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Background
The past two decades have seen a rapid expansion of high throughput genomic and 
imaging technologies that have revolutionized the ability of researchers to capture the 
molecular and histological characteristics of biological samples. For example, assays 
such as single-cell RNA-seq can capture the states of individual cells within heterogene-
ous and complex tissues. Several major consortia have been funded to utilize single-cell 
assays to create cellular atlases of healthy and disease tissues [1–7]. These groups are 
generating large datasets that contain multi-modal single-cell data collected from longi-
tudinally and spatially related biological specimens from different organs across different 
conditions. The majority of datasets are designed to answer a specific set of questions 
within a particular biological or clinical context. Other data repositories such as NIH 
Gene Expression Omnibus (GEO) and ArrayExpress/BioStudies databases are focused 
on systematic storage, cataloging, and retrieval of primary data [8, 9]. As more data 
becomes available from consortia and individual investigators, the ability to combine 
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Many datasets are being produced by consortia that seek to characterize healthy 
and disease tissues at single-cell resolution. While biospecimen and experimental 
information is often captured, detailed metadata standards related to data matrices 
and analysis workflows are currently lacking. To address this, we develop the matrix 
and analysis metadata standards (MAMS) to serve as a resource for data centers, 
repositories, and tool developers. We define metadata fields for matrices and param-
eters commonly utilized in analytical workflows and developed the rmams package 
to extract MAMS from single-cell objects. Overall, MAMS promotes the harmonization, 
integration, and reproducibility of single-cell data across platforms.
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and integrate datasets from different settings is becoming increasingly desirable. Three 
major roadblocks to combining and integrating datasets are that (1) the metadata related 
to clinical, biospecimen, and experimental parameters is not captured or harmonized 
across groups [10]; (2) the data is stored in a wide variety of file formats or programming 
language-specific libraries, classes, or data structures; and (3) the metadata about the 
matrix and the corresponding analysis that produced or utilized the matrix is not well 
standardized. While significant effort has been dedicated to defining metadata standards 
for experimental parameters [10] and new file formats are under active development 
[11], the third area remains largely unaddressed.

While a wide range of experimental protocols and platforms are available to generate 
molecular and histological data, an important commonality across these technologies 
is that they often produce a matrix of features that are measured in a set of observa-
tions. These feature and observation matrices (FOMs) are foundational for storing raw 
data from molecular assays (e.g., raw counts) and derived data from downstream ana-
lytical tools (e.g., normalized matrix, reduced dimensional matrix). A variety of file 
formats are used to store FOMs on file systems in different representations. For exam-
ple, tab-separated value (tsv/txt) files can be used to store dense matrices while market 
exchange (.mtx) files can be used to efficiently store sparse matrices. Although platform-
independent, these formats do not readily capture relationships between matrices and 
annotations for features and observations. Several packages also exist that can capture 
relationships between matrices and annotations include AnnData and MUON in Python 
[12, 13], the Seurat object in R [14, 15], and the SingleCellExperiment and related pack-
ages in R/Bioconductor [16–18]. In contrast to the simple flat file formats, these objects 
can capture complex relationships between FOMs as well as annotation data produced 
during the analysis such as quality control (QC metrics) and cluster labels. However, 
each package may store different sets of data or label the same type of data differently. 
Even if different datasets are stored the same format or type of object, harmonization of 
datasets still may require substantial manual curation before they can be combined and 
integrated.

Lastly, a major goal of high-quality analysis workflows is to promote reproducibility 
by storing information related to provenance such as software version, function calls, 
and selected parameters that produced the matrix or annotation. However, there is a 
high degree of variability in which different analytical tools and software packages cap-
ture this information. Even if the data was produced by a workflow captured in a Docker 
container or versioned in GitHub, this information will often be lost when converting 
the data between formats or transferring between tools. Thus, there is a need to develop 
metadata standards for FOMs related to provenance to ensure this information can be 
readily captured and maintained throughout the dataset-specific analysis and during 
integration with other datasets.

In order to facilitate sharing of data across groups and technologies as well as to pro-
mote reproducibility related to data provenance, a detailed metadata schema describ-
ing the characteristics of FOMs can be used to serve as a standard for the community. 
Therefore, we developed the matrix and analysis metadata standards (MAMS) to cap-
ture the relevant information about the data matrices and annotations that are produced 
during common and complex analysis workflows for single-cell data. MAMS defines 
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fields that describe what type of data is contained within a matrix, relationships between 
matrices, and provenance related to the tool or algorithm that created the matrix. In 
contrast to the existing standards, MAMS does not largely focus on information related 
to sample preparation including biospecimen and clinical metadata or metadata related 
to experimental protocols. We have also built a new R package, rmams, that automati-
cally extracts available MAMS annotations from existing single-cell objects and stores 
them in a platform-agnostic file format. These standards will serve as a roadmap for tool 
developers and data curators to ensure that their systems have the capability to store and 
retrieve relevant information needed for integration. All of the metadata fields are inde-
pendent of the platform, programming language, and specific tool and thus can be used 
to support efforts to harmonize data across consortia.

Results
Overview of matrix classes

Several popular libraries and software packages offer convenient interfaces for storing 
and retrieving data matrices and their associated annotations. The majority of these 
tools employ similar schemas that organize different classes of data matrices in an intui-
tive framework with a common interface (Fig. 1). In general, we refer to a feature and 
observation matrix (FOM) as a class of data matrix that contains measurements of fea-
tures across biological entities. Examples of features include genes, genomic regions, 
peaks, transcripts, proteins, antibodies derived tags, signal intensities, cell type counts, 
or morphology categories. Examples of observations include cells, cell pools, beads, 

Fig. 1  Overview of matrix classes included in MAMS. Feature and observation matrices (FOMs) contain 
biological data at different stages of processing including reduced dimensional representations. Feature 
annotation matrices (FEA) and observation annotation matrices (OBS) store annotations such as additional 
IDs or labels, quality control metrics, and cluster labels. The observation neighborhood graph (ONG) and 
feature neighborhood graph (FNG) classes store information related to the correlation, similarity, or distance 
between pairs of observations or features, respectively. The observation ID (OID) and feature ID classes are 
used to store unique identifiers for individual observations and features, respectively. The record (REC) class is 
a special set of fields for storing information related to data and tool provenance
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spots, subcellular regions, and regions of interest (ROIs). Measurements for single-cell 
data may include transcript counts, protein abundances, signal intensities and velocity 
estimates. FOMs that contain raw, normalized, transformed, or standardized biologi-
cal data are commonly referred to as “assays” or “layers.” In the MAMS nomenclature, 
FOMs can also contain reduced dimensional objects such as principal components from 
PCA or 2-D embedding from tSNE or UMAPs which are derived from the original bio-
logical data matrices. We note that although the term “matrix” is used in the acronym, 
FOMs may also be data frames which can contain mixed data types (e.g., continuous and 
categorical morphological features), vectors (e.g., a matrix with 1 dimension), and multi-
dimensional arrays (e.g., a matrix with more than 2 dimensions also known as a tensor).

Beyond the central data matrices, other classes of matrices are used to store identifier 
(IDs) information, annotations, and graphs that are generated during analysis. Annota-
tions and metadata about the features (FEA) or observations (OBS) are stored in sepa-
rate data frames with the same dimensions as the parent FOM. Annotations for features 
can include information about the gene such as IDs, reference genome, genomic loca-
tion, biotype, and variability metrics. Annotations for observations can include sample-
level demographics, cell-level identifiers (e.g., barcode), quality control metrics (e.g., 
total number of features detected), or analysis output (e.g., cluster labels, trajectory 
scores). IDs are used to uniquely identify and index observations and features within a 
dataset. The observation ID (OID) class contains a character vector or combination of 
character vectors used to denote the unique ID of each observation, while the feature 
ID (FID) class contains a vector or combination of character vectors used to denote the 
unique ID of each feature. Observation neighborhood graphs (ONGs) and feature neigh-
borhood graphs (FNGs) are adjacency matrices that can be used to store the correla-
tion, similarity, or distance between pairs of observations and features, respectively. In 
the MAMS schema, each class of matrix will have a corresponding set of metadata fields 
that describe the information contained within the matrix. The record (REC) is a special 
class for storing information related to the provenance of the data analysis tool and com-
mand used to create the matrix.

Curated analysis workflows for single‑cell data

In order to ensure that the metadata standards are able to capture complex information 
and robust to different real-world scenarios, we first curated the matrices produced by 
different types of analysis workflows for single-cell data using the vignettes from popular 
tools and packages as a template [14, 19, 20]. The simplest workflow starts with a matrix 
of UMI-correct counts produced by a microfluidics device where the observations are 
droplets denoted with a unique barcode, the features are genes, and the measurements 
are the number of mRNA transcripts detected for each gene in each cell (Fig. 2). This 
type of matrix is produced by aligning sequencing reads to a reference genome, count-
ing the number of reads that map to each gene loci, and then performing a correction 
for unique molecular indices (UMIs). The next step is to identify and filter the obser-
vations of the matrix to remove empty droplets (i.e., droplets without a true cell). The 
observations in this filtered matrix can be filtered again based on other quality control 
metrics such as total number of UMIs detected, number of features detected, percent-
age of mitochondrial counts, percentage of ambient RNA, or droplets likely containing 
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multiple cells. After generating a “clean” matrix of observations, the raw counts are gen-
erally normalized by correcting for library size (e.g., correcting for the total number 
of counts) and applying a log2 transformation. Next, features are standardized across 
observations (e.g., z-scoring each gene to have a mean of 0 and a standard deviation 
of 1) and a subset of highly variable features are chosen for downstream analysis. This 
matrix is used as input into principal component analysis (PCA) to produce a reduced 
dimensional matrix, where the features are now principal components (PCs) instead of 
individual genes. Optionally, a subset of PCs may be selected based on percentage of 
variability or other statistical metrics. Neighborhood and distance graphs are produced 
between observations using the PCA matrix as input. These distances are used as input 
into algorithms such as tSNE and UMAP that produce another matrix of 2-D embed-
dings useful for visualization. The cell graphs can also be used as input into clustering 
algorithms such as Leiden or K-means or trajectory inference tools. Annotations such as 
cluster labels and trajectory scores are stored in the corresponding OBS data frame with 
the same number of observations. A robust analysis metadata standard should be able to 
capture information about the processing of the measurements with each FOM as well 
as the features and observations included in each FOM.

While the simple workflow contains analysis of a single sample, other scenarios may 
require more complex workflows with additional types of operations that produce differ-
ent matrices. We also annotated scenarios that include analysis of datasets with multiple 
modalities (Additional file 1: Fig. S1), datasets with multiple samples that require inte-
gration or batch correction (Additional file 1: Fig. S2), analysis with a biological subset 
of data (Additional file 1: Fig. S3), and analysis with FOMs derived from imaging data 
(Additional file 1: Fig. S4). Multiple modalities can be measured on individual cells in 
addition to mRNA transcript counts. For example, scATAC-seq assays can measure 

Fig. 2  Matrices produced during a simple analysis workflow for single-cell RNA-seq data. Several steps are 
often performed in analysis workflows for scRNA-seq data generated with high-throughput devices. The 
observations are filtered to exclude empty droplets and poor-quality cells. Quality control metrics can be 
stored in an OBS annotation data frame. Preprocessing of the data matrix includes steps for normalization 
and standardization of features (e.g., z-scoring). From the scaled data, a subset of highly variable genes is 
used as input into principal component analysis (PCA). The reduced dimensional space of the PCA is used as 
input into 2D embedding tools such as tSNE and UMAP as well as clustering algorithms such as k-means and 
Leiden
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open chromatin profiles and CITE-seq assays can measure epitopes for cell surface pro-
teins. Multimodal workflows may apply similar sets of procedures to each data type to 
normalize data, perform dimensionality reduction, and generate modality-specific clus-
ter labels. To perform integrative analysis, matrices from different modalities can be 
integrated at the “matrix” level, reduced dimensional level, or on the graph level [21] and 
a third set of cluster labels can be derived using the combined dataset. A robust analysis 
metadata standard should be able to capture information about the biological analyte 
and modality captured with each FOM.

Other single-cell datasets may have observations from multiple donors or multiple 
regions per donor. Several batch correction and integration tools have been developed to 
remove unwanted variation between different samples and project the shared variation 
into a common low dimensional representation which can be used in subsequent graph 
generation and clustering steps (Additional file  1: Fig. S2). After initial analysis using 
all observations that passed quality control, additional analyses on subsets of biologi-
cally may be desired. For example, initial clustering with single-cell data may be used to 
define broad cell types such as epithelial, stromal, and immune cells. The cells from each 
broader cell type may be subsetted and re-analyzed using a similar workflow to produce 
novel matrices and annotations (Additional file 1: Fig. S3). A robust analysis metadata 
standard should be able to capture information about the batch corrections and biologi-
cal subsets.

Lastly, we curated workflows where the underlying data was derived from highly mul-
tiplexed imaging technologies, such as cyclic immunofluorescence (CyCIF), CODEX, 
and MIBI which measure multiple biological features on the same tissue slide (Addi-
tional file 1: Fig. S4). After preprocessing and segmentation, various types of FOMs can 
be produced that contain observations related to individual cells or regions of interest 
(ROIs), such as cell neighborhoods or functional tissue units, defined by machine learn-
ing algorithms or curated by human experts. Features can include the signal intensity of 
specific probes or morphological categories such as size and shape. Multidimensional 
(i.e., > 2 dimensions) FOMs can contain pixel-level intensities per coordinate for each 
channel in each cell. We note that a robust matrix and analysis metadata standard does 
not necessarily apply to upstream file types such as raw images, segmentation masks, 
or sequence alignment and mapping files (SAM/BAM/CRAM). However, having prov-
enance about the tool used for the preprocessing as well as a link to the source file for a 
derived matrix for a derived FOM is desirable.

Matrix metadata standards

For each of the major classes of matrix (FOM, FID, OID, FEA, OBS, FNG, ONG, and 
REC), we develop metadata fields that can be used to describe various aspects of indi-
vidual matrices (Table 1). Primary fields for the FOM class are used to describe the 
type of biological data being measured (analyte), the sets of features and observations 
that have been included in the matrix (feature_subset, obs_subset), and the type of 
processing that was applied to produce the matrix (processing). An additional modal-
ity field can be used to denote FOMs containing different data types that require 
higher levels of integration. In many cases, modality will be synonymous with analyte 
as multimodal workflows seek to cluster cells based on multiple biological modalities. 
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However, modality is meant to be a broader term that can capture other types of 
integration as well. For example, researchers may want to integrate the same analyte 
across different species or across datasets generated with different technologies. The 
processing field is used to describe the type of measurement in the FOM from the 
data analysis perspective. The same biological data may have raw, normalized, and 
standardized forms. This field can also be used to distinguish reduced dimensional 

Table 1  Metadata fields that can be used to describe various aspects of individual matrices

Field Description Class

id Denotes the unique id of the matrix, annotation data frame, or graph 
and should be unique within the set of objects within the same class of 
the dataset

General

dataset_id All matrices and data frames within this group should have observations 
and features that belong to a superset of observations and features that 
encompass an entire dataset

General

class Denotes the class of the matrix, array, data frame General

data_type Explicitly describes the type of data stored in the FOM FOM

representation Preferred representation of the matrix FOM

obs_unit Biological unit of the observations FOM

processing Used to describe the nature of the data contained within the matrix FOM

analyte Used to describe the biological analytes being quantified in the matrix FOM

modality Describes the modality of the matrix FOM

obs_subset Describes the subset of observations that are present in the FOM FOM

feature_subset Describes the subset of features that are present in the FOM FOM

parent_id Denotes the id(s) of the parent matrices that were used to produce the 
matrix

FOM

parent_relationship Denotes the type of relationship with the parent matrix or matrices FOM

edge_metric Name of the distance or similarity metric used to create the edges 
between features

ONG

metric_type “distance” indicates that smaller values denote more relatedness 
between features (e.g., Euclidean distance) while “similarity” indicates 
that larger values denote more relatedness between observations (e.g., 
Pearson correlation)

ONG

edge_metric Name of the distance or similarity metric used to create the edges 
between features

FNG

metric_type “distance” indicates that smaller values denote more relatedness 
between features (e.g., Euclidean distance) while “similarity” indicates 
that larger values denote more relatedness between observations (e.g., 
Pearson correlation)

FNG

record_id Unique id to denote a combination of entries for record_package_
name, record_package_version, record_function_name, and record_
function_parameters

REC

record_package_name Name of the package, tool, or software that ran the algorithm to pro-
duce the matrix, annotation, or graph

REC

record_package_version Version of the package, tool, or software that ran the algorithm to pro-
duce the matrix, annotation, or graph

REC

record_function_name Name of the function or mathematical operation used to produce the 
matrix, annotation, or graph

REC

record_function_parameters Key/value pairs describing the primary parameters and their values used 
in the function call

REC

record_workflow_link Public link to workflow that ran the tool REC

record_runtime_start The start time of the algorithm or operation REC

record_runtime_end The finishing time of the algorithm or operation REC

record_runtime_duration The total duration of the algorithm or operation REC
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objects such as PCAs and UMAPs from other upstream matrices. One note is that 
many tools store the biological data matrices and reduced dimensional matrices in 
separate sections of the data object due to the fact that they are used in different parts 
of the workflow for different purposes and often contain different features. From the 
analysis schema perspective, we found that these types of matrices can share similar 
sets of metadata fields and thus were grouped together into the broader FOM class. 
The subset fields capture the group of features and cells that belong to the matrix. The 
obs_subset field can be used to capture information about the level of filtering that 
has been applied to the cells or if the cells have been subsetted based on a biological 
category. Many tools will group all matrices with the same set of observations with 
the same data object and create separate data objects after applying subsetting opera-
tions. This field allows matrices across different data objects within a dataset to be 
appropriately annotated. Similarly, the feature_subset field can be used to annotate 
matrices that contain a subset of detected or highly variable features (e.g., highly vari-
able genes or the PCs explaining the most variance). Other fields such as data_type 
and representation capture some characteristics of the original storage mode of the 
matrix. These fields are primarily useful when data is converted to simple flat files 
(e.g., CSV) that do not always have inherent ways of recording this information. 
More advanced tools and storage formats that have the ability to import flat files can 
take this into account when converting the FOM to platform-specific data types and 
matrix representations.

During different steps of an analysis workflow, various operations will create new 
a FOM from an existing FOM or set of FOMs. In the scRNA-seq example, a full raw 
count matrix containing droplets can be subsetting to obtain a filtered raw count 
matrix containing cells, and the raw counts in this matrix can be further normalized 
and log transformed. While the previous metadata fields capture information about 
the data contained with a FOM, additional metadata fields are needed to capture the 
relationships between different FOMs. In MAMS, the parent_id field can be used to 
link a FOM to one or more parent FOMs and correspond to the arrows in the use 
cases. The parent_relationship field defines terms that include different operations to 
create novel FOMs including transformation, subset, concatenation, reduction, fac-
torization, and aggregation. One particular use case where this information can be 
useful is for efficient management of concatenated or subsetted FOMs. Creating new 
FOMs by subsetting or concatenating existing FOMs can create unnecessary copies 
of existing data and increase storage. However, some data objects are taking advan-
tage of “views” which create a virtual view of a subset of the data without copying the 
original data [17]. Capturing which matrices are direct subsets or concatenations of 
other ones in the metadata can further support the use of views across platforms and 
reduce the overall size of single-cell datasets.

Lastly, metadata fields for the other classes were also defined in MAMS. For the ID 
class, fields are included to denote if an ID is a compound ID separated by a delimiter. 
The neighborhood graph classes have fields to denote the metric used to quantify the 
relationship between observations or features as well as a field to denote whether the 
quantity is a similarity- or distance-based metric (i.e., whether higher or lower values 
indicate a higher degree of relatedness). The dataset_id field is a broad term used by 
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all classes to denote a group of related matrices used at any point during an analysis. 
Lastly, the record_id is a field used to link matrices or annotations to items in REC 
class.

Harmonization of matrix labels using common ontologies

One challenge when merging and harmonizing datasets processed with different work-
flows is that the same type of FOM may be given different labels. For example, a normal-
ized matrix may be called “data”, “normcounts”, or given any label by the user running the 
workflow depending on the tool. For several of the metadata fields, we developed a set 
of harmonized ontologies for commonly generated matrices. Example terms for the pro-
cessing field is shown in Table 2. For processing, “raw” denotes a general term for the orig-
inal measurements derived directly from the source files. The term “counts” denotes raw 
measurements that are integers such as UMI-corrected read counts for mRNA, protein, 
or ATAC-seq data. The term intensity denotes raw measurements that are derived from 
fluorescent intensities commonly used in imaging-based techniques. Other terms such 
as “normalized,” “lognormalized,” and “scaled” can be used to describe the stage of data 
processing on the original features. The “reduction” term denotes reduced dimensional 
representations used for input into downstream analysis (e.g., PCA) while the “embed-
ding” term is reserved for low dimensional representations often used for visualization 
(e.g., UMAP). The analyte field has terms such as rna, protein, chromatin, dna, lipid, 
metabolite, and morphology to describe the biological feature captured by the measure-
ments in the FOM. Terms for the obs_subset field include “full” to denote a FOM that 

Table 2  Example terms for the processing field

processing processing_description Notes/examples

raw Original measurements have not been altered

counts Raw data for assays that produce integer-like data such as scRNA-
seq. Child of raw

intensities Raw data for assays that produce continuous data. Child of raw

decontaminated Measurements have been corrected for background signal Ambient RNA removal 
in single-cell RNA-seq

lograw The log of the raw data

logcounts The log of the raw counts

logintensities The log of the raw intensity values

corrected Measurements have been corrected for observation-level covariates

normalized Data that has been normalized for differences in overall signal abun-
dance between observations

Correcting for total 
number of UMIs or 
reads in each cell

lognormalized Data that has been log transformed after normalizing for differences 
in overall signal abundance between observations. Child of normal-
ized

centered Data with features have been made to center around a standard 
quantity such as the mean or median

Mean-centered data

scaled Data with features have been centered around a standard quantity 
and standardized to have similar variances or ranges

Z-scored data

reduction A matrix containing a data dimensionality reduction generally useful 
for input into tools for downstream analysis such as clustering or 
2D-embedding

PCA, ICA, autoencoders

embedding A matrix containing a low dimensional embedding (usually 2D or 
3D) generally used for visualization. Child of reduction

UMAP, tSNE
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has all original observations, “filtered” to denote observations that enough total signal 
above background. (e.g., true cells in droplet-based scRNA-seq), “detected” to denote 
observations that have minimum levels of detection across features, “nonartifact” which 
can be used as a general term to describe filtering that may occur due other quality con-
trol metrics, and “clean” to denote an “analysis ready” set of observations.

The majority of fields also have corresponding description fields used to describe the 
selected term. We have also supplied descriptions for the suggested ontologies (Table 2 
for an example with processing_description). While some ontological terms are suggested 
in MAMS, any text can be supplied to allow the metadata fields to adapt to future sce-
narios. Thus, researchers have the flexibility to use and define custom terms and descrip-
tions that do not fit the current set of suggested ontologies. Using a set of predefined 
ontologies with flexibility to add new terms will promote harmonization across plat-
forms and technologies while having the flexibility to adapt to novel analysis workflows.

Provenance related metadata for of analysis of matrices

The FAIR Data Principles (Findable, Accessible, Interoperable, and Reusable) are a set 
of guiding principles to support the reusability of data [22]. A major component of 
reproducibility is that the data should have information related to provenance includ-
ing how it was generated, preprocessed, and analyzed. A major goal of many groups has 
been to develop metadata standards related to the demographics of the donor or patient 
include disease relevant phenotypes as well as information about the technologies and 
protocols used to create data from biological specimens. However, once the raw data 
has been generated, the degree to which the details of the software and methods that 
create new FOMs and annotations is variable and limited across groups. Some data pro-
cessing centers will have a central workflow for processing which can be accessed via 
a repository. Some information about the software and analysis parameters may also 
be listed in the publication. However, this information is not standardized and might 
not be stored along with the FOMs in the file format being used. Different single-cell 
objects and libraries also vary in their ability to store provenance-related information. 
For example, while the current version of the SeuratObject (v5.0.3) has slots for storing 
the function commands and parameters called during the Seurat workflow, the current 
versions of AnnData (v0.11.0) and SingleCellExperiment (v1.26.0) do not have system-
atic approaches for storing this information.

Within the MAMS schema, we defined a set of provenance fields that can be cap-
tured via the REC class and linked to individual matrices, observation annotations, or 
feature annotations. The record_package_name describes the name of the package, tool, 
or software that ran the algorithm to produce the matrix, annotation, or graph. The 
record_package_version denotes the version of the package, tool, or software that ran 
the algorithm to produce the matrix, annotation, or graph. The record_function_name 
describes the name of the function or mathematical operation used to produce the 
matrix, annotation, or graph. The record_function_parameters is a list containing key-
value pairs describing the primary parameters and their values used in the function call. 
Finally, the record_workflow_link can be used to denote a public link to a repository con-
taining the workflow that ran the tool. For example, links to workflow scripts encoded 
in CWL, WDL, Nextflow, and Snakemake are often stored in a public repository such 
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as GitHub or DockerHub [23–25]. An important strength in the MAMS schema is that 
each individual matrix, observation annotation, or feature annotation can be directly 
linked to its own REC field. This enables users to directly map provenance-related infor-
mation to specific matrices and individual annotations. Thus, individual cell annotations 
(e.g., cluster labels, trajectory scores) and individual feature annotations (e.g., variabil-
ity metrics for genes) can each have their own separate entry in the REC class and cor-
responding provenance information. In summary, these fields can be used to record 
provenance information about matrices or individual annotations and will aide in repro-
ducibility of single-cell data.

Implementation and extraction MAMS

In order to facilitate the adoption of MAMS across platforms, we developed a simple 
list-like structure that can be used to record MAMS metadata fields for matrices in a 
dataset (Fig. 3). This structure can be stored in configuration file formats such as JSON 
and YAML and can record information about the dataset even if the FOMs are stored 
across different data objects or file formats. Each class of matrix has an entry within 
the list for each dataset and each matrix is denoted with a unique ID. The MAMS fields 
are then categorized as key-value pairs under each individual matrix. Several addi-
tional fields are implemented within this format to describe the location of each matrix 
and potential relationship between matrices. The filepath field is used to describe the 
path to the file or data object containing the matrix which can point to a flat file, HDF5 
object, or other programming language specific storage format (e.g., rds file format for 
R). The accessor field is used to denote the command to retrieve the matrix from a data 
object. An additional set of linking fields (oid, fid, obs, fea) can be used to capture the 

Fig. 3  Example of MAMS list format. As the ability to implement and store matrix and analysis related 
metadata is variable across software platforms and data objects, we created a simple list-like structure to 
capture relevant MAMS fields for each matrix. This structure can be stored in configuration file formats like 
JSON and YAML or in general metadata or unstructured slots within data objects. Each dataset will have its 
own entry within the list and each class of matrix has an entry within the list for each dataset. Each matrix 
is denoted with a unique ID and MAMS fields are denoted with key-value pairs under each matrix. The 
additional fields specified within this implementation including filepath and accessor can be used to point to 
matrices stored in any flat file format or within a data object
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relationships between FOMs and annotation or IDs matrices. Using these linking fields 
allow potential relationships between FOMs and other matrix classes to be maintained 
independently of file path or memory location within a data object. This format can 
serve as an intermediate standard to store MAMS information even if the underlying 
data object does not have the capability to store this type of metadata.

We have also developed a novel software package call rmams to enable the extrac-
tion of MAMS fields from commonly used single-cell objects. This R package can take 
as input a SeuratObject, AnnData, or SingleCellExperiment object and create a MAMS 
object containing an entry for each matrix. Depending on the input object, available 
MAMS fields for each matrix will also be populated. For fields that cannot automati-
cally be extracted from a single-cell object, a function is included to check the complete-
ness of the MAMS object and notify users of the remaining missing fields. Users can 
then manually set the remaining fields to the best of their knowledge. Once the MAMS 
object has been created and populated, it can be converted to the simple list-like object 
and exported to JSON file allowing for portability across platforms. It can also be stored 
within the unstructured slots of single-cell objects such as the metadata slot in a Single-
CellExperiment object or the uns property in a AnnData object.

Discussion
Metadata related to analysis and provenance of FOMs is important for the reanalysis 
and reproducibility of single-cell data but has been inconsistently curated and captured 
across software platforms, data coordinating centers, and data repositories. In order to 
facilitate the harmonization of metadata standards related to data analysis across groups, 
we created MAMS with input from multiple consortia and software development 
groups. Many different combinations of tools and parameters can be applied during an 
analysis workflow to produce different numbers and types of matrices. By curating anal-
ysis “use cases” from several existing workflows involving multiple data types and analy-
sis goals, we have characterized several core principles that can be used to annotate data 
matrices. The ability of MAMS to capture these principles will allow for the curation of 
matrices generated from diverse settings and support future complex workflows.

MAMS itself is a metadata standard and is implementation agnostic. Our goal is 
that by creating this metadata standard, it will motivate different tools and platforms 
to adopt the MAMS fields and harmonized categories, including those related to data 
provenance. The simple list-like MAMS file format is a specific implementation that was 
developed to work in conjunction with any single-cell data objects storing various matri-
ces and annotations. This simple file format is not supposed to replace other single-cell 
objects but allow additional analysis-related metadata for each matrix or annotation to 
be stored and tracked.

One of the major challenges when integrating matrices from different datasets is to 
determine which matrices should be selected and merged. Having fully annotated matri-
ces with MAMS fields can aid in making this process more systematic. For example, 
having fields to clearly denote analyte and modality can ensure that matrices captur-
ing similar biological measurements will be appropriately merged. Various integrative 
efforts may want to use different data matrices depending on the goals of the analysis. 
Reprocessing efforts will likely want to start with the matrices containing the most raw 
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and unfiltered form of the data while other efforts seeking to answer targeted biological 
questions may just want to merge the filtered and normalized matrices for each dataset. 
Overall, better metadata standards such as MAMS are becoming increasingly important 
with the goal of re-analysis and integration across datasets.

Different workflows and tools may not save every matrix produced during an entire 
workflow. For example, PCA matrix may be calculated from a matrix of highly variable 
scaled genes that is not permanently stored within the workflow. The goal of MAMS is 
not to require that every matrix produced by an analysis workflow should be stored in a 
file or data object or maintained in a repository. Rather the goal of MAMS is to ensure 
that every matrix stored within a data object or file format can be properly annotated 
with metadata fields and relevant provenance records.

In general, the metadata fields defined by MAMS are not dependent on specific for-
mats or data storage standards and can be implemented in any existing software that 
organizes matrices under a common API. However, updating existing software packages 
can take substantial time and effort. Therefore, we developed a platform-agnostic list-
like structure to store MAMS fields that can be stored in YAML or JSON formats. This 
file can serve as a “dataset configuration” file which can be used in conjunction with any 
underlying storage formats. Currently, the creation of these attributes is not automated 
and stored in most analysis workflows and software packages. Therefore, we also imple-
mented a novel R package to help users extract MAMS related data for each FOM in 
a single-cell object. Future efforts will be needed to implement these standards across 
platforms to relieve users from the tedious task of manual curation.

Conclusions
MAMS was developed with input from different consortia and software development 
groups to standardize the metadata associated with different analysis workflows spread 
across diverse software platforms and data repositories. These metadata standards aim 
to annotate data matrices with principles that may facilitate systematic integration of 
datasets, thus enhancing reproducibility, provenance, and reanalysis of single-cell data. 
Overall, the successful implementation of these data analysis metadata standards will 
facilitate harmonization and integration of datasets stored across different platforms or 
repositories and produce single-cell data that more closely aligns with FAIR standards.

Methods
Development of MAMS

We assembled a working group consisting of members from various data curation 
centers, software platforms, and academic and industrial institutions. The working 
group met monthly over the course of a year to discuss various aspects of data cura-
tion and file formats. “Use cases” for analysis of single-cell data were derived from 
Seurat [14, 15, 26], Scanpy [19], and Bioconductor example workflows [16]. Imaging-
based workflows were based on a workflow from MCMICRO [27]. Metadata fields 
were defined based on matrices and provenance fields produced by these workflows 
or based on use cases from the experience of the working group members. Multi-
modal PBMC data was accessed from https://​www.​10xge​nomics.​com/​resou​rces/​datas​
ets/​pbm-​cs-​of-a-​healt​hy-​donor-5-​gene-​expre​ssion-​and-​cell-​surfa​ce-​prote​in-1-​stand​

https://www.10xgenomics.com/resources/datasets/pbm-cs-of-a-healthy-donor-5-gene-expression-and-cell-surface-protein-1-standard-3-0-0
https://www.10xgenomics.com/resources/datasets/pbm-cs-of-a-healthy-donor-5-gene-expression-and-cell-surface-protein-1-standard-3-0-0
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ard-3-​0-0. MAMS documentation, use cases, and example files can be found at 
https://​github.​com/​single-​cell-​mams/​mams/.

Software

We developed the rmams package to extract relevant MAMS information from com-
mon single-cell objects like the SeuratObject, AnnData, and SingleCellExperiment. 
The software package can be found and installed from GitHub [28, 29] URL https://​
github.​com/​single-​cell-​mams/​rmams. Documentation for the use of rmams can be 
found at https://​single-​cell-​mams.​github.​io/​rmams/. This package has function for 
automatically extracting available MAMS annotations from the single-cell objects 
and creating a new MAMS object. It also contains functionality to identify what fields 
are missing in a MAMS object and these fields can then be manually added by the 
user. MAMS objects can be exported to a JSON file in a simple list-like format for 
portability across platforms.
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