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Abstract

The root cause of type 2 diabetes (T2D) is insulin resistance (IR), defined by the failure of cells to respond to
circulating insulin to maintain lipid and glucose homeostasis. While the causes of whole-body insulin resistance are
multifactorial, a major contributing factor is dysregulation of liver and adipose tissue function. Adipose dysfunction,
particularly adipose tissue-IR (adipo-IR), plays a crucial role in the development of hepatic insulin resistance and the
progression of metabolic dysfunction-associated steatotic liver disease (MASLD) in the context of T2D. In this review,

we will focus on molecular mechanisms of hepatic insulin resistance and its association with adipose tissue function.

A deeper understanding of the pathophysiological mechanisms of the transition from a healthy state to insulin
resistance, impaired glucose tolerance, and T2D may enable us to prevent and intervene in the progression to T2D.
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Introduction

Human physiology is adapted to handle extended
periods of food scarcity, followed by short periods
of abundance during millions of years of evolution.
However, easy access to a high-calorie, low-quality diet
together with sedentary lifestyles in today’s world places
our bodies under nutrient stress. The liver and white
adipose tissue (WAT) can store the energy surplus as
relatively inert triacylglycerol (TAG). When the storage
limit is exceeded, excessive accumulation of body fat
can lead to a range of metabolic abnormalities and
diseases, including dyslipidemia, metabolic dysfunction-
associated steatotic liver disease (MASLD), B cell
dysfunction, prediabetes, and type 2 diabetes (T2D). The
common denominator of these metabolic disturbances
is insulin resistance, which is a condition in which the
body's cells become resistant to the effects of insulin,
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leading to impaired glucose and lipid homeostasis.
Adipose tissue dysfunction plays a crucial role in the
development of insulin resistance in T2D. Dysfunctional
adipose tissue is characterized by decreased insulin
sensitivity, increased inflammation, aberrant lipolysis,
and altered adipokine secretion. In people with
obesity and even in lean individuals, visceral adiposity
and adipose tissue insulin resistance (adipo-IR) are
associated with intrahepatic triglyceride accumulation
and hepatic insulin resistance (Holt et al. 2006, Petersen
& Shulman 2018, Stefan 2020, Lee et al. 2023).

Hepatic insulin resistance is characterized by impaired
insulin signaling in the liver, leading to increased
glucose production and decreased glycogen storage,
all of which contribute to hyperglycemia. Since the
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liver plays a significant role in regulating glucose and
lipid metabolism, its dysfunction worsens adipocyte
function, starting a vicious cycle leading to T2D. Hence,
understanding the mechanisms underlying hepatic
insulin resistance and its relationship with adipose
tissue dysfunction is crucial for developing effective
therapeutic interventions to break the cycle and
prevent the progression of MASLD and T2D. While the
contribution of adipose tissue dysfunction to muscle
insulin resistance and p-cell dysfunction plays a
key role in T2D progression, it is beyond the scope of
this review and has been reviewed elsewhere (Xourafa
et al. 2023). We will focus on the molecular pathways
underlying hepatic insulin resistance and the role of
adipose tissue in the progression of T2D. Moreover,
we will discuss the efficacy of lifestyle interventions
and their mode of action in restoring glucose and
lipid homeostasis.

Hepatic glucose regulation in
health and disease

Molecular pathways underlying hepatic
insulin resistance

One of the main signaling cascades of insulin is the
phosphoinositide-3-phosphate kinase PI3K/AKT
pathway which is pivotal in mediating insulin's
effects on anabolic metabolism across organisms.
The binding of insulin to the insulin receptor (InsR)
activates PI3K through insulin-receptor substrates
(IRS), leading to the generation of phosphatidylinositol
(3,4,5)-trisphosphate  (PIP3). This initiates the
recruitment of AKT to the plasma membrane,
phosphorylation by phosphoinositide-dependent kinase
1 (PDK1) at Thr-308, and activation of AKT, which is
essential for insulin signaling. Furthermore, AKT's full
activation requires phosphorylation by the mammalian
target of rapamycin complex 2 (mTORC2) at Ser-473.
Activated AKT conveys the insulin signal to downstream
effectors such as FoxO transcription factors, glycogen
synthase kinase 3 (GSK3), and mTORC1/SREBP1 to
regulate glycogen, glucose, and lipid synthesis,
respectively. Several studies have investigated the
signaling pathways involved in the regulation of liver
metabolism by insulin and explored the molecular
mechanisms underlying hepatic insulin resistance.
Interfering with insulin signaling at the receptor
level, at PI3K/AKT, and/or at the downstream effectors
is suggested to be the underlying cause of hepatic
insulin resistance.

Regulation of insulin receptor
activity by PKCe

Insulin resistance in the liver is a complex process
that involves multiple molecular pathways. One major
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hypothesis is that insulin signaling in hepatocytes is
impaired at the level of the insulin receptor (InsR)
where the signaling starts. Inhibitory phosphorylation
of the InsR by protein kinase C-epsilon (PKCe) upon
high-fat feeding has been suggested. High-fat feeding
increases hepatic diacylglycerol (DAG) levels, resulting
in the activation of PKCe. In particular, an increase in
hepatic plasma membrane-bound sn1,2-DAG content is
associated with hepatic insulin resistance (Birkenfeld
& Shulman 2014). The phosphorylation at Thr-1160
by PKCe decreases InsR-Tyr-1162 phosphorylation
and insulin receptor kinase activity (Petersen et al.
2016). A direct causal relationship between DAG
accumulation, PKCe activation, and the development of
hepatic insulin resistance has been shown using liver-
specific knockdown or overexpression of PKCe (Lyu
et al. 2020). Acute knockdown of PKCe in the liver after
short-term high-fat feeding relieved hepatic insulin
resistance in rats, whereas liver-specific overexpression
of a constitutively active isoform of PKCe exacerbated
hepatic insulin resistance. Consistent with these
experiments, liver plasma membrane and lipid droplet-
associated sn1,2-DAG content and pInsR-Thr-1160
phosphorylation correlate with insulin resistance in
humans (Kumashiro et al. 2011, Lyu et al. 2020). While
InsR-Thr-1160 phosphorylation by PKCe is a crucial
mechanism that links increased DAGs to hepatic insulin
resistance, this single phosphorylation event is unlikely
to fully encapsulate the effect of PKCe on the signaling
and physiology of high-fat diet (HFD)-induced hepatic
insulin resistance. To identify direct PKCe substrates
involved in HFD-induced hepatic insulin resistance,
phosphoproteomics and large-scale in vitro kinase
assays were employed. The substrates of PKCe included
RPS6 and IRS1, which suggests crosstalk between PKCe
and p70S6K signaling (Brandon et al. 2019). While the
role of PKCe in insulin resistance is repeatedly shown
by independent groups, other signaling pathways could
contribute to insulin resistance in the liver, especially
upon long-term HFD feeding (Arkan et al. 2005).

Disruption of PI3K/AKT pathway

The dominant role of the hepatic PI3K/AKT pathway
in liver insulin signaling and metabolism is well-
established. Liver-specific knock-out of IRS1 and IRS2
prevents activation of the pathway in response to
insulin, leading to insulin resistance and hyperglycemia,
but not hepatic steatosis (Dong et al. 2008, Kubota
et al. 2016). Hepatic PI3K deletion prevents steatosis
but results in glucose intolerance and impaired AKT
activity (Miyake et al. 2002, Taniguchi et al 2006,
Chattopadhyay et al. 2011). Additionally, phosphatase
and tensin homolog (PTEN) counteracts PI3K by
dephosphorylating PIP3, and its deletion leads to
substantial lipid accumulation in the liver, potentially
due to increased AKT2 activity (Horie et al 2004,
He et al 2010). AKT2 plays a significant role in
metabolic regulation, and its deletion prevents lipid
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accumulation in the liver. Deletion of both AKT1 and
AKT2 is necessary to fully suppress AKT activity in
the liver and leads to severe insulin resistance and
glucose intolerance (Lu et al. 2012, Titchenell et al
2016). Modulation of the PI3SK/AKT pathway, either
at the transcript level or through post-translation
modifications of the signaling, could determine the
insulin response of the liver. One culprit that interferes
with insulin signaling at the level of downstream
signaling is the aberrant deposition of the sphingolipid
ceramide. When the hepatocyte's energy needs are met
and its storage capacity is full, ceramides accumulate
by leading to the coupling of free fatty acids to the
sphingoid backbone. As ceramides accumulate, they
initially could protect cells from acute increases in
fatty acids and enhance triglyceride storage. However,
upon prolonged accumulation, ceramide actions
can cause insulin resistance and hepatic steatosis.
Studies in rodents and humans show that liver insulin
resistance and hepatosteatosis are strongly associated
with hepatic ceramide content (Luukkonen et al
2016, Apostolopoulou et al. 2018, Chaurasia et al
2019). At a molecular level, increased ceramide levels
inhibit the insulin signaling cascade at the AKT step.
At least two main mechanisms are suggested for
the inhibition of AKT activation by ceramides. First,
ceramide blocks the translocation of AKT to the plasma
membrane via posttranslational modification that
involves PKC (Powell et al. 2003). The second pathway
involves the dephosphorylation of AKT by activating
protein phosphatase 2A (PP2A). Inhibition of PP2A,
either chemically or genetically, showed resistance
to ceramide-induced insulin resistance. Moreover,
inhibition of PP2A in hepatocytes increased AKT activity
in primary hepatocytes (Galbo et al. 2013). Ceramide
could also decrease the relay of insulin signaling to
AKT via the regulation of IRS1 phosphorylation by
activating double-stranded RNA-activated protein
kinase (PKR) (Yang et al. 2010). While the effects of
ceramides on AKT signaling are mainly shown in
muscle cells and adipocytes, decreasing ceramide
synthesis or increasing its degradation in the liver
relieves insulin resistance and decreases hepatic
steatosis (Chaurasia et al 2019). In particular, the
downregulation of ceramide synthase 6, which produces
long-chain C16-ceramides in the liver, protects from
obesity-associated insulin resistance and decreases
hepatic fat content, suggesting C16-ceramides could be
detrimental to liver metabolism (Raichur et al. 2014,
Turpin et al. 2014, Hammerschmidt et al. 2019).

Dysregulation of the effector molecules of
insulin action

Insulin signaling regulates gluconeogenesis, glycogen,
and lipid synthesis in the liver, which requires
orchestrating hundreds of enzymes in a coordinated
manner. Hence, dysregulation of the effector enzymes’
activity or their levels could result in blunted insulin
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action. Insulin can regulate gluconeogenesis via direct
and indirect mechanisms in the liver (Lewis et al. 2021).
FoxO transcription factors play a major role in direct
regulation via transcriptional mechanisms. Activation of
FoxOs induces the expression of glucose 6-phosphatase
(G6PC), phosphoenolpyruvate carboxykinase (PEPCK),
and fructose 1,6-bisphosphatase, which are enzymes
involved in gluconeogenesis (Matsumoto et al. 2007,
O-Sullivan et al. 2015). Moreover, FoxOs suppress the
expression of glucokinase, which results in decreased
flux of glucose to glycogen and lipid synthesis (Zhang
et al. 2006, Dong et al 2008, Haeusler et al 2014).
In an insulin-sensitive state, phosphorylation of
FoxO via AKT promotes nuclear export resulting in
decreased transcription of these gluconeogenic genes.
Downregulation of FoxO1 levels or activity in the livers
of diabetic mouse models results in lower plasma
glucose concentrations and decreased hepatic glucose
production (Altomonte et al. 2003, Samuel et al. 2006)
Moreover, while deletion of the insulin receptor in the
liver causes hyperglycemia, deletion of FoxO1l in the
liver together with the insulin receptor normalizes
serum glucose levels, indicating a critical role for
hepatic FoxO1 in glucose metabolism. It is important to
note that when hepatic insulin signaling is impaired,
extrahepatic insulin signaling could still regulate
hepatic glucose production, possibly via regulation
of substrate flux from adipose tissue (Lu et al. 2012,
O-Sullivan et al. 2015, Perry et al. 2015, Titchenell et al.
2015, Titchenell et al 2016). Moreover, disruption
of hepatic signaling could cause adipo-IR indirectly
regulating hepatic glucose production. For example,
liver-specific Irs1/Irs2 double-knockout mice show
insulin resistance in adipose tissue, which is relieved
when hepatic FoxO1 is deleted (Tao et al 2018). At
the mechanistic level, insulin resistance observed in
adipose tissue of liver-specific Irsl/Irs2 double-
knockout mice is driven by, at least in part, increased
secretion of a hepatokine called follistatin (Tao
et al. 2018). In humans, plasma follistatin levels are
associated with an increased risk of T2D incidents
(Wu et al. 2021).

In addition to its role in regulating gluconeogenic
gene expression, FoxOl could integrate insulin
signaling with mitochondrial function, which could be
important for the regulation of hepatic glucose
production at the substrate level (Cheng et al 2009).
In humans, FOXO1 is upregulated in insulin-resistant
and fatty liver (Valenti et al. 2008). Moreover, a newly
identified transcription factor, TOX4, which regulates
gluconeogenic genes in parallel with FOXO1, is
upregulated in the livers of patients with diabetes and
MASLD (Wang et al. 2022b). Hepatic glucokinase levels
and activity are lower in patients with T2D, which could
contribute to increased hepatic glucose production
and decreased glycogen levels in the liver (Clore
et al. 2000, Haeusler et al. 2015). Indeed, mutations of
human glucokinase are seen in a specific subtype of
type 2 diabetes (GCK-MODY), which results in a chronic,
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mild increase in blood glucose levels in part due to
decreased glucokinase activity in the pancreas and the
associated lower insulin release (Ashcroft et al. 2023).
In addition to gluconeogenesis, the regulation of
glycogen synthesis by insulin plays a crucial role in
maintaining normal glucose levels. In patients with
T2D, insulin-induced synthesis of hepatic glycogen is
impaired (Krssak et al. 2004). Transgenic mice models
that have increased hepatic glycogen synthesis showed
enhanced glucose control (O'Doherty et al 2000,
Mehta et al 2017, Loépez-Soldado et al 2022).
Polymorphisms in genes encoding proteins in glycogen
synthesis are associated with increased diabetes risk
(Groop et al. 1993). These results indicate that increased
activity/levels of proteins involved in gluconeogenesis
or changes in proteins regulating glycogen synthesis
could enhance glucose output from the liver and
resist suppression of HGP by insulin.

Contribution of adipose tissue
dysfunction to hepatic
insulin resistance

Adipose tissue plays a crucial role in controlling whole-
body glucose homeostasis in both normal and diabetic
states. White adipose tissue stores excess energy as
triglyceride, which can be rapidly hydrolyzed by
lipases when needed and transported to other tissues.
Adipose tissue also functions as an endocrine organ,
secreting a large number of peptide hormones,
cytokines, and regulatory lipids that affect energy
metabolism in other tissues and behaviors related
to feeding. Studies in rodents and humans indicate
that the absence of adipose tissue is as detrimental to
glucose homeostasis as having excess adipose tissue
(Petersen & Shulman 2018, Sakers et al. 2022). Upon
high energy intake (i.e. high-fat diet), adipose tissue
expands via increasing the adipocyte number
(hyperplasia) and enlarging existing adipocytes
(hypertrophy). However, expansion capacity is limited
and dependent on extracellular remodeling followed
by the formation of new vasculature (Crewe et al
2017). Under over-nutrition stress, adipocytes release
pro-angiogenic and pro-inflammatory factors such as
MCP1, TNFa, IL6, ICAM1, VCAM1, etc., which further
increase inflammation by activating and recruiting
more macrophages (Kratz et al. 2014, Sarvari et al. 2021).
A direct link between adipose tissue inflammation
and the role of macrophages was shown in murine
models and suggested in humans with obesity (Han
et al. 2013, Hill et al. 2018, Jaitin et al. 2019, Vijay et al.
2020, Hildreth et al. 2021). Increased inflammation,
hypoxia associated with inadequate angiogenesis, and
lipid overload induce adipocyte insulin resistance.
Insulin resistance leads to loss of adipocyte identity
and adipose tissue dysfunction (Vishvanath &
Gupta 2019, Czech 2020, Roh et al 2020, Markussen
& Mandrup 2023). Dysfunctional adipose tissue
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releases pro-inflammatory factors such as TNF-a,
IL-6, and IL-1B, and decreases the release of anti-
inflammatory factors such as adiponectin and IL-10,
exacerbating hepatic inflammation, insulin resistance,
and steatosis (Abenavoli & Peta 2014, Stojsavljevic
et al 2014). While adipose tissue is an endocrine
organ and the main storage place for lipids, adipose
dysfunction leads to whole-body insulin resistance via
enhanced lipolysis and impaired release of lipokines,
adipokines, cytokines, and extracellular vesicles
(EVs) (Fig.1).

Lipolysis

In a healthy state, adipose lipolysis is tightly controlled
by neuronal stimuli and hormones. Pro-lipolytic signals
such as noradrenaline activate B-adrenergic signaling
in adipose tissue, turning on the cAMP/protein kinase A
(PKA) pathway. Phosphorylation of hormone-sensitive
lipase (HSL) and perilipin-1 by PKA enhances the
recruitment of HSL to lipid droplets and enables the
interaction of adipose triglyceride lipase (ATGL) and
its co-activator (CGI-58/ABHD5) on the lipid droplets,
resulting in increased lipolysis. Other B-adrenergic
signaling-independent pro-lipolytic factors include
glucocorticoids, natriuretic peptides, and parathyroid
hormone, which modulate cAMP/cGMP levels in
adipocytes (Braun et al. 2018).

One of the most important anti-lipolytic hormones is
insulin, which induces the degradation of cAMP in an
AKT/PDE3B-dependent manner. Postprandial insulin
normally suppresses lipolysis, indirectly suppressing
hepatic glucose production via limiting the glycerol
and FFA flux to the liver. Adipose dysfunction is often
linked to obesity, including an increase in basal rates of
lipolysis that contribute to the development of insulin
resistance, as well as an impaired fold-response to
stimulated lipolysis (Reynisdottir et al. 1995, Arner
et al. 2018). In addition, insulin suppression of adipose
lipolysis is also impaired, resulting in enhanced hepatic
glucose production (Perry et al. 2015). We recently
identified that Fibroblast growth factor-1 (FGF1)
suppresses lipolysis in a phosphodiesterase 4D (PDE4D)-
dependent manner and decreases hepatic glucose
production in parallel to insulin (Sancar et al. 2022).
Over-expression of PDE4D in the adipose tissue of ob/
ob mice lowered circulating FFAs and glucose levels,
directly linking the role of lipolysis to hepatic glucose
output. FFAs and glycerol released from adipocytes
are taken up by the liver and activate hepatic glucose
production via allosteric regulation of pyruvate
carboxylase (as acetyl-CoA from fatty acid oxidation
(FAO)) or as direct gluconeogenic substrates (as glycerol).
In particular, the size of the visceral adipose tissue,
which is more lipolytic, more insulin resistant, and
drained via the portal vein directly to the liver, strongly
correlates with the degree of hepatic insulin resistance
and liver fibrosis (Gastaldelli et al. 2007, Saponaro
et al. 2022). Recent single-cell RNAseq experiments
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to support healthy adipose expansion. Adipose tissue is in an anti-inflammatory state, maintaining lipid and glucose homeostasis, while liver function is
modulated by adipokines, cytokines, EVs, and lipokines. In contrast, the Western diet overwhelms adipose tissue TAG storage capacity, resulting in
adipocyte hypertrophy and inflammation of the adipose tissue. Increased lipolysis, inflammatory cytokines, and altered adipokine release contribute to
whole-body insulin resistance and metabolic dysfunction of the liver. In addition, a high saturated fat, high carbohydrate diet enhances lipogenic
substrate availability to the liver directly and indirectly. The high glucose and fructose content of the Western diet provides a carbohydrate source for de
novo lipogenesis. Moreover, enhanced lipolysis and decreased lipid storage capacity of the dysfunctional adipose tissue provide FFAs and glycerol that

increase re-esterification of TAG, exacerbating hepatosteatosis and liver insulin resistance. DAG, diacylglycerol; DNL, de novo lipogenesis; EVs,
extracellular vesicles; TAG, triacylglycerol. The figure was created with BioRender.com.

identified functionally different cell types and
adipocyte subtypes not only in visceral vs subcutaneous
but also within the same depot (Vijay et al 2020,
Backdahl et al. 2021, Sarvari et al. 2021, Emont et al.
2022). Accumulating evidence states that obesity and
associated adipo-IR could alter the cell types and
function in the adipose tissue, further exacerbating
insulin resistance. High-fat feeding and associated
obesity lower the lipogenic adipocyte subpopulation
and increase the macrophage population within the
adipose tissue, increasing the lipolysis and FFA release
to other organs (Sarvéari et al 2021). Moreover, a
locally increased concentration of FFAs potentially
promotes a pro-inflammatory macrophage state,
further increasing the inflammation and initiating a

vicious cycle (Lumeng et al. 2007, Kratz et al. 2014). In
addition, aberrant macrophage differentiation and
function in adipose tissue can amplify inflammatory
signaling between adipose tissue and the liver in
patients with MASH (Boesch et al. 2024).

Genetic studies in rodents or human polymorphisms
associated with genes involved in lipolysis indicate the
direct contribution of unregulated lipolysis to insulin
resistance. For example, people carrying frameshift
mutations on PLIN1 (coding for perilipin-1, the most
abundant lipid droplet coat protein in adipocytes)
show partial lipodystrophy, severe insulin resistance,
and T2D (Gandotra et al. 2011). This phenotype is
associated with increased basal lipolysis. In parallel,
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Plin1 knock-out mice show higher lipolysis, increased
proinflammatory macrophages, and insulin resistance
even in lean mice (Sohn et al. 2018). Genetically or diet-
induced obese mice show lower Plinl expression in
adipocytes, which could contribute to increased basal
lipolysis (Sohn et al. 2018). Acute deletion of the insulin
receptor specifically in mouse adipocytes resulted
in increased lipolysis, insulin resistance, glucose
intolerance, hepatosteatosis, and B-cell islet hyperplasia
with hyperinsulinemia (Sakaguchi et al. 2017).

While de novo lipogenesis contributes to fatty liver and
associated hepatic insulin resistance, lipid synthesis
from FFAs is responsible for 60% of the TAG stored
in the liver (Donnelly et al. 2005, Smith et al. 2020)
Moreover, increased lipogenesis observed in patients
with fatty liver is driven by the lipogenic substrate
availability rather than paradoxical activation by
insulin (Ter Horst et al. 2021). The data indicate
the importance of understanding and potentially
targeting adipose lipolysis for relieving hepatic insulin
resistance and associated comorbidities.

Lipokines, adipokines, and
extracellular vesicles

Adipose tissue can secrete various bioactive circulating
mediators in the form of lipids (lipokines) or peptide
hormones (adipokines) that regulate metabolism
and behavior (Scheja & Heeren 2019, Tsuji & Tseng
2023). In addition, accumulating evidence indicates
adipose tissue-derived extracellular vesicles (EVs),
which can carry nucleic acids, proteins, and lipids to
distant tissues, are involved in metabolic regulation
(Bond et al. 2022, Liu et al. 2023). The term ‘lipokine’
was introduced after the identification of adipose-
derived, palmitoleate (C16:1n7) which decreases
hepatic TAG accumulation and increases insulin
sensitivity (Cao et al. 2008). Circulating palmitoleate was
strongly associated with insulin sensitivity in humans,
indicating its relevance in humans (Stefan et al. 2010,
Trico et al 2020). One of the novel lipid species
identified while trying to understand the insulin
sensitivity observed in the GLUT4 overexpressing
obese mice is branched fatty acid esters of hydroxy
fatty acids (FAHFAs) (Yore et al 2014). A palmitic
acid-carrying version called palmitic-acid-9-hydroxy-
stearic-acid (PAHSA) was studied for its potential anti-
diabetic effects. Chronic PAHSA treatment of aged
chow-fed or HFD-fed mice enhanced insulin sensitivity
and glucose tolerance (Syed et al. 2018, Zhou et al. 2019).
Humans with insulin resistance have lower PAHSA
levels in serum and subcutaneous adipose tissue (Yore
et al. 2014). Exercise induces PAHSAs in adipose tissue,
potentially contributing to its benefits (Brezinova
et al. 2020). At the molecular level, PAHSA’s insulin-
sensitizing effects are partly driven by its anti-lipolytic
effect in HFD mice (Zhou et al. 2019). ATGL, the main
TAG lipase in adipose tissue, was identified as the
enzyme that synthesizes the FAHFAs (Patel et al. 2022).
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In addition, FAHFA levels were downregulated in
whole-body and adipose-specific ATGL-KO mice
(Brejchova et al. 2021, Patel et al. 2022). Another active
lipid mediator class is oxidized lipid metabolites
derived from polyunsaturated fatty acids (PUFAs). One
of the identified molecules is 12,13-diHOME, which
enhances fatty acid uptake and catabolism in brown/
beige fat and is produced by cold exposure or exercise
(Lynes et al 2017, Stanford et al. 2018). Studies in humans
indicate that 12,13-diHOME plasma levels negatively
correlate with insulin resistance and body mass index.

In addition to lipid-based signaling molecules, adipose
tissue releases peptide-based adipokines such as
adiponectin, leptin, resistin, vaspin, FABP4, RBP4,
asprosin, etc., which have been identified over the
years, with adiponectin and leptin being the most
studied (Zhang et al. 1994, Halaas et al. 1995, Hu et al.
1996, Wang et al. 1998, Steppan et al. 2001, Yamauchi
et al. 2001, Hida et al. 2005, Yang et al. 2005, Cao et al.
2013, Romere et al. 2016). Adipokines carry great
potential as biomarkers to track adipose dysfunction,
obesity, and insulin resistance. In addition,
dysregulation of adipokine release or function has
been implicated in the onset of obesity, IR, T2D, and
associated complications, indicating they contribute to
disease progression rather than only being correlative
(Graham et al. 2006, Wiirfel et al. 2023). For example, the
administration of adiponectin has been shown to lower
glucose levels and improve insulin sensitivity in mice
(Berg et al. 2001). Conversely, mice lacking adiponectin
exhibit insulin resistance and are prone to developing
diabetes (Maeda et al 2002). Adiponectin achieves
these effects through various mechanisms, including
increased FAO in muscle and liver, inhibition of
hepatic glucose production, and decreasing hepatic
ceramides via ceramidase activity of the adiponectin
receptors in the liver (Berg et al 2001, Yamauchi
et al. 2002, Holland et al. 2011). Studies have also
demonstrated that adiponectin deficiency is associated
with insulin resistance and is predictive of hepatic
fibrosis in patients with MASLD (Savvidou et al. 2009,
Nazal et al. 2010) that replenishing physiologic doses of
adiponectin can reverse insulin resistance (Yamauchi
et al. 2001, Savvidou et al. 2009, Li et al. 2020). Moreover,
the beneficial effects of PPAR-y agonists on MASH
are mainly associated with increased adiponectin
release from adipose tissue and decreased visceral to
subcutaneous adipose tissue (Skat-Rgrdam et al. 2019,
Gastaldelli et al. 2021). Understanding the molecular
and physiological actions of adipokines is essential for
developing targeted therapeutic agents for adipose
dysfunction associated with insulin resistance and T2D.

Recently, EVs originating from adipose tissue have
been identified that carry metabolically active lipids,
proteins, and nucleic acids (Thomou et al. 2017,
Bond et al. 2022, Wang et al. 2022a, Xu et al. 2023).
Mice with a fat-specific knockout of the miRNA-
processing enzyme Dicer and individuals with
lipodystrophy demonstrate significant reductions
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in circulating exosomal miRNAs, indicating adipose  signature that could be involved in the regulation of
tissue as a significant source of circulating miRNAs  metabolism.

(Thomou et al. 2017). The EVs released from subcutaneous
adipose tissue or visceral adipose tissue show depot-
specific differences and are modulated by metabolic
state (Deng et al. 2009, Kranendonk et al. 2014, Crewe
et al. 2021, Camino et al. 2022, Zhang et al. 2023).
Injection of EVs from adipose tissue of obese mice to
chow-fed healthy mice induced insulin resistance,
supporting the link between adipose tissue EVs and
insulin signaling (Deng et al. 2009, Castafio et al. 2018).
Analysis of circulating EVs in healthy individuals,
people with obesity, or people with obesity and T2D
indicated directional change in a variety of miRNAs
(Kim et al. 2020, Santamaria-Martos et al. 2020). In
addition to differences in miRNA species, EVs from . . . .
obese adipose tissue carry lipids and groteins involved Llf.eStyle I_nterventl?n fo.r ta rg.etlng

in inflammation and insulin resistance compared adlpose tissue and insulin resistance
to lean controls (Kulaj et al. 2023, Zhang et al. 2023).

Together, data suggest that, depending on the adipocyte =~ The common denominator underlying hepatic insulin
health and size, adipose-derived EVs represent a unique  resistance is lipid overload in conjunction with

The aforementioned signaling molecules released from
adipose tissue reflect the contribution of adipose tissue
not only as a reservoir of energy in the form of lipids
but also as an active endocrine organ. Thus, insulin
resistance of adipose tissue directly contributes to
whole-body insulin resistance and T2D by modulating
the function of other organs and protecting them
from lipotoxicity. In addition, paracrine/autocrine
signaling to nearby pre-adipocytes/adipocytes or
immune cells could modulate insulin signaling in
adipose tissue, indirectly affecting whole-body insulin
resistance.

Sat. fat/High carb. diet Sedentary life-styles Genetic predisposition
Healthy Prediabetes Type 2 diabetes
T Adiposity T T Adiposity
T Inflammation T T Inflammation
T Liver fat ﬁ T 7 Liver fat
! Adipose tissue function 1 Gl | | Adipose tissue function L 7,
T Insulin resistance | T T Insulin resistance )|
T Insulin release N | Beta-cell function

&
<

Dietary intervention Exercise Metformin/Incretin analogs

Figure 2

Physiological changes associated with prediabetes/T2D progression and remission. Diet, sedentary lifestyles, and genetic disposition increase the risk of
prediabetes and diabetes. Increased visceral adiposity, liver fat, inflammation, and associated insulin resistance impair glucose and lipid metabolism.
When not intervened, a further increase in visceral adipose tissue and a decrease in adipose tissue function enhances hepatic steatosis and whole-body
insulin resistance. While B-cells respond to insulin resistance by releasing more insulin as a compensatory mechanism during obesity and prediabetes,
eventual B-cell failure results in the clinical manifestation of type 2 diabetes (T2D). Through lifestyle interventions such as diet and exercise, individuals
with T2D can achieve remission from T2D to prediabetes, and from prediabetes to a healthy state. However, compliance of the patients with these
interventions is limited, and medical interventions are still needed. Metformin and newly developed incretin analogs show high potential for managing
type 2 diabetes. Yet, there is still a need for novel insulin sensitizers that target the underlying cause of type 2 diabetes, insulin resistance. The figure is
created with BioRender.com. Red arrows indicate the transition from healthy to prediabetic to diabetic state with the physiological changes depicted
above the arrows. Green arrows indicate remission from diabetes to prediabetes to a healthy state with the help of lifestyle changes and/or with drug
treatment (such as metformin and incretin analogs).
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dysfunctional adipose tissue. It has been repeatedly
shown in animal models and humans that chronic
consumption of a high-fat/high-sugar diet results in
hepatic steatosis, insulin resistance, and obesity. A
high-sugar diet (especially enriched in fructose) has
direct effects on the liver, increasing hepatic de novo
lipogenesis (Eng & Estall 2021, Geidl-Flueck et al.
2021, Sigala et al. 2021). Decreasing the energy intake
by dietary intervention and decreasing the lipid
overload has the potential to relieve insulin resistance.
The physiological changes from the healthy state to
prediabetes and T2D are summarized in Fig.2. Hence,
dietary intervention is the first line of treatment to
prevent the progression from pre-diabetes to diabetes
or reverse from pre-diabetes/diabetes to a healthy
state (Lean et al. 2018, Taylor 2019, Iglesies-Grau et al.
2023, Sandforth et al. 2023, Birkenfeld & Mohan 2023,
Jumpertz von Schwartzenberg et al. 2024). Weight loss
through dietary interventions is the main driver of the
remission from (pre)diabetic to a healthy state in most,
if not all cases. A very low-calorie diet is particularly
effective and needed for T2D remission primarily
through weight loss (Kelly et al 2020, American
Diabetes Association 2021). Beyond calorie restriction,
the macronutrient composition of the diet plays a role
in regulating adipose and liver metabolism (El-Agroudy
et al. 2019). For instance, a low-carbohydrate diet leads
to a greater reduction in visceral fat and improves
insulin sensitivity compared to a low-fat diet (Samaha
et al. 2003, Bazzano et al. 2014). Additionally, time-
restricted eating further impacts visceral adiposity
and insulin resistance (Sutton et al. 2018, He et al
2022, Sun et al. 2024). Together, the data suggest that
while a hypocaloric diet is necessary for remission,
the type of diet and the time of day the diet is
consumed contribute to the full metabolic outcome.

Improvement in insulin sensitivity and reduced
visceral adipose tissue are the main drivers for
remission from prediabetes to normal glucose regulation
(Sandforth et al. 2023). Remission from T2D was
associated with the recovery of B-cell health and
enhanced insulin release (Taylor et al 2018,
Zhyzhneuskaya et al. 2020). It is of interest to investigate
adipose dysfunction and lipolysis in intervention
studies for T2D, while increased lipolysis in adipose
tissue is associated with lipotoxicity in the islets of the
pancreas (Oh et al. 2018, Gerst et al. 2019). Another
lifestyle intervention is regular exercise, which
increases energy expenditure, muscle glucose uptake,
and FAO in muscle and relieves insulin resistance. Both
acute and regular exercise can modulate hepatic gene
expression and hepatic and circulating metabolites
(Hu et al. 2020, Dreher et al. 2023). Studies in people
with obesity suggested that even without apparent
weight loss, regular exercise can decrease hepatic lipid
content and visceral adipose tissue (Johnson et al. 2009)
Moreover, the reversal of insulin resistance in people
with obesity was associated with reduced visceral fat
(O'Leary et al. 2006) While the beneficial effects of dietary
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intervention and regular exercise are multifactorial,
effects on adipose tissue mass and health contribute to
relieving insulin resistance. Despite the obvious benefits
of lifestyle intervention, applicability and sustainability
determine the net positive effect on a large population
of people with insulin resistance and T2D. Hence, the
search for insulin-sensitizing drugs is still ongoing.
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