServer. The source code and adocker image couldbe accessed
via GitHub at https://github.com/karstensuhre/comics and referenced
using https://doi.org/10.5281/zenodo.11487725.
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