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Chromophore-bearing proteins that are (reversibly) altered after light illumi-

nation are major functional components of nature. They gained considerable

attention in the last decades since the dynamic interactions of the chromo-

phore and protein matrix can be used to control downstream effects altering

the functionality of proteins, cells, or complete organisms with light (optoge-

netics). Additionally, the photophysical effects can be employed to add capa-

bilities to optical imaging. For example, light can be used to reversibly switch

the signal on or off (e.g., fluorescence). In this article, we review chromophore

and protein matrix interactions, focusing on photoswitching fluorescent pro-

teins of the GFP family (RSFPs) and natively photoswitching bacteriophyto-

chromes (BphPs). This review aims to provide an in-depth understanding of

the dynamic interplay between photoswitching photophysics and the protein

matrix and a thorough discussion on how this connection has been harnessed

for the development of optogenetic and imaging tools.
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Proteins that interact with visible light are involved in

numerous key mechanisms of nature, for example,

visual phototransduction, light energy harvesting, or

light-controlled genetic programs, thus stimulating fun-

damental biology research. Beyond that, such proteins

are essential tools for life science research to study

cells or complete organisms without perturbation

in vivo due to the genetic codability of proteins and

the noninvasive nature of light interaction. Applica-

tions for light-interacting proteins can be loosely

grouped into two categories depending on how the

light is used: (a) as an input to trigger a downstream

effect or (b) as a readout to visualize localizations or

processes in the cell or organism. The key for applica-

tion in both categories is a highly tunable interplay

between the light-absorbing chromophore and the sur-

rounding protein matrix.

Applications in which light triggers a downstream

effect are often summarized under the field of optoge-

netics [1,2]. For instance, light-activated ion channels

with rhodopsin chromophores [3] (channelrhodopsins),

initially found to be responsible for phototactic reac-

tions of algae, are now a key tool for neurophysiologi-

cal research where they can be used to achieve
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temporally and spatially precise depolarization of neu-

rons [4]. Besides such repurposing of native light

response mechanisms, a number of optogenetic tools

rely on harnessing photochemical structural changes

(cis/trans isomerization, covalent modification, etc.) of

the protein matrix to trigger downstream effects facili-

tated by non-native effector moieties. For example,

protein–protein or protein–second messenger interac-

tions can be activated by light to control cellular path-

ways [5]. In all cases, light is absorbed by a

chromophore resulting in its (transient) photochemical

change, which is generally relayed by massive struc-

tural changes to the protein matrix, resulting in down-

stream effects (Fig. 1A).

The second field where light-interacting proteins are

widely applied is imaging. The most prominent class is

that of fluorescent proteins (FPs), with its historic pro-

genitor being the green fluorescent protein (GFP) [6].

Other classes of proteins used in imaging include phy-

tochromes and phycobiliproteins, which allow access

to the near-infrared (NIR) realm [7] or light-oxygen-

voltage sensing domains for anaerobic studies [8]. The

chromophores of some proteins exhibit (transient)

photochemical changes that can be exploited for imag-

ing applications, such as photoswitching (Fig. 1B),

photoactivation, or photoconversion. These proteins

are prominently used in a multitude of super-

resolution fluorescence microscopy techniques, for

example, revealing sub-diffraction resolution composi-

tion of the cell [9] or protein-complex architecture [10].

In addition, these proteins are also used for (revers-

ible) highlighting [11,12] or background suppression

through locked-in detection of the photo-modulated

sample signal [13,14]. Although photochemical changes

in these proteins can lead to rearrangements of the

protein matrix, these changes are often subtle and are

generally not the focus of research when looking into

their applications.

Initially, FPs were primarily used to report on pro-

moter activity or visualize cellular structures, but their

use in the construction of sensors, for example to

detect an analyte of interest, quickly became promi-

nent. Commonly, an upstream change to the protein

matrix through analyte binding is relayed to the resi-

dues near the chromophore, which alters its photophy-

sical properties (Fig. 1C). Lately, an expansion on this

approach led to sensors showing additional photo-

processes (photoconversion or photoswitching) in the

analyte-bound state. In those cases, upstream changes

to the protein matrix alter the immediate chromophore

surroundings in such a way as to permit the additional

photo-processes (Fig. 1D).

In this review, we will explore interactions of the

protein matrix and chromophore with an emphasis on

reversibly switchable chromophore transitions. We

restrict ourselves to two families of photoswitching

proteins: reversibly switchable FPs of the GFP-family

(RSFPs) and far-red (>~ 630 nm) absorbing bacterio-

phytochromes (BphPs). This choice is governed by per-

sonal interest and the fact that BphP derivates recently

gained considerable interest in the optical imaging

field, expanding the range of applicable wavelengths

(WL) toward the NIR. More importantly, these two

protein families are photoswitchable, yet the interac-

tions of their chromophores with the protein matrix

are very different and will be discussed thoroughly in

this review. Briefly, RSFPs utilize the matrix of the

quasi-inert b-barrel fold as a means to tune the

photophysics of the chromophore for the imaging

application, with larger matrix rearrangements being

rare. By contrast, BphPs are multidomain proteins,

which undergo massive structural changes upon

photoswitching.

Despite the differences, both classes spark similar

ideas regarding imaging, sensor engineering, and opto-

genetic approaches. We will begin with an overview of

the ‘native’ photoswitching functionality in both clas-

ses which is mainly based on structural studies. Then

we will move to application concepts harnessing the

interactions between the photoswitching chromophore

and protein matrix.

Reversibly photoswitching proteins of
the GFP family

Reversibly switchable fluorescent proteins are members

of the family of GFP-like FPs. FPs revolutionized

fluorescence imaging with their autocatalytically

formed chromophores enclosed in a versatile-yet-

shielding 11-stranded b-barrel (Fig. 2A,B). In RSFPs,

two distinct WL control the reversible photoswitching

between a fluorescent ON- and nonfluorescent OFF-

state, with one of these WL also commonly exciting

fluorescence. RSFPs gained attention due to their use

in fluorescence super-resolution imaging approaches,

wherein the switching can be used to confine fluores-

cence emission to sub-diffraction sized spots (lens-

based scanning, RESOLFT [15]) or, albeit more rarely,

to more precisely control fluorescence events in single-

molecule imaging super-resolution techniques [16] (for

example PALMIRA [17]). Additionally, the unique

kinetic footprints of the different switching proteins

can be used to allow temporal unmixing of cell popu-

lations [14] even in whole transparent organisms [18].
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In contrast to native BphPs, RSFPs do not seem to

have a downstream biological function for their

photoswitching—indeed, the b-barrel fold of FPs

leaves few vantage points for downstream effects.

Nonetheless, the protein matrix around the chromo-

phore is highly crucial for shaping RSFP’s photo-

switching behavior. In fact, photoswitching is only

one aspect of the photophysical versatility enabled by

the b-barrel fold and the chromophore of FPs (see

FPbase.org for a comprehensive impression [19]). The

majority of RSFPs to date are green and the develop-

ment of red RSFPs is challenged by complex photo-

physics, low fluorescence quantum yields, and

photofatigue (see Table S1 for basic figures on the

proteins mentioned in this review). Taking the exam-

ple of rsCherry/Rev [20], its use in RESOLFT is

(A)

(B)

(C)

(D)

Fig. 1. Different scenarios of interaction between the protein matrix and chromophore. (A) Light induces chromophore isomerization (gray to

yellow change of chromophore), resulting in alteration of the protein matrix (bulging of circle) and a subsequent downstream effect (effector

moiety). Colors denoting illumination are chosen for maximal distinguishability and do not represent actual illumination WL. (B) Light induces

isomerization leading to a change in photophysical properties, e.g., switching between fluorescent and nonfluorescent forms. (C) The

protein matrix is affected by an upstream change (receptor moiety) leading to altered photophysical properties. (D) Upstream change alters

protein matrix and thus chromophore photophysics leading to, for example, the possibility to photoswitch.
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limited by long-lived states not contributing to fluores-

cence emission, oligomerization tendencies and possi-

bly the photodestruction by oxygen [21]. The recently

developed class of rsFusionReds somewhat overcomes

those challenges [22] but is still inferior to most green

RSFPs.

Many molecular mechanisms of RSFPs have been

clarified by x-ray crystallography of equilibrium and

photoswitched states (Table S2). Due to the rigidity of

the b-barrel, it is readily possible to photoswitch pro-

teins in the crystallized form [23]. Such datasets allow

a highly congruent comparison between states, in

Fig. 2. Photoswitching proteins of the GFP-like family (RSFPs). (A) Representative structural overview (here Dronpa, 2iov) showing the 11-

stranded b-barrel enclosing the central a-helix with the chromophore. In the 90° turned representation, the top part of the protein (dashed

line) is omitted for clarity. (B) Top: Representative chromophore (here Dronpa) showing the p-hydroxyphenyl (P-ring) and imidazolinone

(I-ring) and the methine bridge involved in cis/trans isomerization. The bonds and atoms are colored according to the amino acids contribut-

ing to the autocatalytic chromophore formation. While tyrosine and especially glycine are largely conserved, the first amino acid (here cys-

teine) is highly variable. Bottom: bonds of the methine bridge that can contribute to the cis/trans isomerization. (C) ON- and OFF-state

structure of Dronpa. The residues that undergo conformational rearrangements (arrows) are denoted along with the b-strands that show

flexibility. (D) ON- and OFF-state structure of asFP595, a protein that shows almost no change of the protein matrix upon photoswitching;

the same b-strands as in c are marked for orientation. The main chain break, characteristic of asFP595, is indicated by an asterisk. (E) Differ-

ent concepts of building (photoswitching) chimeric sensor proteins. Clockwise: calcium sensor based on Calmodulin with an M13 or RS20

peptide, GPCR-based sensor, and PBP-based sensor. (F) Concept of photoswitching small molecule sensors.
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order to explore the interplay between protein matrix

and chromophore. Based on insights from end-state

structures (ON- and OFF-state), the structurally

apparent effects can be grouped into three categories:

(a) how the chromophore isomerizes, (b) to what

extent photoswitching alters the conformations of

chromophore-surrounding residues and lastly (c) to

what extent the backbone of the b-barrel is displaced

(Table S2). Beyond that, in recent years, time-resolved

structural and spectroscopical methods have painted a

clearer picture of the dynamics of the photoswitching

process.

Photoswitching mechanisms in RSFPs

Key to all photoswitching in proteins is the absorption

of a photon by a chromophore resulting in a photo-

chemical conformation change of the chromophore.

For RSFPs, this change is most commonly linked to a

cis/trans isomerization over the methine bridge con-

necting the p-hydroxyphenyl and imidazolinone rings

of the chromophore (Fig. 2B). The cis isomer is com-

monly the fluorescent ON-state similar to nonswitch-

ing FPs, except in some cases such as eqFP611 [24]

where trans is the fluorescent ON-state. The photo-

switching results in changes of the chromophore with

respect to the protein matrix. Structurally, the cis/trans

isomerization of the chromophore can occur as a flip

over the s bond of the methine bridge (one bond flip,

OBF), resulting in a major displacement of the p-

hydroxyphenyl ring. Alternatively, an isomerization

involving movements about both the φ and s bond can

occur. This isomerization, vividly termed hula twist

(HT) (Fig. 2B), is much more space-conserving. HTs

are not limited to RSFPs but are also found in photo-

active yellow proteins [25] or BphPs (see below).

Moreover, HTs occur in numerous dyes [26], with the

solvent influencing the isomerization pathways [27].

This change of chromophore conformation and the

immediate chromophore environment is often accom-

panied by protonation/deprotonation events of the

chromophore leading to photochromism, where the

neutral chromophore is more blue-shifted and the

anionic more red-shifted. This influence on the spectral

characteristics allows for the use of distinct and dis-

crete WL for photoswitching (for a mechanistic over-

view, see Duan et al. [28]). The photoswitching-

dependent protonation states of the chromophore are

related to similar protonation states in nonswitching

FPs, which can be accessed through pH titrations. The

dependencies between light-induced and pH-titration-

induced protonation states and chromophore isomeri-

zation are not uniform among FPs. For example, the

red protein mKate [29] shows an isomerization that

can be induced through pH changes. The structure of

mKate at acidic pH (pH 2) shows a protonated chro-

mophore in trans conformation, while at neutral pH

(pH 7), it is deprotonated and in the cis conformation.

Additionally, the remaining population of the trans

state can be photoswitched [29]. It is speculated that

the change in pH leads to variations in the electro-

static field of the chromophore surrounding, affecting

the state-stabilizing hydrogen bonds, which could

potentially trigger the isomerization [29]. A recent

study of the RSFP rsFolder also revealed chromo-

phore isomerization states interchangeable by pH in

the dark [30]. Interestingly, here the population does

not fully isomerize but the trans isomer population

shows a peak at pH 5 (30%) before decreasing again

at lower pH. This behavior is likely linked to the pro-

tonation states of H149 (148, for all residues in this

section, GFP consensus numbering is given in

brackets). By contrast, Dronpa exhibits an acid-

induced protonated chromophore that does not seem

interconvertible with the photoswitching-derived chro-

mophore [31].

Beyond cis/trans isomerization, other mechanisms

can drive photoswitching. For example, Dreiklang, a

photoswitching protein engineered from Citrine, shows

photoswitching via reversible hydration of the chromo-

phore [32]. Dreiklang is also one of the few RSFPs

that shows photoswitching with two WL (365 nm and

405 nm) while fluorescence can be excited by a third

(515 nm). The chromophore in the ON-state shows

absorption at 405 and 515 nm. When illuminated at

405 nm, a hydration reaction that adds a hydroxy

group from an ordered water molecule to the imidazo-

linone ring occurs. This shortens the p-electron system

and disrupts the planarity of the imidazolinone ring of

the chromophore giving rise to the OFF-state. The

OFF-state can be converted back to the ON-state with

illumination at 365 nm, which causes dehydration.

Recently a natural FP with such a three-WL switching

property has been identified from Aequorea australis

[33].

Photoswitching, in particular via cis/trans isomeriza-

tion, is already manifested in the chromophore itself,

as exemplified by studies on purified chromophore

analogs [34] and computational studies [35]. This indi-

cates that the potential for photoswitching is inherent

to the class of GFP-like FPs. For instance, even GFP

with a single mutation (E222Q) displays rudimentary

switching [36]. Despite this relationship between non-

and photoswitching FPs, few natural photoswitching

FPs exist (e.g., asFP595, 22G, or eqFP611) and the

majority of RSFPs are engineered. The small number

1323FEBS Letters 597 (2023) 1319–1344 � 2023 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

E. C. Rodrigues and A. C. Stiel Photoswitching and reversible changes of the protein matrix

 18733468, 2023, 10, D
ow

nloaded from
 https://febs.onlinelibrary.w

iley.com
/doi/10.1002/1873-3468.14609, W

iley O
nline L

ibrary on [09/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



of natural RSFPs might be attributed to their lack of

known native functionality and that photoswitching,

next to the intrinsic chromophore properties, relies on

the precise shaping of the protein matrix which allows

for accessibility and stability of a switched state.

Interplay between the chromophore and

surrounding residues in RSFPs

The protein matrix surrounding the chromophore

shapes the electrostatic environment, stabilizes or

restricts chromophore conformations by steric effects,

and provides partners for noncovalent interactions

(hydrogen bonding, salt bridge, or van der Waals).

This environment shapes the transitions between the

photoswitched states and governs their stability and

photophysical characteristics. The light-induced excited

state transitions are considered to be defined primarily

by electrostatic [37] interactions while thermal ground

state transitions are primarily influenced by sterical

effects. The pKa of the chromophore is influenced via

the immediate electrostatic surrounding and the stabili-

zation of distinct chromophore conformations (i.e.,

torsions of the methine bridge bonds [38]). Further-

more, the conformational stabilization of the chromo-

phore is instrumental for the presence or absence of

fluorescence by reducing conformational dynamics

(nonradiative de-excitation) and increasing planarity.

In fact, it shows that the absolute value of the sum of

the methine bridge torsion angles φ and s is always

smaller for the fluorescent state than the nonfluores-

cent state [39]. Hydrogen bonding networks have a

debated effect on the photoswitching quantum yield

(likelihood of photoswitch). A recent study on rsGreen

suggests a linkage between an increased number of

hydrogen bonds with water molecules and high photo-

switching quantum yield, due to a larger number of

chromophore forms that can be stabilized by the

dynamic water network, including those accessing the

cis/trans isomerization [40]. By contrast, an in silico

study on Dronpa-M159T suggested that a larger num-

ber of hydrogen bonds prevented photoswitching [41].

However, the in silico work also emphasizes the strong

fluctuations of (water to chromophore) hydrogen

bonds that allow the sampling of conformations with

fewer bonds leading to photoswitching. Hence, the two

studies converge in assessing the importance of confor-

mational sampling in the ground state for access to

the cis/trans isomerization. The influence of the protein

matrix on a protein’s photoswitching kinetics

and eventual suitability for imaging applications is

best exemplified by the numerous engineered variants

with properties more favorable for applications,

predominantly in super-resolution imaging [42]. For

example, the massive influence exerted by just a single

position is illustrated by the variant Dronpa-M159T

[43] (167, also known as Dronpa 2 [44]), which shows

a 10009 accelerated photoswitching and thermal relax-

ation of the switched state compared with its parent

Dronpa [45]. The exact interdependencies, intermedi-

ates, and succession of events in photoswitching

are very diverse and researched for a number of

RSFPs with excellent reviews summarizing the insights

[28,46–49].

Rearrangements of surrounding residues

The interplay between chromophore isomerization and

the rearrangement of the surrounding residues is of

particular interest from the perspective of this review.

While end-state structures suggest a link between cer-

tain chromophore displacements and residue rearran-

gements (Table S2), it can be challenging to determine

the details of the actual transitions. For example,

RSFP rsEGFP2 exhibits stable end states of the cis

and trans chromophore with a large displacement of

the chromophore, intuitively suggesting an OBF. How-

ever, infrared spectroscopy measurements [50] and

serial femtosecond crystallography (SFX) structural

assessments [51,52] suggest instead an HT, with the

chromophore develop into the more space-consuming

end position through rearrangements for trans ? cis

[50] (Fig. S1) and for cis ? trans [51,52].

Nonetheless, there are notable examples of both,

strong rearrangements of chromophore-surrounding

residues or, opposingly, of no rearrangement despite

chromophore isomerization. The most prominent

example of strong rearrangements of the protein

matrix in photoswitching can be found in the RSFP

Dronpa [45] (Table S2). Endpoint x-ray structures

show that the isomerization of the chromophore is

accompanied by changed conformations for R66 (69)

and H193 (203). Additionally, S142 (148) and V157

(165) rearrange away from the chromophore, resulting

in a slight displacement of b-strand 7 and 8 by

~ 0.6 �A each [53] (Fig. 2C). Similar rearrangements

have been found for Skylan-NS [54]. RsEGFP2 shows

a significant outward displacement of b-strands 7 and

8 but fewer conformer changes of the chromophore-

surrounding residues Y146 (145) and H149 (148) [55].

On the other hand, some proteins do not exhibit

any changes in the protein matrix upon photoswitch-

ing. In certain cases, this can be explained by peculiari-

ties of the chromophore, such as a break of the

backbone, as in asFP595, potentially linked to the

space-conserving HT, as indicated from molecular
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dynamics simulations [56–58] (Fig. 2D). Remarkably,

Padron, a derivate of Dronpa, shows a similar space-

consuming displacement of the p-hydroxyphenyl as

described for its parent above but without similar resi-

due rearrangements [59]. Notably, crystals of Padron

can also be photoswitched at cryotemperatures

(100 K) [59], demonstrating the negligible involvement

of protein matrix rearrangements. The nonfluorescence

of the Padron trans state, despite its deprotonated

chromophore, is primarily attributed to a strong tor-

sion of the chromophore in this state [39]. This torsion

is likely linked to limited rearrangements as it is forced

by a fixed conformation of R66 (69), which in turn is

stabilized by a cascade of effects stemming from the

Padron mutation P141L (147). R66 is often found

forming a salt bridge with E144 (150) in β-strand 8

which anchors to a certain extent the β-strand to the

central α-helix. In parent Dronpa the rearrangement of

R66 in photoswitching likely alters this stabilization

permitting β-strand displacement.

Influences of photoswitching on the b-barrel

NMR studies with (His)-13C6,15N3- [60] and complete

backbone-labeling [61] have shown that the extensive

rearrangements observed in Dronpa are linked with a

pronounced flexibility of the b-barrel, especially the

b-strands on the p-hydroxyphenyl side of the chromo-

phore - a phenomenon termed a ‘dynamic polymor-

phic state’ [60] or b-barrel ‘breathing’. This

phenomenon is not only associated to photoswitching,

but similar backbone dynamics, in particular of b7,
b8, and b10, have been observed in GFP. This

suggests that b-sheet flexibility of these strands is a

general possibility in FPs [62]. Studies of Dronpa

have confirmed the influence of b-barrel mobility on

photoswitching, as photoswitching slows down with

increased viscosity due to the restricted barrel dynam-

ics [63]. In agreement, b-barrel mutations with reduced

sidechain size like Dronpa-M159T (b-strand 7) may

accelerate switching due to less hindrance to chromo-

phore isomerization; however, it must be considered

that the mutation might lead to a change in the hydro-

gen bond network.

SFX can capture dynamic processes and has pro-

vided valuable insights into the transient aspects of

structural interplay; moreover, these methods have

allowed for observations at room temperature (RT)

[23]. For rsEGFP2, several studies show transient

states after photoexcitation along with findings on the

general flexibility of residues in b-strand 7 [52], point-

ing to a similar b-barrel ‘breathing’. The temporal

development of the photoswitching interplay between

the chromophore and surrounding protein matrix is

exemplified by structures of rsEGFP2 at 10 ns after

ON-switching laser illumination (400 nm). The data

reveal that the chromophore already isomerized to cis

state while only partial residue rearrangements have

occurred: Y146 (145) is already in its later ON-state

position, but H149 (148) remains in an OFF-state con-

formation [51]. Additionally, the studies revealed are

markable finding: the existence of a second trans

conformation besides the space-consuming trans

conformation typically observed in synchrotron struc-

tures [51]. This second conformation is visible at RT

and has occupancies of roughly ¼ of the total off-state

trans chromophore population. It is more similar to

space-conserving trans conformations that can be

accessed via HT. Possibly, this hints at additional rear-

rangement processes of the chromophore in addition

to the isomerization itself (see above) [50]. It is fasci-

nating to note that mutations at position V151

(GFP = 150 in b-strand 7 result in different occupan-

cies for the two trans states at RT [64]. This suggests a

coexistence of both trans conformations, with subtle

details of the protein matrix governing the populations

—termed ‘switching fragility’ in the article [64]. Lastly,

rsEGFP2 studies using a chlorinated chromophore

could distinguish the bond rotational contributions of

OBF and HT and provide further evidence for the

interplay between overall protein matrix flexibility and

chromophore isomerization [65]. The research

revealed that the packing of the matrix—here artifi-

cially limited by a restricted unit cell—determines the

isomerization pathway, with HT being favored in more

restricted conditions. Additionally, it is worth noting

that rsFolder [55], a GFP-based RSFP related to

rsEGFP2, shows a second more space-conserving trans

conformation similar to the one observed in rsEGFP2

[55,64]. NMR studies revealed strong structural

dynamics in residues of the b7 and b8 strands upon

illumination [66], demonstrating the structural flexibil-

ity of those regions during switching, thus possibly

accommodating the transition without too many side

chain rearrangements, as it is observed in the end-state

structure [55].

The impact of chromphore rearrangements on the

b-barrel structure also becomes more intuitive when

considering the reciprocal effect where pressure on

the b-barrel influences chromophore photophysics.

This effect was shown for several FP variants [67–70]
that exhibit spectral shifts upon pressure changes.

Likely, the pressure on the b-barrel scaffold leads to

subtle residue rearrangements, which influence the
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hydrogen bond network or the chromophore planarity

directly [69,70].

Exploitation of b-barrel dynamics to create

optogenetic-like approaches

The structure of the b-barrel fold does not leave room

for long-range structural effects; nonetheless, the small

displacements that can occur upon photoswitching of

RSFPs have been exploited to convey effector func-

tions that allow for control over protein activity (opto-

genetics). For instance, in the case of Dronpa, the

transient b-strand displacement that occurs upon chro-

mophore isomerization has been utilized to create a

light-switchable structural element that enables revers-

ible monomerization and re-oligomerization. The first

evidence linking oligomerization with photoswitching

came from a study investigating a mutation in b-
strand 7, which is part of the cross-dimer interface in

the tetrameric Dronpa parent 22G [45]. The K145N

mutation, located in the dynamic polymorphic state’

area as identified by the NMR measurements

mentioned above, leads to oligomerization at high con-

centrations, as it presumably strengthens the dimer

interface between chain A and C, while the variant is

monomeric at low concentrations [71]. Importantly,

the tetramer present at higher concentrations can be

dissociated by cyan illumination (500 nm) and recon-

stituted by violet illumination (400 nm) [72], suggesting

that the position of the trans chromophore relative to

b-strand 7 disrupts the dimer interface, in the K145N

variant. Potential uses were demonstrated for light-

activated HCV proteases [72], Cdc42 activation [72],

and kinases [73]. Of note, the monomer present at lower

concentrations of the K145N variant exhibits an accel-

erated photoswitching [74]. Conversely, the tetramer

likely hinders the barrel bulging, thereby hampering the

matrix reorganization during photoswitching and lead-

ing to slower switching. This is corroborated by the

slower switching of the tetrameric parent of Dronpa

22G relative to the Dronpa monomer [74], and is in line

with the viscosity dependence mentioned above.

Photoconversion in combination with

photoswitching

Besides photoswitching, FPs show other photorespon-

sive behaviors like photoactivation (illumination per-

manently converts protein into a fluorescent state) and

photoconversion (illumination permanently converts

protein from a green absorbing to a red-absorbing

state). Several photoconverting proteins show addi-

tional photoswitching behavior, such as pcDronpa [75]

and IrisFP [76], which are members of the Dronpa and

mEos clade, respectively. These two proteins show

photoswitching behavior in the green state and can also

be photoconverted to a red state by UV light (405 nm),

following the same mecanism as in nonphotoswitchable

convertible FPs. This process is governed by a breakage

of the polypeptide chain upstream of the first chromo-

phore amino acid, which in the case of green-to-red

conversions, is exclusively a histidine. The cleavage

leads to a reorganization that effectively extends the

p-electron system to include the his tidine imidazole

sidechain, leading to the red shift. The structures of the

green ON-state and the photoconverted red state show

no further change. However, unlike pcDronpa, IrisFP

can photoswitch also in the red state. The differences in

chromophore packing between IrisFP and pcDronpa

are key to their photoswitching ability. In the red-state,

the cis-chromophore in pcDronpa is more fixed than in

IrisFP, suggesting a higher QY for the fluorescence

decay and a decrease in the nonradiative channels

including isomerization [75]. Crystallographic data sug-

gest a space-consuming isomerized position, likely

accessed through an OBF, for the red state isomeriza-

tion as well [75]. Beyond that, IrisFP exhibits faster

thermal ground state relaxation for the red photo-

switching possibly due to the increased chromophore

flexibility resulting from the broken backbone. Recent

research on mEos4b, a photoconverting member of the

mEos clade thought to be nonphotoswitching, further

suggests that all FPs have varying degrees of ‘predispo-

sition’ for photoswitching and other photoresponsive

behaviors. The authors elucidated a long-lived dark

state for the red-converted form of mEos4b, which can

be swiftly recovered with blue illumination, hence sug-

gesting a photoswitching behavior [77]. The fact that

the parent clades of both, IrisFP and pcDronpa have

members capable of only photoswitching, only photo-

conversion or both switching and conversion, as sum-

marized recently for mEos [78], exemplifies the

mentioned ‘predisposition’ for the different photo-

switching behaviors that can sometimes be ‘manifested’

by only a few mutations.

It is worth noting that the backbone break introduced

by photoconversion has been harnessed to develop

optogenetic tools showing light-induced irreversible dis-

sociation. The green-to-red convertible protein mMaple

was topologically changed (canonical b-sheet number-

ing: N-b4–b11-linker-b1–b3-helix-C), leaving the central

a-helix with the chromophore at the C-terminus. After

photoconversion and consequent backbone breakage,

this allows for the dissociation of a 10-residue small

C-terminal fragment containing the chromophore, leav-

ing behind an empty b-barrel [79]. This approach has
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been used to achieve light-activatable unblocking of a

protease [79], among other applications.

Single-FP sensors—upstream structural influence

on photophysics

The interplay of light-induced chromophore alteration

and protein matrix has only recently been linked to

another field of protein matrix-mediated chromophore

influence namely FP-based biosensors. Such sensors

allow for the noninvasely reporting of small molecule

and ion distributions from inside a cell or organism, by

linking the binding of the molecule of interest to a recep-

tor with a measurable signal change, such as fluores-

cence. For an excellent, extensive, and detailed review

on the multitude of possible designs, see Greenwald

et al. [80]. The class of single-FP sensors is particularly

interesting when considering the interplay between pro-

tein matrix and chromophore, since the receptor moiety

and FP are directly coupled (chimeric sensors). Upon

binding of the target small molecule or ion, an upstream

structural change of the receptor moiety directly alters

the chromophore environment of the FP, leading to a

readout (Fig. 1C). This functionality was enabled by the

introduction of the circularly permuted GFP [81]. Here,

the N- and C-termini of GFP are closed at the bottom

of the barrel with a linker, and new N- and C-termini

are opened in b-strand 7 in the center of the barrel, at

the level of the chromophore, allowing a direct struc-

tural relay mechanism. Many sensors have been built

using this strategy (Fig. 2E), including well-known cal-

cium sensors [82] based on calmodulin and M13/RS20

peptide (e.g., GCaMPs), as well as sensors using the

class of periplasmic binding proteins (PBPs) or GPCRs

[83]. All these sensors affect the chromophore’s proton-

ation without changing its isomerization state (known

up to now).

Combining sensing and light-induced

chromophore alterations

Recently, a number of publications have combined

single-FP sensor concepts with light-induced chromo-

phore changes. This means that protein matrix changes

induced by the binding of the molecule of interest

exert control over the photoswitching or conversion

propensity of the chromophore. In the CaMPARI sen-

sors [84,85], coupling of a circularly permuted version

of the photoconvertible protein mEos to Calmodulin

and M13 yielded a sensor that is effectively photocon-

vertible with UV light from the green to the red state

only in the presence of calcium. Thus, the green form

can be used to visualize calcium concentrations like

conventional green calcium sensors, while the red-

converted form allows the permanent marking of

calcium-rich regions, providing a ‘snapshot’ that can

be used, for example, in circuity mapping. The exact

mechanisms for FP photoconversions are still under

debate, but in general they are likely to involve proton

transfers, structural twisting of the chromophore, and

potential radical formation caused by UV irradiation

[78]. It is evident that such mechanisms are only possi-

ble with a well-defined chromophore environment; for

CaMPARI this is only achievable if calcium-binding

‘closes’ the b-barrel via Calmodulin and M13, allowing

a coordinated environment for the chromophore. The

same authors subsequently introduced a photoswitch-

able CaMPARI (rsCaMPARI) [86], which can be

effectively switched to a state with dim fluorescence

(so-called ‘negative switching’) only in the presence of

calcium [86]. Thus, the reversibility allows repeated

cycles of marking and erasing of the same sample, for

example, to map the calcium response of neurons to

different stimuli in one experiment.

Since photoswitching confers significant advantages

to super-resolution or photo-modulation-based imag-

ing techniques, it would be beneficial if those advan-

tages could also be applied to sensor imaging.

However, the rsCaMPARI is unsuitable for such

approaches since the low calcium form retains a con-

siderable level of fluorescence. By contrast, RSFPs

routinely used in super-resolution imaging should ide-

ally switch to a complete OFF-state. Here, the intro-

duction of photoswitchable GCaMPs introduced new

possibilities (Figs 1D and 2F) [87]. By exploring the

mutational space around the chromophore and includ-

ing known mutations conveying photoswitching in

rsEGFPs, GCaMP5G was rendered photoswitchable.

This means that reversible photoswitching between an

ON- and OFF-state with 488 nm and 405 nm light is

only possible in the presence of calcium. Lack of cal-

cium leaves the sensor nonfluorescent and nonswitch-

able (Fig. 2F). The conceptual use in imaging was

demonstrated both by targeting rsGCaMP to the

endoplasmic reticulum and by implanting the sensor

subcutaneously in mice, demonstrating super-

resolution and optoacoustic imaging, respectively (for

an explanation of the method, see the BphP section).

However, current versions of the sensor are limited by

a low brightness in the calcium-bound switched ON-

state, which complicates imaging [87]. Interestingly,

structural data of rsGCaMP in the calcium-bound

form in its fluorescence ON- and nonfluorescent OFF-

state revealed a chromophore showing exclusively a

space-conserving position in contrast to the space-

consuming end position available in the parent
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rsEGFP2. The tight packing of the calcium-bound cal-

modulin/M13 complex to the flank of the b-barrel
likely restricts its movement, thus enforcing an HT of

the chromophore or at least preventing the rearrange-

ment from the HT to the space-consuming positioning

seen in rsEGFP2, as discussed above. Along these

lines, the trans state in rsGCaMPs is likely similar to

the alternative trans state mentioned above, which was

revealed via time-resolved crystallography and in the

constricted unit cell of rsEGFP2. Moreover, in the

structure of calcium-bound rsGCaMP, position 151

(which, when mutated in rsEGFP2 caused a shift in

the population of the alternative trans states [64]), is

situated far more inward (~ 1 �A) than in rsEGFP2.

The inward shift of position 151 in rsGCaMP (due to

the packing of calmodulin/M13) likely biases the trans

state population towards the alternative space-

conserving trans conformation.

Concomitantly, a similar type of sensor, GCaMP6s-

Q [88] was introduced. The group used the calcium-

dependent photoswitching abilities of this sensor class

for the absolute quantification of calcium from signal

readouts. In a method termed photochromism-enabled

absolute quantification (PEAQ), the authors use the

calcium-dependent photoswitching contrast, i.e., DF/F0

upon illumination, obtained in a calibration measure-

ment with exact calcium concentrations to extract

absolute concentrations from measurements in cells

[88]. The photoswitching kinetics of the sensors from

both groups show a dependence on the calcium con-

centration, however the reason for this phenomenon is

under debate. One possibility, proposed for rsGCaMP,

would be that at lower calcium concentrations, the

sensor population is a mix of sensors with two or four

bound calcium ions, the former is known to exist for

Calmodulin and theorized for GCaMPs [89,90]. Differ-

ently occupied sensors can have different structures

and hence photoswitching characteristics [87]. Another

proposed mechanism, albeit with the slightly different

GCaMP6s-Q, explains the phenomenon with only one

species of calcium-bound sensor, but with inverse

switching in the calcium-bound and free state (negative

and positive, respectively), as well as photoswitching-

dependent calcium-ejection (at very low analyte con-

centrations) [91]. The latter would interestingly close

the loop to RSFPs like the Dronpa variant K145N,

for which photoswitching exerts a downstream effect

via the protein matrix. Furthermore, it has been shown

that the concept of photoswitching sensors not only

applies to GCaMP but also extends to sensors relying

on periplasmic binding proteins (PBP) or GPCRs as

receptor moieties [87]. The photoswitching PBP- and

GPCR-based sensors were built with receptor moieties

already used for nonswitching FP-based sensors

[83,92], suggesting that in general chimeric sensors can

be rendered photoswitching.

Bacteriophytochromes

Photoswitching mechanisms of BphPs

Phytochromes are a superfamily of chromophore-

bearing proteins found in plants, fungi, and bacteria,

that play important roles in numerous light-regulated

processes including germination, phototropism and

phototaxis [95]. Phytochromes are established photo-

sensory scaffolds for optogenetics [96] and have also

gained attention for their potential advantages in opti-

cal imaging due to their far-red absorbance, stemming

from a prosthetic open tetrapyrrole chromophore. This

absorbance range makes them ideal for cell and tissue

imaging due to reduced photo-damage and lower scat-

tering at far-red wavelengths, while also expanding the

spectral range available for multiplexed imaging [97].

A defining feature of native phytochromes is that they

exist in two stable states with different spectral charac-

teristics: a red light-absorbing state (Pr, max

~ 700 nm) and a far-red light-absorbing state (Pfr, max

~ 750 nm). These two states can be reversibly photo-

switched by far-red and red illumination, leading to

downstream effects on biochemical activity, and a

range of cellular responses [98–100].
Phytochromes can present a variety of bilin chromo-

phores; however, most of them, like phycoerythrobilin

or phycocyanobilin, are only readily accessible in

non-mammalian organisms (e.g., red algae and cyano-

bacteria). In contrast, BphPs are highly useful for

mammalian cell or tissue imaging because their chromo-

phore is biliverdin IXa (BV), a product of heme catabo-

lism and thus ubiquitously present in most mammalian

cell types [101]. The canonical structure of BphPs con-

sists of three domains in the order PAS, GAF, and

PHY (phytochrome-specific), which together form the

protein photosensory core module (PCM, Fig. 3A). C-

terminally, those domains are followed by a variety of

effector domains forming the output module (OPM). In

general, the high diversity of effector domains and

OPM configurations in BphPs, and even more so in

phytochromes, allows for a range of biological func-

tions and regulatory mechanisms. Native BphPs act in

bacterial intracellular signal transduction, namely in

phosphorylation and dephosphorylation reactions and

second messenger metabolism [100].

The BV chromophore is covalently-bound to a cys-

teine residue in the PAS domain, but it is primarily

enclosed in an extensive noncovalent interaction
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network within a cavity in the GAF domain [102,103].

The PAS-GAF domains are thus sufficient to bind BV

and form the chromophore-binding domain (CBD).

Furthermore, the chromophore pocket is closed by a

protruding loop from the PHY domain (~ 30 residues)

referred to as the ‘PHY tongue’, which is crucial for

photoswitching and consequent conformational signal

relay. Two long a-helices connect the GAF and PHY

domains and the PHY and OPM domains, respec-

tively. Together, within the BphP structure, they form

the ‘helical spine’ that is responsible for the light-

activated conformational relay along the protein, even-

tually activating the OPM and downstream cellular

responses. BphPs natively form dimers, canonically

head-to-head, via interfaces in the PAS-GAF domain

and the spine helix-OPM region. The BphPs’ quater-

nary structure plays a central role in the light-driven

activation of the OPM.

Overall, the distinctive architecture of BphPs and

phytochromes in general, is key to their functional

hallmark: a fascinating transduction from light absorp-

tion to a widespread structural rearrangement of the

protein matrix, ultimately leading to downstream effec-

tor functions. The light-activated signal relay within

the structure of the BphPs can be divided in three

aspects: (a) the light-induced chromophore isomeriza-

tion and consequent rearrangements in the chromo-

phore’s immediate protein surrounding, (b) the local

changes that trigger structural shifts in the overall

PCM, and finally, (c) the OPM regulation by this

switch, culminating in biological activity.

The chromophore pocket: light-driven state

transition and changes in the immediate

chromophore environment

Bacteriophytochromes are capable of converting

absorbed light energy into conformational changes in

the protein. The heart of this process is a light-induced

isomerization of the BV tetrapyrrole chromophore

over the methine bridge connecting pyrrole ring C and

D, from a cis (ZZZssa) to trans (ZZEssa) configura-

tion (Fig. 3B). This isomerization effectively changes

the orientation of the D-ring relative to the protein

matrix (Fig. 3C). The canonical equilibrium state is

the red-absorbing Pr state with the chromophore in its

cis conformation; exceptions are the so-called bathy

phytochromes, which thermally relax predominantly

into the trans chromophore Pfr state [104,105]. The

reversible light-induced photoswitching between the

two stable states Pr and Pfr progresses over a series of

short-lived intermediates (canonical: Pr ? Lumi-R ?
Meta-Ra ? Meta-Rc ? Pfr; Pfr ? Lumi-F ? Meta-

F ? Pr, Fig. 3B). The exact dynamics and photophy-

sical details largely differ among BphPs and are still

under investigation for most species [106]. However,

some common elements have been clarified mainly by

spectroscopic data and, more recently, in a structural

study of cryo-trapped intermediates for the back con-

version from Pfr to Pr [107]. The photoexcited Pr state

relaxes in tens of picoseconds with the occurrence of

the BV cis/trans isomerization about the methine

bridge, forming the Lumi-R intermediate [108–112].
Possibly due to the spatial constraints of the chromo-

phore pocket, the D-ring methine bridge rotation fol-

lows an unconventional HT mechanism [113,114],

similar to that observed for some RSFPs. The Pr-to-

Pfr transition has a low quantum yield of 15%, com-

peting with the decay back to the ground state of Pr;

interestingly, this quantum yield is quite consistent

throughout native BphPs [108–110]. As in RSFPs, the

switching quantum yield is determined by the hydro-

gen bonding network around the D-ring, since the rup-

ture of state-stabilizing bonds poses the rate-limiting

step [108,115]. From Lumi-R, the chromophore

undergoes sequential deprotonation and protonation

Fig. 3. Natively photoswitching BphPs. (A) Overview of the multidomain architecture of BphPs on the example of IsPadC (5llw). GAF

domain is rainbow-colored from N to C. The chromophore (BV) and ‘PHY tongue’ are highlighted separately. The ‘helical spine’ a-helices are

additionally augmented by magenta lines along with the domain of the respective part of the ‘helical spine’. (B) Biliverdin (BV) chromophore

has four pyrrole rings; the methine bridge between rings C and D is involved in the cis/trans isomerization. (C) Chromophore pocket in the

cis and trans state. Color-coded as in a, only residues with major involvement in the photoswitching are shown as sticks together with their

respective polar interactions. Outtake corresponds to the dotted square in ‘A’. (D) Twisting of the ‘helical spine’ and OPM domain upon pho-

toswitching (here 5llw and 6et7 an IsPadC variant that stabilize the switched form). The cis and trans structures in surface representation

are colored according to the dimer interface contacts they make: green = contacts in cis and trans, red = contacts only in cis, and

green = contacts only in trans. The interface in the OPM subjected to the primary change is indicated with arrows. (E) Schematic represen-

tation of a noncircular-permuted chimeric calcium sensor based on BphP. (F) Topological representation of a BphP (here IsPadC). 1 = helix

that is regularly used to elongate into chimeric OPMs to construct optogenetic tools from BphPs; 2 = truncation sides for Per-Arnt-Sim

(PAS)-GAF only fluorescent BphPs; 3 = entry sides identified for a circular permuted PAS-GAF BphP leaving a folded protein; 4 = entry side

for PAS-GAF based sensor engineering identified by Qian et al. [93]; 5 = entry side for sensor engineering identified by Subach et al. [94].
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events that last tens of microseconds and result in the

Meta-Ra and Meta-Rc intermediates, respectively

[116,117]. At last, the Meta-Rc intermediate transitions

into the final stable Pfr state on a millisecond scale

[116]. For the transition back from Pfr to Pr, evidence

shows the chromophore stays fully protonated, and
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the transition and corresponding BV isomerization

occur in two steps, which are somewhat faster than

those for the Pr-to-Pfr transition [118,119]. The excited

Pfr quickly decays (1 ps) to Lumi-F [108–110,120],
which in turn decays in microseconds to the Meta-F

intermediate, where the hydrogen bond network

between BV and the pocket is rearranged, with the

final transition to Pr occurring within milliseconds

[118,121]. It should be noted that unlike RSFPs, the Pr

and Pfr end states of BphPs commonly show the BV

chromophore with the same protonation, indicating

that the spectral signature of the photochromism is

solely governed by the steric arrangement of the BV

molecule and its surroundings. Apart from the light-

induced excited state transitions, BphPs can revert to

their equilibrium state via thermally-driven dark state

relaxation. The relaxation times are highly dependent

on environmental factors such as pH, ionic strength,

reducing agents, metal concentrations, and tempera-

ture [106,122]. Interestingly, some BphPs also show

pH- [123] or temperature- [124,125] dependent photo-

conversion and activity. This opens the possibility that

the interplay between dark state relaxation and photo-

switching in BphPs.

Structural rearrangements in the vicinity of the

chromophore

The structures of BphPs in both the Pr and Pfr stable

states have provided detailed insights into the immedi-

ate rearrangements of the chromophore and surround-

ing residues (Table S3). Following chromophore

isomerization, the interactions between the chromo-

phore and the residues in its vicinity are heavily remo-

deled (Fig. 3C). The pocket around BV can be divided

into three main spatial interfaces. Firstly, a number of

highly conserved residues stabilize the BV in the

pocket through hydrogen bonding and electrostatic

interactions. Most prominently, R254, Y216, H260,

S272, and S274 (Deinococcus radiodurans BphP

(DrBphP) [126] numbering used further on) stabilize

the two propionic acid substituents on ring B and C.

Additionally the backbone of D207 interacts in a coor-

dinating fashion with the nitrogens of rings A to C.

Secondly, the residues lining the D-ring provide the

stage for the isomerization. High-resolution structures

show that the D-ring of BV has considerably more

freedom to move within the pocket than the other pyr-

role rings [127,128]. Lastly, the highly conserved

PRxSF motif in the PHY tongue and the DIP motif in

the GAF domain form the interaction interface

required for the conformational relay upon

photoswitching.

An extensive stabilizing hydrogen network is rear-

ranged after chromophore isomerization, as confirmed

by 1H–13C magic-angle spinning NMR [129]. In the cis

state, H290 interacts with the D-ring carbonyl and in

the trans state, D207 and Y263 form a network with

the D-ring carbonyl and nitrogen. Those residues serve

as the essential connectors between chromophore

isomerization and the protein. Interestingly, a few con-

sistent water molecules are present in close contact

with the chromophore and within H-bond distance to

D207, Y263, and H290, hinting at a role in photocon-

version that has not been fully clarified to date

[127,128,130]. In the cis state, the interaction with

H290 effectively keeps the D-ring out of the interac-

tion reach of D207 and Y263, making them available

to interact with R466 in the ‘PHY tongue’ [131], which

consequently adopts a b-hairpin conformation.

In contrast, the re-positioned D-ring in the trans

conformation can interact with D207 and Y263, alter-

ing their spatial position and replacing their interac-

tions with R466 to S468 instead [132]. This exchange

induces a conformational switch in the PHY tongue

from a b-hairpin to an a-helix. The stabilizing function

of the ‘PHY tongue’ residues on the trans chromo-

phore is exemplified by engineered BphP variants lack-

ing the PHY domain: these variants show more than

100 times faster dark relaxation to Pr [ 128,133]. In

agreement, P465 and F469 form an interaction inter-

face with a helix in the GAF domain, providing a

hydrophobic environment that stabilizes the trans state

[134-136]. Of note, an F469W mutation further stabi-

lizes the trans Pfr state by severely slowing down dark

relaxation back to the cis Pr state [136].

Photoswitching-induced structural remodeling:

PHY tongue refolding and long-range

conformational relay

As detailed above, the refolding of the PHY tongue

upon photoconversion is the trigger for the subsequent

conformational changes along the BphP protein, which

ultimately lead to the activation of the downstream

effector domain. Although the relay system within the

PCM is highly conserved, there are significant varia-

tions in the conformational relay mechanism between

PCM and OPM. This agrees with the functional and

structural diversity that the OPM module can have.

Typically, the Pfr state with the trans chromophore has

the highest catalytic activity; however, there are excep-

tions where red illumination actually inhibits activity,

such as in bathy Agp2 [137], the Bradyrhizobium BphP

[138], and Rhodopseudomonas palustris RpBphP1 [139],

as well as in constitutively active proteins RpBphP2
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[140] and Agp1 [100]. The current consensus model for

full-length BphPs agrees that the tighter PHY-GAF

interaction and PHY tongue refolding create a strain

in the ‘helical spine’. The dimer helices composing the

spine are packed in a parallel coiled-coil bundle, which

due to the imposed strain, twists around its axis by

50°, with a rotation of the dimer OPMs in relation to

the PSMs (Fig. 3D). The OPM-PSM relative rotation

has been observed in full-length structures of several

phytochromes [141–144], as well as in other sensors

containing HK and cyclase domains [145–147]. In fact,

the spine twisting mechanism is so robust that it

occurs even when only one homodimer sub-unit is

asymmetrically activated, leading to the formation of a

heterodimer of the protein photo-states [144]. How-

ever, recently published cryo-EM structures of full-

length DrBphP revealed an alternative zipper-like

opening (instead of twisting) of the OPM-dimeric spine

helices, which still leads to a stark repositioning of the

OPMs [148]. Thus consensually, the coiled-coil spine

appears to be the critical transducer for BphP func-

tional activation. The structures from IsPadC (phyto-

chrome activated diguanylyl cyclase from Idiomarina

species A28L) provide evidence that the coiled-coil

spine has two distinct registers: one for the protein’s

resting state and another for the red light-activated

state, which is unlocked upon the spine’s rotation

[143,144]. The length of the PHY-OPM helix can vary

by heptads of amino acids; each heptad is around two

full a-helix turns, conserving the relative orientation of

OPM and PSM. The specific amino acid composition

of these heptads not only fine-tunes the strength of the

dimerization interface but, most importantly, tailors

the OPM activation dynamics via the rotational switch

between spine registers. In IsPadC activation studies,

when the spine was mutated to stabilize the resting

register, the protein could no longer be activated by

red light; alternatively, stabilization of the red light-

illuminated register led to a constantly active IsPadC

[143]. This regulatory model based on coiled-coil hep-

tad length and configuration switch is in line with the

coiled-coil linker regulation observed in various pro-

teins with HK [149–151] and diguanylate cyclase

domains [152,153]—both common BphPs output effec-

tors. The recently discovered model of zipper-like

opening of the dimeric spine helices is in line with hep-

tad length regulation but apparently independent of

the two-helix register activation [148]. However, BphPs

truncated to their PCM show a stark variation from

the above consensus model. Due to the lack of the

OPM (and probably an incomplete dimer interface),

the activated PHY-GAF-induced strain leads to a

breakage of the PHY-OPM dimer interface, the spine

helices bend relative to one another, repositioning the

PHY domain and opening an inner ‘cavity’ within the

BphP dimer [128,154,155]. Interestingly, changes in

the modular organization of BphPs can alter their con-

formational relay mechanism and quaternary structure.

For example, RpBphP1 (domain organization PAS-

GAF-PHY-PAS/PAC-HOS) forms parallel head-to-

head homodimers in the dark Pfr state, but changes

into an antiparallel heterodimer with its functional

partner RpPpsR2 in the Pr state, when exposed to far-

red light [156]. The homodimer dissolution is proposed

to occur when the far-red light-induced loss of interac-

tion between the HOS domain and the GAF-PHY

helix results in the release of the former, making it

available to bind to RpPpsR2, with the concurrent dis-

ruption of the homodimer interface. Another notable

example is XccBphP from Xanthomonas campestris

(domain organization PAS-GAF-PHY-PAS9) in which

the red light-induced PHY tongue refolding pulls on

the spine helix in a way that causes it to straighten,

leading to loss of the dimer interfaces and

consequent monomerization. In this transient mono-

mer state, the PHY-OPM helix is able to bend halfway

by 90°, repositioning the PAS9 domain to form a C-

shape monomer that ultimately flips the two molecules

into a head-to-tail dimer in the Pfr state [157].

In summary, the biological activity of BphPs is acti-

vated through a cascade of conformational changes

initiated by light-driven chromophore isomerization.

This cascade comprises defined triggers that exist in an

equilibrium between two states: cis vs. trans chromo-

phore, b-sheet vs. a-helix PHY tongue, and resting vs.

active spine configuration.

Different BphPs fine-tune their biological response

by modifications in their protein matrix, which affect

the equilibria mentioned above. For instance, muta-

tions in the chromophore pocket can alter dark rever-

sion times [136] or different coiled-coil spine length

can alter the activity of effector domains [158]. How-

ever, the directionality of the equilibria is the same—
from photoisomerization to downstream allosteric

OPM activation. The reverse ‘upstream’ direction—
how protein matrix changes can influence the spectral

properties of a BphP—is still largely unexplored. A

DrBphP variant with the Y263F mutation provided

initial evidence for this bidirectional influence. This

mutation results in a less-stabilized Pfr, with an

increased fluorescence quantum yield at the expense of

isomerization upon red light illumination; strikingly,

the quaternary structure was that of the Pfr state as

the PHY tongue was locked in the Pfr a-helix confor-

mation. The Y263 residue works simultaneously to

support the isomerization and to stabilize the GAF-
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PHY tongue interaction and hence is crucial in cou-

pling both processes [159]. Recently, two studies sys-

tematically tested the influence of the protein matrix

on the photophysics and output activity, by building

chimeras of two BphPs: IsPadC and TsPadC [160], as

well as IsPadC and MpPadC, respectively. The

subsequent comparative analysis supported the bidirec-

tionality of coupled equilibria with tunable interdepen-

dencies. For example, changes in the PCM

components, particularly in the PHY tongue region

and an N-terminal segment (NTS) (residues 1–16), led
to altered spectral profiles and OPM activity. The

PHY-OPM helix was crucial for activity regulation as

expected, but in some instances, could also influence

the spectral profile. As so, such an engineering

approach could be harnessed to produce BphP chime-

ric variants that have a range of spectral profiles and

activity modes. Indeed, while the native BphP light-

signal relay system has been employed in optogenetics,

the protein matrix engineering to change BphP photo-

physics has been increasingly explored in the fields of

NIR-FPs and, more recently, biosensors.

Engineering of optogenetic tools based on BphPs

The unique modularity of BphPs and their ability to

transduce light signals into long-range conformational

changes are exploited to develop optogenetic tools by

engineering chimeras between the PCM and an

effector module of choice. This review focuses on the

structural requirements to build BphP-based optoge-

netic tools as their individual characteristics and appli-

cations have been comprehensively reviewed, e.g., by

Shcherbakova et al. [161]. The most intuitive site

to target when building chimeras is the a-helix pro-

truding from the PHY domain into the OPM (Fig. 3F,

marked 1). Together with the GAF-PHY helix, this

PHY-OPM helix forms the BphP ‘helical spine’, a part

of the photoswitching structural relay system. The

modularity of these proteins makes it simple to swap

domains from different BphPs, pairing a BphP with

desirable photophysical characteristics with a catalytic

domain of another suited for the desired function. An

example of this approach is the photoactivated synthe-

sis of cyclic dimeric GMP (c-di-GMP) generated by

exchanging between different diguanylate cyclase OPM

domains [162].

Another intuitive approach is to swap BphP OPM

domains with other protein domains of similar fold. In

an engineered red light-activated phosphodiesterase

(PDE), the PDE domain of the human protein

HsPDE2A is truncated at the junction with an a-helix
of an upstream GAF domain and attached to the last

helix exiting the PHY domain of BphP [163]. The chi-

mera is facilitated by the fact that both parts—the

upstream GAF of HsPDE2A and the BphP PHY—
share the same GAF domain-like fold (a-b(2)-a(n)-b
(3)-alpha, antiparallel b-sheet). A more complex option

is to replace the OPM with a structurally different

domain. In a red light-regulated adenylate cyclase

(AC), the diguanylate cyclase OPM of the Rhodobacter

sphaeroides BphG1 was exchanged by an AC domain,

which is only active as a homodimer. The study con-

cluded that the merging positions on the PHY-OPM

helix able to maintain AC dimerization and light sensi-

tivity all kept a compatible helix register plus a 11–
22 �A distance between helices in the photoactivated

state, and a > 40 �A distance between AC domains in

the inactive state [158]. Thus, in such engineered con-

structs, the key determinants for achieving light-

regulated activity are the length and register of the

PHY-OPM helix, which control the distance and rota-

tion between the two helices, and thus the alignment

of the OPMs.

Lastly, the light-regulated quaternary structure rear-

rangements of BphPs can also be harnessed in the

development of optogenetics tools. In two different

NIR-activated receptor tyrosine kinases (RTKs), the

PCM of DrBphP replaced the extracellular and trans-

membrane domains of the RTKs while their native

cytoplasmic domain was kept. Native RTKs are inac-

tive when monomeric and require activation by extra-

cellular signaling which induces their dimerization. In

the engineered NIR-regulated RTK, the compact

structure of the Pr state PCM homodimer mimics the

dimeric state of the RTK and activates the protein in

response to far-red light. Conversely, the open confor-

mation of the Pfr state homodimer separates the cyto-

plasmic domains, imitating the inactive RTK

monomer [164]. Similarly, one of the first optogenetic

systems based on BphPs explored the atypical hetero-

dimerization mechanism between RpBphP1 and PspR2

of R. palustris. Upon NIR-light activation, conforma-

tional changes from the Pr state lead to the dissocia-

tion of the RpBphP1 homodimer and the formation of

RpBphP1 / PspR2 heterodimers. Thus, this system can

be employed for the light-dependent recruitment of

different proteins leading to different cellular responses

(e.g., cytoskeletal rearrangement or transcriptional

activation) [165].

Use of the reversible photoswitching of BphPs in

fluorescence imaging

Despite their non-fluorescent native form, several mod-

ifications have been introduced in BphPs, producing
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engineered FPs with great potential for tissue imaging.

Their excitation and emission ranges are at WL

beyond 650 nm (‘optical window’ ~ 650 nm - 900 nm)

which increases penetration depth and decreases scat-

tering. Fluorescence emission is detected from the Pr

state excitation; thus, de-excitation of the chromo-

phore via fluorescence is in direct competition with the

Pr to Pfr transition, effectively reducing the fluores-

cence signal. Hence to obtain permanent and bright

fluorescence, the first step is to truncate the protein to

the minimal PAS-GAF domains (Fig. 3F, marked 2),

or even just GAF [166] domains, which consequently

destabilizes the Pfr state, disables photoconversion and

any downstream effects. Subsequent optimization

involves mutagenesis of the surrounding pocket resi-

dues to form a hydrogen bond network with cis BV,

stabilizing the Pr state. Essentially all fluorescent non-

switching variants of BphPs show mutations in D207

and/or Y263 (Y263: WiPhy, SNIFP; D207: IRFPs).

For excellent overviews on nonphotoswitching BphPs

for fluorescence imaging, see references by Shcherba-

kova et al. and Oliinyk et al. [7,97,167]. From the

imaging perspective, fluorescent BphPs extend the

spectral palette to the NIR, e.g., for deeper penetration

in scattering media (tissue) or to avoid spectral over-

lap. Although their fluorescence quantum yields are

relatively low, they are comparable to those of far-red

GFP-like FPs (Table S1). For some BphPs this is alle-

viated by higher extinction coefficients (e.g., SNIFP

with 150 000 M
�1 cm�1). However, the necessity for

the prosthetic BV chromophore might jeopardize cellu-

lar brightness, in cases of competition for BV or ham-

pered chromophorylation. Fluorescent BphPs are on

par with GFP-like FPs regarding ease of labeling and

toxicity, allowing for straight forward application

[168]. While systematic comparisons of photofatigue

are lacking, a comparison of SNIF and emiRFP703

with several far-red GFP-like proteins shows compara-

ble behavior, with BphPs tending to higher photo-

stability [169]. The dimeric behavior of BphPs poses a

potential drawback for subcellular imaging of protein

fusions, although several monomer variants have been

created. In many aspects, the developments and initia-

tives involving fluorescent BphP-based proteins are

comparable with the advent of GFP-like proteins.

Use of the reversible photoswitching of BphPs in

optoacoustic imaging

Recently, the use of BphPs with their native photo-

switching functionality gained attention in imaging,

particularly in optoacoustic imaging (OA) also known

as photoacoustic imaging. OA is a unique modality

for in vivo in-tissue imaging using light excitation and

ultrasound detection. This combination allows for the

versatility of optical excitation for contrast, while cir-

cumventing the detection problem inherent to methods

that use light for both excitation and detection

(namely low penetration depth due to scattering in

detection). While OA is firmly establishing itself in bio-

medical imaging [170–173], its full potential in the life

sciences has been so far limited by the lack of suitable

genetically encodable contrast agents. The main chal-

lenge is that any contrast agent needs to compete

against the massive background of hemoglobin present

in the blood. Here, photoswitching BphPs can be used

to modulate the signal and separate it from the non-

switching background, making it virtually invisible.

Several BphPs have been used in OA approaches

with RpBphP1 being the subject of the first study that

probed its nonfluorescent Pfr state vs. its Pr state during

repeated switching cycles in a differential imaging

approach. RpBphP1 showed enhanced sensitivity and

background suppression compared with nonswitching

agents, when imaging tumors at a depth close to 10 mm

[174]. The truncation to the PCM domain is favorable

as it reduces the size of the protein (relevant for ease of

transfection, etc.), but it however needs to preserve the

protein’s photoswitching capabilities. In this regard, the

protein sGPC2 was engineered from a single GAF

domain of the BV-binding cyanobacteriochrome of

Acaryochloris marina, to be photoswitchable despite

being only 16.8 kDa, making it around a quarter of

other developed BphP-PCMs [175]. However, sGPC2’s

maximum absorption is blue-shifted (Pr peak at 630 nm

and Pfr at 700 nm), potentially hindering tissue penetra-

tion. Fast acquisition ideally relies on BphPs with fast

transitions and low photofatigue. The switching kinetics

can be accelerated by mutating the PRxSF motif in the

PHY tongue. For example, a DrBphP-PCM variant

with an F469W mutation delays dark relaxation and

favors the Pr to Pfr transition, with a Pfr population of

~ 87% after photoconversion [136]. This results in an

improved photoswitching contrast during imaging, as

the increased Pfr quantum yield, together with proper

Pfr to Pr back conversion, leads to an increase in the sig-

nal differential when compared to wild-type DrBphP

and RpBphP1 [176]. Another study found that a BphP

from Rhizobium etli (ReBphP) [104], truncated to its

minimal PCM, showed nearly four times faster switch-

ing compared with DrBphP-PCM and RpBphP1 [177].

This effect is likely due to an additional arginine in the

PHY tongue (not present in DrBphP or RpBphP1),

which directly interacts with a conserved aspartate in

the GAF domain (Asp207 in DrBphP), lowering Pfr sta-

bilization from the serine in the PRxSF motif.
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The different photoswitching speeds of BphPs have

allowed for multiplexing approaches using exponential

fits to distinguish labeled cell populations [177,178]; a

concept similar to the unmixing based on switching

kinetics described above for RSFPs. Recently, the appli-

cation of photoswitching BphPs as genetically encoded

probes for enhanced optoacoustic contrast reached a

new level of maturity. The firstly developed transgenic

loxP-RpBphP1 mouse model allowed for specific and

regulated RpBphP1 expression and imaging by OA

tomography in various tissues [179].

Returning to ReBphP, the results of the PCM trun-

cation study itself are of particular interest since they

showed that including part of the PHY-OPM helix is

required to achieve a maximum Pfr/Pr population

photoconversion [177]. Since the variant is a monomer

in solution, the effect cannot be attributted to changes

in the dimer conformation (as described above). This

suggests a bidirectional link between protein photo-

physics and structure: not only is the photo-induced

tongue refolding required for PHY-OPM helix rota-

tion, but the presence of the helix may also be needed

for PHY refolding to stabilize the photo-states of the

chromophore. This possibility is especially relevant for

the development of BphP-based sensors, where the sig-

nal relay in the opposite direction from the sensing

domain (the OPM-replacing domain) to PCM—is also

required opposite direction.

Sensors based on BphPs

The far-red absorbance and fluorescence of BphPs pro-

vide strong advantages for imaging. Hence, it is not

surprising that developments also include their use in

molecular sensors for small molecules and ions. Simi-

lar concepts as those used for GFP-based sensors have

started to emerge for BphPs. For example, a F€orster

resonance energy transfer (FRET)-based sensor for

Rac1 GTPase activity was built using BphPs

mIRFP720 and mIRFP670 [180]; similarly, a BphP-

based calcium sensor was built (iGECI) with a related

FRET pair [181]. Chimeric sensors based on a single

BphP are capable of directly harnessing chromophore

interactions to relay ligand-binding. While the field of

chimeric GFP-based sensors has benefited by the

advent of cpGFP [81] (see above), there is currently no

equivalent concept for BphPs. So far, only a mapping

of potential permutation sites for new N- and C-

termini has been conducted by analyzing a circularly

permuted iRFP (only PAS-GAF domains) library for

fluorescence and expression [182]. Covering 58% of

possible permutations, the authors found 27 fluores-

cent variants whose new N- and C-termini were

primarily at the linker between the PAS and GAF

domain (residue ~ 100–150) and the previous N-

terminal region (< 19, Fig. 3F, marked 3). From these,

5 circularly permuted variants maintained or exceeded

iRFP fluorescence but only the entry sites 12 and 133

(iRFP numbering) showed expression levels suitable

for application in mammalian cells. The circularly per-

muted position 12 might be promising due to its place-

ment at the flank of the NTS, a region coupling the

chromophore isomerization and large-scale conforma-

tional change [160], and due to its closeness to the BV-

pocket. A more basic sensor engineering strategy is to

insert the entire readout moiety, with its normal N-

and C-termini, at different positions in the BphP

(Fig. 3E). As of now, two entry sites have been chosen

from whose different conclusions on the interplay with

the chromophore can be extracted. One entry site is

within the first loop of the GAF domain b-sheet (180,
Fig. 3F marked 4). In fact, calcium sensors were built

by inserting a Calmodulin/RS20 fusion into this site in

mIFP [93,183]. Also, a blue-shifted version (~ 40 nm)

of this sensor class has been produced by adding a sec-

ond cysteine in the binding pocket creating two

thioether linkages and thus shortening the p-electron
system [184]. The second entry site is found at the

beginning of the a-helix enclosing the chromophore at

the opposite side from the b-sheet (258, Fig. 3F,

marked 5) [94,185]. At the other end of this a-helix lies

the Pfr-stabilizing Y263, which interacts with the chro-

mophore and is removed in many engineered non-

switching BphPs but maintained in these constructs

despite their nonswitchability. Thus, it might be possi-

ble that slight positional changes due to the movement

of the helix because of the attached receptor moiety

are relayed to the chromophore through Y263. So far,

the only sensor preserving the native BphP photo-

switching is a protein-fragment complementation

assay-based sensor concept called DrSplit [178]. It is

based on the DrBphP-PCM split between PAS (BV

attaching thioester cysteine) and GAF domains (main

BV-binding pocket) fused to two interacting protein

fragments. Only reconstitution of both parts allows

chromophore attachment and thus functional photo-

switching and signal generation.

Outlook

The direct relay between protein structure and chromo-

phore is one of the most fascinating aspects of protein

functionality. Based on the examples from two classes—
RSFPs and BphPs—we highlight the bidirectional

nature of this interplay. That is, how a light-induced

chromophore isomerization can immediately reshape
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the vicinity of the chromophore-surrounding protein

matrix but ultimately lead to long-ranging conforma-

tional changes, ranging from secondary structure

changes to domain rearrangement and oligomerization

switches. In the reverse direction, the protein matrix

itself can shape the chromophore photophysics, once

again ranging from the local influence of the

chromophore-neighboring residues to distant upstream

changes that are structurally relayed to the chromo-

phore environment. While present research and devel-

opments on BphPs covered the former directionality

more extensively, the latter directionality is largely

represented in FP sensors and RSFPs photophysical

engineering.

For RSFPs, also due to the limited degrees of free-

dom of the b-barrel, the protein matrix influence on the

chromophore isomerization is mainly exerted via a num-

ber of residues, especially in b-strands 7 and 8. By con-

trast, the downstream effector path in BphPs (from

chromophore-photon absorption to output domain

activation) relies on the sequential signal relay from

local residues to distant structural elements. While the

downstream path has been thoroughly dissected and its

parts characterized, the upstream relay system (from

conformational changes to chromophore photophysics)

has only very recently been harnessed in the context of

sensor engineering, as shown in BphP-based calcium

sensors. Thus, there are many interesting possibilities,

for instance, taking advantage of a general ‘upstream’

relay path that remains to be investigated. It remains to

be seen if this transduction system can follow the same

steps as the ‘downstream’ path (i.e., alterations of the

isomerization state or photoswitching photophysics due

to structural rearrangements exerted on the PHY-OPM

helix) and to which extent these coupled states can be

tweaked and utilized in applications. In FPs, an exam-

ple of what could be considered an ‘upstream relay

path’ is the pH-induced chromophore isomerization

observed in mKate, in the absence of light. In the

future, it would be interesting to expand on this concept

and test whether it is possible to achieve non-light-

induced chromophore isomerization through a relay of

residue rearrangements in the surrounding pocket.

Here, BphPs offer an evident versatility with which FPs

cannot compete, first due to their native structural mod-

ularity. Second, the well-characterized chromophore-to-

structure relay steps are starting points to investigate

the reverse structure-to-chromophore transduction.
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