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A B S T R A C T

The COVID-19 pandemic underscored the pivotal role of mathematical models in comprehending pandemic dy-
namics and making accurate predictions under diverse interventions. Various mathematical models, particularly
deterministic ones, have proven valuable for analyzing the impact of political, social, and medical measures
during ongoing pandemics. In this study, we aim to formulate and characterize a comprehensive model
applicable to different infectious diseases. Reviewing numerous disease-specific models reveals a common foun-
dation in the Kermack–McKendrick model (SIR model). While there are more general versions incorporating
population dynamics, vector populations, and vaccination, none encompass all attributes simultaneously. To
address this gap, we propose a comprehensive general model capable of accommodating different transmission
modes, pandemic control measures, and diverse pathogens. Unlike disease-specific models, having such a pre-
established model with foundational mathematical properties analyzed eliminates the need to reevaluate these
characteristics for each new disease-specific model. This article presents our comprehensive general model,
supported by mathematical analysis and numerical simulations, offering a versatile tool for understanding the
dynamics of emerging infectious diseases and guiding intervention strategies. The applicability of the model
is demonstrated through simulations.

1. Introduction

The COVID-19 pandemic highlighted the crucial role of mathematical models in comprehending the fundamental dynamics of a pandemic and
making accurate predictions regarding its future course under various interventions [1–5]. Similar to previous infectious diseases, like influenza,
HIV or measles, a diverse range of mathematical models have been developed specifically for the COVID pandemic [6–8]. In particular, deterministic
models have been helpful for analyzing the impact of political, social and medical measures in an ongoing pandemic. In this study, our objective
is to formulate and characterize a comprehensive model applicable to various types of infectious diseases. Consequently, we have undertaken
a thorough review of numerous models pertaining to different diseases as described in the following. All of them rely on the basic principles
of the Kermack–McKendrick model (sometimes also referred to as 𝑆𝐼𝑅 model), including three compartments for susceptible (𝑆), infected (𝐼),
and recovered (𝑅) individuals together with their transition rates, where recovered individuals are assumed to be immune [9]. There are already
some more general and extended versions of this model, including for example population dynamics like birth and death processes or additional
transitions directly turning susceptible into recovered individuals to incorporate vaccination [10]. Sometimes vector-borne diseases are described
by additional compartments for a vector population [11]. Others include vaccination (V) via an additional compartment (𝑆𝑉 𝐼𝑅 model) [12] or
a latent phase via an additional exposed (E) compartment (𝑆𝐸𝐼𝑅 model) and including a transition back from 𝑅 to 𝑆 as immunity vanishes
over time for some diseases [13]. Arias and colleagues [7] developed a model for the spread of HIV, adding a second stage of infection to the
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SIR model for those individuals, where the HIV infection already resulted in manifest AIDS stadium. There are several models for the spread of
measles. Memon et al. [8] combined the 𝑆𝐸𝐼𝑅 and the 𝑆𝑉 𝐼𝑅 model including both, an exposed state and a vaccination compartment to an
𝑆𝑉 𝐸𝐼𝑅 model. Another work by Alemneh and Belay [14] suggested to leave out the exposed compartment but include a pathogen (P) that can
be spread in the environment, focusing on smear infections. A similar approach is chosen to include reservoirs of hepatitis A viruses in food or
water by Mwaijande and Mpogolo [15]. In 2019, Aldila and Asrianti [16] suggested to enrich a SVIR model by a second vaccination compartment
(𝑉2) and an additional compartment for quarantined individuals (𝑄). Verguet and colleagues [17] decided to separate the vaccination into three
compartments for vaccinated susceptibles, infecteds and recovereds, allowing also for vaccination of infected and recovered individuals in their
modification of a 𝑆𝑉 𝐼𝑅 model for measles. For tick borne encephalitis, Akram et al. [18] developed a 𝑆𝐸𝐼 model without a recovered compartment
but including a vector population consisting of susceptible and infected ticks. For Malaria there are also vector populations considered together
with either the possibility to relapse into infection from the recovered compartment or with waning immunity turning recovered individuals into
susceptible ones over time [19,20]. Kanyiri et al. [6] suggested an Influenza model with a distinction between a wild-type and a resistant infection
(𝐼𝑤 and 𝐼𝑟). Some models for avian influenza completely leave out the vector population and model the spread with a 𝑆𝑉 𝐸𝐼𝑅 model, as the main
spread occurs in inter human contacts [21]. Other models distinguish the vector population in separate compartments for a wild bird population
and a population of domestic birds [22,23].

To assess specific research questions, especially during the COVID pandemic, very extended models have been developed. Considering
hospitalization rates as a possible indicator for the course of the COVID pandemic, Fuderer and colleagues [3] developed a model not only including
vaccinations, but also compartments for detected and undetected infections and further diversifying in the different courses of the disease like
individuals under intensive care treatment. A similar approach has been used in a cooperation with Contento and colleagues [2] for an integrative
modeling of different characteristic measures.

However, to the best of our knowledge, there is currently no comprehensive model available that encompasses all the attributes described
above simultaneously, and is not limited to a specific pathogen. Nevertheless, in cases of new pathogens carrying the potential threat of evolving
into an epidemic, having a pre-existing detailed model on hand could prove useful. Such a model should be able to cope different ways of
transmission, including direct human interaction, as well as pathogen spreading through smear infections or vector populations. Additionally,
it should consider pandemic control measures like vaccination campaigns and quarantine protocols. Having such a model pre-established, with
foundational mathematical properties already analyzed, eliminates the need to reevaluate these characteristics for every new deterministic model
tailored to a specific disease. This article proposes a comprehensive general model, supported by mathematical analysis and numerical simulations
for illustrative purposes.

2. Materials and methods

Our approach to define a comprehensive general model capable of describing the spread of various infectious diseases is based on a deterministic
system of ordinary differential equations (ODEs). The model structure is initially idealized as a general 𝑆𝐼𝑅 model by Kermack and McKendrick [9],
which is then expanded by incorporating several compartments identified in the literature as relevant for different diseases.

An illustration of the final model is provided in Fig. 1.
An additional exposed state (𝐸) was introduced to the standard 𝑆𝐼𝑅 model, representing individuals exposed to the disease, infected but

asymptomatic, not yet infectious, and not detectable [12]. Drawing inspiration from HIV models, a second stage of infection (𝐼2) was included
to capture diseases that progress through different stages [7,24]. These two stages could for example be a pre-symptomatic and a symptomatic
phase. To accommodate vaccination modeling, two vaccination compartments (𝑉1 and 𝑉2) were added to represent the effect of up to two doses
of vaccination. As most of the reviewed models only incorporated no or a maximum of two doses of vaccination, this should be sufficient for this
general purpose in the onset of a new epidemic. At a time when more than two doses of a vaccine are implemented, probably more detailed models
are used for specific investigations anyways, what is out of scope for this general work. Previous models for measles [14,16], avian influenza [21]
and influenza [6] already underlined the importance of these compartments. The COVID-19 pandemic further emphasized the need to consider
both detected and undetected infected individuals, leading to the introduction of detected compartments (𝐷1 and 𝐷2) for each infection stage. Since
a person can either be detected or undetected, the stages can be considered mutually exclusive, with 𝐼1 and 𝐼2 functioning as the corresponding
non-detected infected compartments. The inclusion of undetected compartments facilitates the parameterization of testing strategies, laboratory
capacities and quarantine measures.

To ensure comprehensiveness, the model not only considers direct inter-human transmissions but also incorporates infections from external
pathogens. For transmissions via pathogens spread by infected humans in the environment, an additional compartment 𝑃 is added, akin models for

easles or Ebola [14,25]. For other diseases primarily transmitted by vectors, a population of susceptible (𝑆𝑉 ) and infected (𝐼𝑉 ) vector individuals,
long with corresponding population dynamics, is included. This modeling approach has proven successful for diseases such as avian influenza,
alaria and tick-borne encephalitis [18–20,22,23,26]. As the aim of this model is to study human epidemic dynamics in an early stage of infection,
ore detailed vector dynamics are left out here, as they would afford more detailed knowledge and data about vector dynamics.

The general model not only consists of compartments but also includes several possible transitions illustrated as arrows in Fig. 1 and extensively
escribed in Table 1. In case a stage of the model is unnecessary for disease representation, it can be easily adapted by ‘‘switching off’’ compartments,
etting all in- and outgoing transition rates to zero. This adaptability allows for modeling diseases without latency or with only one distinguishable
tage of infection. For example, direct transition paths connecting 𝑆 to 𝐼1 (skipping 𝐸) can be generated by setting 𝑎1 = 𝑎2 = 0, and a direct

transition from 𝐼1 to 𝑅 (skipping 𝐼2) via 𝑎3 = 𝑎4 = 0. Similarly, if there is no second stage of infection and, therefore, no second stage for detected
individuals 𝐷2, a transition from 𝐷1 to 𝑅 is easily possible. Modeling the event of a vaccinated individual getting infected can be done either

ith a direct transition to the exposed state 𝐸 if included in the model, or directly to 𝐼1. A transition from 𝑅 back to 𝑆 accounts for possible
aning immunity after recovery, while a regression to the infectious state involves transitioning from 𝑅 back to 𝐼1. The latter event has proven

o be significant in modeling diseases like malaria involving a hypnozoite, a dormant form of the parasite that may persist in the liver, leading to
eactivation [19,27]. This general and flexible model can be easily customized to accommodate various scenarios.

The general population dynamics are introduced to the model through a constant birth term 𝛥 and a per capita death rate 𝜇 (see Eq. (1)). For
he sake of simplicity this model assumes every newborn to be susceptible, neglecting infection during birth or maternal immunity. The vector
opulation dynamics are similarly included through corresponding parameters 𝛥𝑉 and 𝜇𝑉 in Eqs. (10) and (11). The environmental pathogen arises
t rate 𝛼 Eq. (12), depending on the infective human population, and vanishes at rate 𝜇 . The death rate for infected individuals might differ from
𝑃 𝑃
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Fig. 1. Overview of the general model. The mutually exclusive compartments are illustrated as human (orange), vector (blue) or external pathogen (red) nodes. The compartments
are susceptibles (𝑆), exposeds (𝐸), stage one infecteds (𝐼1), stage two infecteds (𝐼2), stage one detected infecteds (𝐷1), stage two detected infecteds (𝐷2), recovereds (𝑅), first
dose vaccinateds (𝑉1), second dose vaccinateds (𝑉2), susceptible vectors (𝑆𝑉 ), infected vectors (𝐼𝑉 ) and an environmentally spread pathogen (𝑃 ). The possible transition paths are
depicted as arrows. Birth and death processes are left out here for clarity even though they are considered in the system of ODEs.

the death rate of non-infected individuals and is given as 𝜇𝐼1 and 𝜇𝐼2 for both stages of infection in Eqs. (3), (4), (8) and (9). The infection occurs at
rate 𝜆 (human population) or 𝜆𝑉 (vector population). The different transition rates are numbered from 𝑎1 to 𝑎19 and 𝑏6 (for the backward transition
opposing 𝑎6). The infectiousness of a person is denoted by 𝑓𝐼1 , 𝑓𝐼2 and 𝑓𝐷, being potentially different for the stages of infection. Notably, the
parameter 𝑓𝐷 enables the quantification of behavioral changes or quarantine measures for detected individuals, with 𝑓𝐷 ≤ 1 signifying a reduction
in their contribution to infections. Consequently, there is no necessity to introduce an additional quarantine compartment, as seen in some other
articles [28].

𝑑𝑆
𝑑𝑡

= 𝛥 + 𝑎19𝑅 − 𝑎1𝜆𝑆 − 𝑎5𝜆𝑆 − 𝑎7𝑆 − 𝜇𝑆 Susceptible (1)
𝑑𝐸
𝑑𝑡

= 𝑎1𝜆𝑆 + 𝑎10𝜆𝑉1 + 𝑎9𝜆𝑉2 − 𝑎2𝐸 − 𝜇𝐸 Exposed (2)
𝑑𝐼1
𝑑𝑡

= 𝑎2𝐸 + 𝑎5𝜆𝑆 + 𝑎11𝜆𝑉1 + 𝑎12𝜆𝑉2 −
(

𝑎3 + 𝑎6 + 𝑎13
)

𝐼1 + 𝑏6𝑅 − 𝜇𝐼1𝐼1 Infected (1st stage) (3)
𝑑𝐼2
𝑑𝑡

= 𝑎3𝐼1 −
(

𝑎4 + 𝑎16
)

𝐼2 − 𝜇𝐼2𝐼2 Infected (2nd stage) (4)
𝑑𝑅
𝑑𝑡

= 𝑎4𝐼2 + 𝑎6𝐼1 + 𝑎15𝐷1 + 𝑎17𝐷2 − 𝑏6𝑅 − 𝑎19𝑅 − 𝜇𝑅 Recovered (5)
𝑑𝑉1
𝑑𝑡

= 𝑎7𝑆 − 𝑎8𝑉1 −
(

𝑎10 + 𝑎11
)

𝜆𝑉1 − 𝜇𝑉1 Vaccinated (1st dose) (6)
𝑑𝑉2
𝑑𝑡

= 𝑎8𝑉1 −
(

𝑎9 + 𝑎12
)

𝜆𝑉2 − 𝜇𝑉2 Vaccinated (2nd dose) (7)
𝑑𝐷1
𝑑𝑡

= 𝑎13𝐼1 −
(

𝑎14 + 𝑎15
)

𝐷1 − 𝜇𝐼1𝐷1 Detected (1st stage) (8)
𝑑𝐷2
𝑑𝑡

= 𝑎14𝐷1 + 𝑎16𝐼2 − 𝑎17𝐷2 − 𝜇𝐼2𝐷2 Detected (2nd stage) (9)
𝑑𝑆𝑉
𝑑𝑡

= 𝛥𝑉 − 𝑎18𝜆𝑉 𝑆𝑉 − 𝜇𝑉 𝑆𝑉 Susceptible vector (10)
𝑑𝐼𝑉
𝑑𝑡

= 𝑎18𝜆𝑉 𝑆𝑉 − 𝜇𝑉 𝐼𝑉 Infected vector (11)
𝑑𝑃
𝑑𝑡

= 𝛼𝑃 ⋅
(

𝑓𝐼1𝐼1 + 𝑓𝐼2𝐼2 + 𝑓𝐷
(

𝑓𝐼1𝐷1 + 𝑓𝐼2𝐷2

))

− 𝜇𝑃𝑃 Environmental pathogen (12)
3 
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Table 1
Parameter overview.
Parameter Description

𝑎̂1 , 𝑎̂5 , 𝑎1 ,… , 𝑎19 transition rates between compartments
𝑏6 backwards transition from 𝑅 to 𝐼1 (opposing 𝑎6) for relapse/reactivation
𝑓𝐼1 , 𝑓𝐼2 , 𝑓𝑃 fractions (or multiples) of base infectiousness for 1st stage infected, 2nd stage

infected humans or environmental pathogen
𝑓𝐷 ≤ 1 fraction of infectiousness for detected individuals as they might be

quarantined or due to behavioral changes
𝑒1, 𝑒2 efficacy of 1st and 2nd dose of vaccine
𝛥 (and 𝛥𝑉 ) birth term for human (and vector) population
𝛼𝑃 onset rate for environmental spread of pathogen
𝜇 (and 𝜇𝑉 , 𝜇𝑃 ) death rate of humans (and vectors/pathogen)
𝜇𝐼 additional death rate for infected humans in cause of the disease
𝑓𝜇𝐼2

fraction or multiple deadliness for 2nd stage of infection
𝛿𝐻𝐻 , 𝛿𝑉 𝐻 , 𝛿𝐻𝑉 , 𝛿𝑉 𝑉 , 𝛿𝑃𝐻 ∈ {0, 1} indicators whether transmissions are taking place (= 1) or not (= 0)

from H(uman)→H, V(ector)→H, H→V, V→V, P(athogen)→H

For analysis purposes, the ODE system was re-parameterized, defining either combinations of fixed parameters or functions depending on the
compartment variables and/or time.

𝑁 = 𝑆 + 𝐸 + 𝐼1 + 𝐼2 + 𝑅 + 𝑉1 + 𝑉2 +𝐷1 +𝐷2 Total human population (13)

𝑁𝑉 = 𝑆𝑉 + 𝐼𝑉 Total vector population (14)

𝜙𝐻 =

⎧

⎪

⎨

⎪

⎩

0 for 𝑁 = 0
𝑓𝐼1 𝐼1+𝑓𝐼2 𝐼2+𝑓𝐷

(

𝑓𝐼1𝐷1+𝑓𝐼2𝐷2
)

𝑁 else
Total infective humans (weighted) (15)

𝜙𝑉 =

{

0 for 𝑁𝑉 = 0
𝐼𝑉
𝑁𝑉

else Total infective vectors (16)

𝜙𝑃 =

{

0 for 𝑁 = 0
𝑓𝑃 𝑃
𝑁 else Infective pathogen (17)

𝜆 = 𝛿𝐻𝐻 ⋅ 𝜙𝐻 + 𝛿𝑉 𝐻 ⋅ 𝜙𝑉 + 𝛿𝑃𝐻 ⋅ 𝜙𝑃 Transmission rate (humans) (18)

𝜆𝑉 = 𝛿𝐻𝑉 ⋅ 𝜙𝐻 + 𝛿𝑉 𝑉 ⋅ 𝜙𝑉 Transmission rate (vector) (19)

𝜇𝐼1 = 𝜇𝐼 + 𝜇 Death rate (1st stage infection) (20)

𝜇𝐼2 = 𝑓𝜇𝐼2 ⋅ 𝜇𝐼 + 𝜇 Death rate (2nd stage infection) (21)

𝑎1 = 𝑓1 ⋅ 𝑎̂1 (22)

𝑎5 = 𝑓1 ⋅ 𝑎̂5 (23)

𝑎9 =
(

1 − 𝑒2
)

⋅ 𝑎1 (24)

𝑎10 =
(

1 − 𝑒1
)

⋅ 𝑎1 (25)

𝑎11 =
(

1 − 𝑒1
)

⋅ 𝑎5 (26)

𝑎12 =
(

1 − 𝑒2
)

⋅ 𝑎5 (27)

𝑓1(𝑡) = some fluctuant function varying force of infection (e.g. seasonality) (28)

The total population 𝑁 is the sum of all human compartments, as defined in Eqs. (13). Similarly the vector population 𝑁𝑉 is computed as described
in Eq. (14). The global infective term 𝜙𝐻 is defined as the weighted mean of the various infectiousness rates, with the total population 𝑁 serving
as denominator. This formulation enables biologically interpretable parameter values, as expressed in Eq. (15). Analogously, 𝜙𝑉 Eq. (16) and 𝜙𝑃
Eq. (17) are defined for infection via vectors or an environmental pathogen, with 𝑓𝑃 scaling the infectiousness per pathogen unit. The infectiousness
is incorporated into the transmission rates 𝜆 and 𝜆𝑉 (for vector population infection), consisting of 𝜙𝐻 , 𝜙𝑉 and 𝜙𝑃 along with corresponding
indicator functions 𝛿 ∈ {0, 1} indicating the relevant transmission routes for a specific pathogen. For instance, 𝛿𝑉 𝐻 = 1 signifies the potential
transmission from an infected vector to a susceptible human; otherwise, 𝛿𝑉 𝐻 = 0. As a disease might elevate the death rate of infected individuals,
the corresponding death rates are defined as the sum of the base death rate 𝜇 and the additional mortality rate of the disease 𝜇𝐼 Eq. (20). Considering
potential variations in mortality during the second stage of infection, a factor 𝑓𝜇𝐼2 is introduced in the definition of 𝜇𝐼2 Eq. (21). The efficacy of
the first and second dose of vaccination is incorporated through 𝑒1 and 𝑒2 in Eqs. (24)–(27). To account for potential variations in the course of
infection due to seasonality or pandemic measures, a time-dependent fluctuation function 𝑓1 Eq. (28) influences 𝑎1 and 𝑎5 Eqs. (22) and (23).

All parameters, including 𝑓1(𝑡) (for 𝑡 ≥ 0), are assumed to be non-negative and are comprehensively summarized in Table 1.

3. Results

In order to proof basic analytical properties and general applicability of the model, it is analyzed in the following analytically and numerically.
4 
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3.1. Analytical results

First the model is investigated for existence, uniqueness and non-negativity of solutions as well as for boundedness, a disease-free equilibrium
and the basic reproduction rate.

3.1.1. Non-negativity and existence of a unique non-negative solution
Suppose, 𝑓1 is a Lipschitz continuous function on R≥0. Then for 𝑁 > 0 and 𝑁𝑉 > 0, the whole system of ODEs is Lipschitz continuous. As the

constant birth terms 𝛥 and 𝛥𝑉 assure 𝑆 and 𝑆𝑉 to be strictly positive, also 𝑁 and 𝑁𝑉 stay strictly positive.
Let 𝑋 ∶= (𝑆,𝐸, 𝐼1, 𝐼2, 𝑅, 𝑉1, 𝑉2, 𝐷1, 𝐷2, 𝑆𝑉 , 𝐼𝑉 , 𝑃 ) and 𝑋′(𝑡) = 𝑓 (𝑡, 𝑋). Then the whole system stays non-negative for non-negative initial values

if:

𝑓𝑗 (𝑡, 𝑋)||
|𝑋𝑗=0

≥ 0 for 𝑥 ∈ R12
≥0 and 𝑡 ≥ 0

for all 𝑗 ∈ {1, 2,… , 12}. So for 𝑋 ∈ R12
≥0 with 𝑁,𝑁𝑉 > 0 we find:

𝑆′
|

|𝑆=0 = 𝛥 + 𝑎19𝑅 > 0 (29)

𝐸′
|

|𝐸=0 = 𝑎1𝜆𝑆 + 𝑎10𝜆𝑉1 + 𝑎9𝜆𝑉2 ≥ 0 (30)

𝐼 ′1
|

|

|𝐼1=0
= 𝑎2𝐸 + 𝑎5𝜆𝑆 + 𝑎11𝜆𝑉1 + 𝑎12𝜆𝑉2 + 𝑏6𝑅 ≥ 0 (31)

𝐼 ′2
|

|

|𝐼2=0
= 𝑎3𝐼1 ≥ 0 (32)

𝑅′
|

|𝑅=0 = 𝑎4𝐼2 + 𝑎6𝐼1 + 𝑎15𝐷1 + 𝑎17𝐷2 ≥ 0 (33)

𝑉 ′
1
|

|

|𝑉1=0
= 𝑎7𝑆 ≥ 0 (34)

𝑉 ′
2
|

|

|𝑉2=0
= 𝑎8𝑉1 ≥ 0 (35)

𝐷′
1
|

|

|𝐷1=0
= 𝑎13𝐼1 ≥ 0 (36)

𝐷′
2
|

|

|𝐷2=0
= 𝑎14𝐷1 + 𝑎16𝐼2 ≥ 0 (37)

𝑆′
𝑉
|

|

|𝑆𝑉 =0
= 𝛥𝑉 > 0 (38)

𝐼 ′𝑉
|

|

|𝐼𝑉 =0
= 𝑎18𝜆𝑉 𝑆𝑉 ≥ 0 (39)

𝑃 ′
|

|𝑃=0 = 𝛼𝑃 ⋅
(

𝑓𝐼1𝐼1 + 𝑓𝐼2𝐼2 + 𝑓𝐷
(

𝑓𝐼1𝐷1 + 𝑓𝐼2𝐷2

))

≥ 0. (40)

This is sufficient to proof the existence of unique, non-negative solutions for all non-negative initial values to this system of ODEs with 𝑆(0) > 0
and 𝑆𝑉 (0) > 0 [29].

3.1.2. Boundedness
Let 𝜇 > 0, 𝜇𝑉 > 0 and 𝜇𝑃 > 0. By definition of the total population 𝑁 one finds

𝑁 ′ = 𝛥 − 𝜇𝑁 − 𝜇𝐼 (𝐼1 +𝐷1 + 𝑓𝜇𝐼2 𝐼2 + 𝑓𝜇𝐼2𝐷2) ≤ 𝛥 − 𝜇𝑁 <
for 𝑁> 𝛥

𝜇

0. (41)

herefore, the total population has an upper bound not to exceed a total population of 𝑁 = 𝛥
𝜇 . As the compartments are all proven to be non-

negative, all consistent compartments for the human population are bound, too. Similarly one finds 𝑁𝑉 = 𝛥𝑉
𝜇𝑉

as upper bound for the vector

opulation and its compartments 𝑆𝑉 and 𝐼𝑉 . With that, one finds 𝑃 =
𝛼𝑃 ⋅𝑚𝑎𝑥

{

𝑓𝐼1 ,𝑓𝐼2

}

𝜇𝑃
⋅𝑁 as an upper bound for 𝑃 :

𝑃 ′ = 𝛼𝑃 ⋅
(

𝑓𝐼1𝐼1 + 𝑓𝐼2𝐼2 + 𝑓𝐷
(

𝑓𝐼1𝐷1 + 𝑓𝐼2𝐷2

))

− 𝜇𝑃𝑃 ≤ 𝛼𝑃 ⋅ 𝑚𝑎𝑥
{

𝑓𝐼1 , 𝑓𝐼2
}

⋅𝑁 − 𝜇𝑃𝑃 ≤ 0 (42)

Therefore, the whole system is upper-bounded.

3.1.3. Disease-free equilibrium
To find a disease-free equilibrium, 𝐸 = 𝐼1 = 𝐼2 = 𝑅 = 𝑉1 = 𝑉2 = 𝐷1 = 𝐷2 = 𝐼𝑉 = 𝑃 = 0 is assumed. This leads to 𝜆 = 𝜆𝑉 = 0 and hence:

𝑆′ = 𝛥 − 𝑎7𝑆 − 𝜇𝑆 (43)

𝑉 ′
1 = 𝑎7𝑆 − 𝑎8𝑉1 − 𝜇𝑉1 (44)

𝑉 ′
2 = 𝑎8𝑉1 − 𝜇𝑉2 (45)

𝑆′
𝑉 = 𝛥𝑉 − 𝜇𝑉 𝑆𝑉 (46)

𝐸′ = 𝐼 ′1 = 𝐼 ′2 = 𝑅′ = 𝐷′
1 = 𝐷′

2 = 𝐼 ′𝑉 = 𝑃 ′ = 0 (47)
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which, as 𝜇 > 0 and 𝜇𝑉 > 0, solves for the unique disease-free equilibrium:

𝑆∗ = 𝛥
𝑎7 + 𝜇

(48)

𝑉 ∗
1 =

𝑎7𝛥
(

𝑎7 + 𝜇
) (

𝑎8 + 𝜇
) (49)

𝑉 ∗
2 =

𝑎7𝑎8𝛥
𝜇
(

𝑎7 + 𝜇
) (

𝑎8 + 𝜇
) (50)

𝑆∗
𝑉 =

𝛥𝑉
𝜇𝑉

(51)

with 𝑁∗ = 𝑆∗+𝑉 ∗
1 +𝑉 ∗

2 = 𝛥
𝜇 and 𝑁∗

𝑉 = 𝑆∗
𝑉 = 𝛥𝑉

𝜇𝑉
. This equilibrium only exists (with positive populations 𝑁 and 𝑁𝑉 ) as long as population dynamics

are involved (𝛥, 𝛥𝑉 , 𝜇, 𝜇𝑉 > 0).

3.1.4. Reproduction rate
As one of the most important and informative characteristic values of an epidemic model, the reproduction rate 0 cannot be missing.

The method used in this analysis is the next generation matrix approach originally proposed by Diekmann and Heesterbeek in 1990 [30].
Following the van den Driessche and Watmough method as described by Maia Martcheva [11], the system is split into infected compartments
𝑋 =

(

𝐸, 𝐼1, 𝐼2, 𝐷1, 𝐷2, 𝐼𝑉 , 𝑃
)

and non-infected compartments 𝑌 =
(

𝑆,𝑅, 𝑉1, 𝑉2, 𝑆𝑉
)

. Next the right-hand side terms of 𝑋 are split into new infections
 and remaining dynamics  :

𝑋′ = (𝑋, 𝑌 ) −  (𝑋, 𝑌 )

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑎1𝜆𝑆 + 𝑎10𝜆𝑉1 + 𝑎9𝜆𝑉2
𝑎5𝜆𝑆 + 𝑎11𝜆𝑉1 + 𝑎12𝜆𝑉2 + 𝑏6𝑅

0
0
0

𝑎18𝜆𝑉 𝑆𝑉

𝛼𝑃 ⋅
(

𝑓𝐼1𝐼1 + 𝑓𝐼2𝐼2 + 𝑓𝐷
(

𝑓𝐼1𝐷1 + 𝑓𝐼2𝐷2

))

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

−

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑎2𝐸 + 𝜇𝐸
−𝑎2𝐸 +

(

𝑎3 + 𝑎6 + 𝑎13
)

𝐼1 + 𝜇𝐼1𝐼1
−𝑎3𝐼1 +

(

𝑎4 + 𝑎16
)

𝐼2 + 𝜇𝐼2𝐼2
−𝑎13𝐼1 +

(

𝑎14 + 𝑎15
)

𝐷1 + 𝜇𝐼1𝐷1
−𝑎14𝐷1 − 𝑎16𝐼2 + 𝑎17𝐷2 + 𝜇𝐼2𝐷2

𝜇𝑉 𝐼𝑉
𝜇𝑃𝑃

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.
(52)

This decomposition has to satisfy the following basic properties:

1. 𝑖(0, 𝑌 ) = 0 and 𝑖(0, 𝑌 ) = 0 for 𝑌 ≥ 0 and 𝑖 = 1,… , 7
2. 𝑖(𝑋, 𝑌 ) ≥ 0 for all 𝑋, 𝑌 ≥ 0
3. 𝑖(𝑋, 𝑌 ) ≤ 0 when 𝑋𝑖 = 0 for 𝑖 = 1,… , 7
4. ∑7

𝑖=1 𝑖(𝑋, 𝑌 ) ≥ 0 for all 𝑋, 𝑌 ≥ 0

This properties are clearly satisfied in our case (note that again 𝑋 = 0 implies 𝜆 = 𝜆𝑉 = 0). The disease-free equilibrium as calculated above is

∗ =
(

𝑋∗, 𝑌 ∗) =

(

07,

(

𝛥
𝑎7 + 𝜇

, 0,
𝑎7𝛥

(

𝑎7 + 𝜇
) (

𝑎8 + 𝜇
) ,

𝑎7𝑎8𝛥
𝜇
(

𝑎7 + 𝜇
) (

𝑎8 + 𝜇
) ,

𝛥𝑉
𝜇𝑉

))

. (53)

Then one finds the following matrices 𝐹 = 𝜕𝑖(0,𝑌 ∗)
𝜕𝑋𝑗

and 𝑉 = 𝜕𝑖(0,𝑌 ∗)
𝜕𝑋𝑗

:

𝐹 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 𝛿𝐻𝐻𝑓𝐼1𝙰 𝛿𝐻𝐻𝑓𝐼2𝙰 𝛿𝐻𝐻𝑓𝐷𝑓𝐼1𝙰 𝛿𝐻𝐻𝑓𝐷𝑓𝐼2𝙰 𝛿𝑉 𝐻𝙰 ⋅ 𝛥𝜇𝑉
𝜇𝛥𝑉

𝛿𝑃𝐻𝑓𝑃 𝙰

0 𝛿𝐻𝐻𝑓𝐼1𝙱 𝛿𝐻𝐻𝑓𝐼2𝙱 𝛿𝐻𝐻𝑓𝐷𝑓𝐼1𝙱 𝛿𝐻𝐻𝑓𝐷𝑓𝐼2𝙱 𝛿𝑉 𝐻𝙱 ⋅ 𝛥𝜇𝑉
𝜇𝛥𝑉

𝛿𝑃𝐻𝑓𝑃 𝙱
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 𝑎18𝛿𝐻𝑉 𝑓𝐼1

𝛥𝑉 𝜇
𝜇𝑉 𝛥 𝑎18𝛿𝐻𝑉 𝑓𝐼2

𝛥𝑉 𝜇
𝜇𝑉 𝛥 𝑎18𝛿𝐻𝑉 𝑓𝐷𝑓𝐼1

𝛥𝑉 𝜇
𝜇𝑉 𝛥 𝑎18𝛿𝐻𝑉 𝑓𝐷𝑓𝐼2

𝛥𝑉 𝜇
𝜇𝑉 𝛥 𝑎18𝛿𝑉 𝑉 0

0 𝛼𝑃 𝑓𝐼1 𝛼𝑃 𝑓𝐼2 𝛼𝑃 𝑓𝐷𝑓𝐼1 𝛼𝑃 𝑓𝐷𝑓𝐼2 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (54)

with

𝙰 =𝑎1
𝑆∗

𝑁∗ + 𝑎10
𝑉 ∗
1

𝑁∗ + 𝑎9
𝑉 ∗
2

𝑁∗ =
𝑎1𝜇

(

𝑎8 + 𝜇
)

+ 𝑎7𝑎10𝜇 + 𝑎7𝑎8𝑎9
(

𝑎7 + 𝜇
) (

𝑎8 + 𝜇
) (55)

𝙱 =𝑎5
𝑆∗

𝑁∗ + 𝑎11
𝑉 ∗
1

𝑁∗ + 𝑎12
𝑉 ∗
2

𝑁∗ =
𝑎5𝜇

(

𝑎8 + 𝜇
)

+ 𝑎7𝑎11𝜇 + 𝑎7𝑎8𝑎12
(

𝑎7 + 𝜇
) (

𝑎8 + 𝜇
) , (56)

and

𝑉 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

𝑎2 + 𝜇 0 0 0 0 0 0
−𝑎2 𝑎3 + 𝑎6 + 𝑎13 + 𝜇𝐼1 0 0 0 0 0
0 −𝑎3 𝑎4 + 𝑎16 + 𝜇𝐼2 0 0 0 0
0 −𝑎13 0 𝑎14 + 𝑎15 + 𝜇𝐼1 0 0 0
0 0 −𝑎16 −𝑎14 𝑎17 + 𝜇𝐼2 0 0
0 0 0 0 0 𝜇𝑉 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

(57)
⎝ 0 0 0 0 0 0 𝜇𝑃 ⎠
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The next-generation matrix 𝐾 ∶= 𝐹𝑉 −1 (the inverse 𝑉 −1 is provided in the Appendix) reads:

𝐾 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝛿𝐻𝐻𝙰𝙲 𝛿𝐻𝐻𝙰𝙳 𝛿𝐻𝐻𝙰𝙴 𝛿𝐻𝐻𝙰𝙵 𝛿𝐻𝐻𝙰
𝑓𝐷𝑓𝐼2
𝑎17+𝜇𝐼2

𝛿𝑉 𝐻𝙰
𝛥

𝜇𝛥𝑉
𝛿𝑃𝐻𝙰

𝑓𝑃
𝜇𝑃

𝛿𝐻𝐻𝙱𝙲 𝛿𝐻𝐻𝙱𝙳 𝛿𝐻𝐻𝙱𝙴 𝛿𝐻𝐻𝙱𝙵 𝛿𝐻𝐻𝙱
𝑓𝐷𝑓𝐼2
𝑎17+𝜇𝐼2

𝛿𝑉 𝐻𝙱
𝛥

𝜇𝛥𝑉
𝛿𝑃𝐻𝙱

𝑓𝑃
𝜇𝑃

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

𝛿𝐻𝑉 𝑎18
𝛥𝑉 𝜇
𝜇𝑉 𝛥 𝙲 𝛿𝐻𝑉 𝑎18

𝛥𝑉 𝜇
𝜇𝑉 𝛥 𝙳 𝛿𝐻𝑉 𝑎18

𝛥𝑉 𝜇
𝜇𝑉 𝛥 𝙴 𝛿𝐻𝑉 𝑎18

𝛥𝑉 𝜇
𝜇𝑉 𝛥 𝙵 𝛿𝐻𝑉 𝑎18

𝛥𝑉 𝜇
𝜇𝑉 𝛥

𝑓𝐷𝑓𝐼2
𝑎17+𝜇𝐼2

𝛿𝑉 𝑉
𝑎18
𝜇𝑉

0

𝛼𝑃 𝙲 𝛼𝑃 𝙳 𝛼𝑃 𝙴 𝛼𝑃 𝙵 𝛼𝑃
𝑓𝐷𝑓𝐼2
𝑎17+𝜇𝐼2

0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (58)

with

𝙰 =
𝑎1𝜇

(

𝑎8 + 𝜇
)

+ 𝑎7𝑎10𝜇 + 𝑎7𝑎8𝑎9
(

𝑎7 + 𝜇
) (

𝑎8 + 𝜇
) as before (59)

𝙱 =
𝑎5𝜇

(

𝑎8 + 𝜇
)

+ 𝑎7𝑎11𝜇 + 𝑎7𝑎8𝑎12
(

𝑎7 + 𝜇
) (

𝑎8 + 𝜇
) as before (60)

𝙲 =
𝑓𝐼1 𝑎2

(𝑎2+𝜇)
(

𝑎3+𝑎6+𝑎13+𝜇𝐼1
) +

𝑓𝐼2 𝑎2𝑎3

(𝑎2+𝜇)
(

𝑎3+𝑎6+𝑎13+𝜇𝐼1
)(

𝑎4+𝑎16+𝜇𝐼2
)

+
𝑓𝐷𝑓𝐼1 𝑎2𝑎13

(𝑎2+𝜇)
(

𝑎3+𝑎6+𝑎13+𝜇𝐼1
)(

𝑎14+𝑎15+𝜇𝐼1
)

+
𝑓𝐷𝑓𝐼2 𝑎2

(

𝑎3𝑎16
(

𝑎14+𝑎15+𝜇𝐼1
)

+𝑎13𝑎14
(

𝑎4+𝑎16+𝜇𝐼2
))

(𝑎2+𝜇)
(

𝑎3+𝑎6+𝑎13+𝜇𝐼1
)(

𝑎4+𝑎16+𝜇𝐼2
)(

𝑎14+𝑎15+𝜇𝐼1
)(

𝑎17+𝜇𝐼2
)

(61)

𝙳 =
𝑓𝐼1

𝑎3+𝑎6+𝑎13+𝜇𝐼1
+

𝑓𝐼2 𝑎3
(

𝑎3+𝑎6+𝑎13+𝜇𝐼1
)(

𝑎4+𝑎16+𝜇𝐼2
) +

𝑓𝐷𝑓𝐼1 𝑎13
(

𝑎3+𝑎6+𝑎13+𝜇𝐼1
)(

𝑎14+𝑎15+𝜇𝐼1
)

+
𝑓𝐷𝑓𝐼2

(

𝑎3𝑎16
(

𝑎14+𝑎15+𝜇𝐼1
)

+𝑎13𝑎14
(

𝑎4+𝑎16+𝜇𝐼2
))

(

𝑎3+𝑎6+𝑎13+𝜇𝐼1
)(

𝑎4+𝑎16+𝜇𝐼2
)(

𝑎14+𝑎15+𝜇𝐼1
)(

𝑎17+𝜇𝐼2
)

(62)

𝙴 =
𝑓𝐼2

𝑎4 + 𝑎16 + 𝜇𝐼2
+

𝑓𝐷𝑓𝐼2𝑎16
(

𝑎4 + 𝑎16 + 𝜇𝐼2
)(

𝑎17 + 𝜇𝐼2
) (63)

𝙵 =
𝑓𝐷𝑓𝐼1

𝑎14 + 𝑎15 + 𝜇𝐼1
+

𝑓𝐷𝑓𝐼2𝑎14
(

𝑎14 + 𝑎15 + 𝜇𝐼1
)(

𝑎17 + 𝜇𝐼2
) (64)

Since 0 = 𝜌 (𝐾), the dominating eigenvalue of this matrix is needed. Using the Laplace expansion, the three rows of zero already reduce the
orresponding characteristic polynomial (note that here 𝜆 denotes the corresponding eigenvalues, not the infectious term from above) to:

 (𝜆) = −𝜆3

|

|

|

|

|

|

|

|

|

|

|

𝛿𝐻𝐻𝙰𝙲 − 𝜆 𝛿𝐻𝐻𝙰𝙳 𝛿𝑉 𝐻𝙰
𝛥

𝜇𝛥𝑉
𝛿𝑃𝐻𝙰

𝑓𝑃
𝜇𝑃

𝛿𝐻𝐻𝙱𝙲 𝛿𝐻𝐻𝙱𝙳 − 𝜆 𝛿𝑉 𝐻𝙱
𝛥

𝜇𝛥𝑉
𝛿𝑃𝐻𝙱

𝑓𝑃
𝜇𝑃

𝛿𝐻𝑉 𝑎18
𝛥𝑉 𝜇
𝜇𝑉 𝛥 𝙲 𝛿𝐻𝑉 𝑎18

𝛥𝑉 𝜇
𝜇𝑉 𝛥 𝙳 𝛿𝑉 𝑉

𝑎18
𝜇𝑉

− 𝜆 0
𝛼𝑃 𝙲 𝛼𝑃 𝙳 0 −𝜆

|

|

|

|

|

|

|

|

|

|

|

(65)

As the computation of the determinant of a 4 × 4 matrix remains quite intricate, potentially yielding multiple non-zero eigenvalues, it becomes
inconvenient, if not impossible, to identify the one with the largest absolute value in this general form. Progressing further into these universal
calculations without specific characterizations seems unpromising. Unsurprisingly, the function  (𝜆) is highly contingent on the precise structure
of the model. The presence of various 𝛿 terms throughout the matrix underscores the significance of distinct transmission pathways for 0. When
the model is applied to a specific pathogen, many of these indicator values turn to zero, as not all transition rates are typically considered
simultaneously. In most referenced underlying models, various modes of pathogen transmission are not concurrently integrated. Some diseases
do not propagate through vector populations, or if there are multiple biologically feasible transmission pathways, they might not all be of equal
importance. For instance, a smear infection might be disregarded if direct inter-human transmission dominates the overall dynamics. Therefore, a
logical approach involves considering different transmission paths separately, a choice that not only makes sense but also simplifies both the model
and the corresponding next-generation matrix significantly.

Only inter-human transmissions. In the most simple case, the disease only spreads among humans in direct interactions (𝛿𝐻𝐻 = 1). This is the
case in the basic Kermack–McKendrick model [9] as well as in many other epidemiological models [6–8,16,24]. No vector population is involved
(𝛿𝑉 𝐻 = 𝛿𝐻𝑉 = 𝛿𝑉 𝑉 = 0) and smear infections do not play a role (𝛿𝑃𝐻 = 𝛼𝑃 = 0). This leads to the characteristic polynomial:

 (𝜆) = −𝜆3

|

|

|

|

|

|

|

|

|

𝙰𝙲 − 𝜆 𝙰𝙳 0 0
𝙱𝙲 𝙱𝙳 − 𝜆 0 0
0 0 −𝜆 0
0 0 0 −𝜆

|

|

|

|

|

|

|

|

|

= −𝜆5 [(𝙰𝙲 − 𝜆) (𝙱𝙳 − 𝜆) − 𝙰𝙱𝙲𝙳] = 𝜆6 (𝙰𝙲 + 𝙱𝙳 − 𝜆) . (66)

The reproduction rate therefore is the only non-zero eigenvalue
𝐻𝐻
0 = 𝙰𝙲 + 𝙱𝙳. (67)
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The definitions of 𝙰, 𝙱, 𝙲 and 𝙳 indicate that this remains a complex term, albeit with some convenient properties. For instance, one typically either
onsiders a compartment 𝐸 without a direct transition from 𝑆, with 𝑉1 and 𝑉2 going directly to 𝐼1 (𝑎5 = 𝑎11 = 𝑎12 = 0), or omits such a latent

compartment altogether (𝑎1 = 𝑎9 = 𝑎10 = 0), resulting in either 𝙰𝙲 = 0 or 𝙱𝙳 = 0. This simplification aids in formulating the reproduction rate.
Examining individual parameters and tracing their influence on the reproduction rate allows for plausibility checks.

For instance, an increased death rate (𝜇 same as 𝜇𝐼 ) of humans relevantly reduces 𝙲 and 𝙳 and, consequently, decreases 0
𝐻𝐻 . This aligns

with the logic that infected individuals have less time to infect others, if they die faster. Similarly, an elevated fraction of infectiousness for
different infectious compartments (𝑓𝐼1 , 𝑓𝐼2 and 𝑓𝐷) results in higher reproduction rates. Increasing the detection rate or the speed of detection (both
increasing 𝑎13 and 𝑎16) reduces the emphasis on 𝑓𝐼1 and 𝑓𝐼2 in favor of 𝑓𝐷𝑓𝐼1 and 𝑓𝐷𝑓𝐼2 . Assuming that detected individuals are less infectious
than undetected (𝑓𝐷 < 1), this also decreases 0

𝐻𝐻 . In the opposite case, 𝑓𝐷 > 1 would increase the reproduction rate. While formal proofs are
not provided here, the overall trend is evident when considering the limits of the parameters approaching either zero or infinity.

Only environmental pathogen. When exclusively considering transmissions through an environmental pathogen (𝛿𝑃𝐻 = 1, 𝛼𝑃 > 0), while discounting
direct human interactions and animal hosts as irrelevant factors (𝛿𝐻𝐻 = 𝛿𝑉 𝐻 = 𝛿𝐻𝑉 = 𝛿𝑉 𝑉 = 0), the characteristic polynomial is as follows:

 (𝜆) = −𝜆3

|

|

|

|

|

|

|

|

|

|

−𝜆 0 0 𝙰
𝑓𝑃
𝜇𝑃

0 −𝜆 0 𝙱
𝑓𝑃
𝜇𝑃

0 0 −𝜆 0
𝛼𝑃 𝙲 𝛼𝑃 𝙳 0 −𝜆

|

|

|

|

|

|

|

|

|

|

= 𝜆4
|

|

|

|

|

|

|

|

−𝜆 0 𝙰
𝑓𝑃
𝜇𝑃

0 −𝜆 𝙱
𝑓𝑃
𝜇𝑃

𝛼𝑃 𝙲 𝛼𝑃 𝙳 −𝜆

|

|

|

|

|

|

|

|

= 𝜆5
[

𝛼𝑃 𝑓𝑃
𝜇𝑃

(𝙰𝙲 + 𝙱𝙳) − 𝜆2
]

. (68)

Consequently, the reproduction rate is determined by

0
𝑃𝐻 =

√

𝛼𝑃 𝑓𝑃
𝜇𝑃

(𝙰𝙲 + 𝙱𝙳) =

√

𝛼𝑃 𝑓𝑃
𝜇𝑃

⋅0
𝐻𝐻 . (69)

The dynamics are analogous to 0
𝐻𝐻 , but certain pathogen-specific parameters contribute equally to the value of 0

𝑃𝐻 . An elevated pathogen
pread (𝛼𝑃 ) and increased infectiousness (𝑓𝑃 ) both elevate the reproduction rate, while a higher death rate (𝜇𝑃 ), potentially resulting from shorter
athogen survival times, diminishes it.

nly vector transmissions. If we consider only a vector population as relevant for the spread of a pathogen, and humans neither infect other
umans (𝛿𝐻𝐻 = 0) nor animals (𝛿𝐻𝑉 = 0), and no environmental pathogen is considered (𝛼𝑃 = 𝛿𝑃𝐻 = 0), transmissions only occur within the
ector species (𝛿𝑉 𝑉 = 1) and from vectors to humans, not the other way round (𝛿𝑉 𝐻 = 1). This scenario is applicable in models for the spread of
vian influenza [22,23]. Here,  simplifies relevantly to

 (𝜆) = −𝜆3

|

|

|

|

|

|

|

|

|

|

|

−𝜆 0 𝙰
𝛥

𝜇𝛥𝑉
0

0 −𝜆 𝙱
𝛥

𝜇𝛥𝑉
0

0 0 𝑎18
𝜇𝑉

− 𝜆 0
0 0 0 −𝜆

|

|

|

|

|

|

|

|

|

|

|

= 𝜆6 ⋅
(

𝑎18
𝜇𝑉

− 𝜆
)

. (70)

The reproduction rate is found as the only non-zero eigenvalue of 𝐾:

0
𝑉 𝑉 =

𝑎18
𝜇𝑉

(71)

As human interactions do not play any role, all human related parameters do not influence the reproduction rate. As described thoroughly by
Maia Martcheva [11], caution is necessary in the interpretation of the reproduction rate here. Since infected hosts are also considered in the
next-generation matrix approach, this can be interpreted as the number of secondary cases within the vector population. This becomes clearer with
a closer look at the parameters involved in 0

𝑉 𝑉 , as only vector-specific parameters are involved. If the death rate is greater than the inter-vector
nfection rate 𝜇𝑉 > 𝑎18, the disease dies out with 0

𝑉 𝑉 < 1, leading to no more human infections. The disease spreads among the vector population
f 𝑎18 > 𝜇𝑉 . However, it is challenging to deduce the implications for the human population, as this depends on more than only the vector dynamics.

nly inter-species transmissions. If one solely considers transmissions through human-vector interactions (where humans and host animals cannot
nfect each other within their species), this perspective may be particularly relevant for tick-borne encephalitis as modeled by Akram et al. [18]
𝛿𝐻𝐻 = 𝛿𝑉 𝑉 = 𝛼𝑃 = 𝛿𝑃𝐻 = 0 and 𝛿𝐻𝑉 = 𝛿𝑉 𝐻 = 1), one finds:

 (𝜆) = −𝜆3

|

|

|

|

|

|

|

|

|

|

|

−𝜆 0 𝙰
𝛥

𝜇𝛥𝑉
0

0 −𝜆 𝙱
𝛥

𝜇𝛥𝑉
0

𝑎18
𝛥𝑉 𝜇
𝜇𝑉 𝛥 𝙲 𝑎18

𝛥𝑉 𝜇
𝜇𝑉 𝛥 𝙳 −𝜆 0

0 0 0 −𝜆

|

|

|

|

|

|

|

|

|

|

|

= 𝜆5
[

𝑎18
𝜇𝑉

(𝙰𝙲 + 𝙱𝙳) − 𝜆2
]

, (72)

with reproduction rate:

0
𝑉 𝐻 =

√

𝑎18
𝜇𝑉

(𝙰𝙲 + 𝙱𝙳) =
√

0
𝑉 𝑉 ⋅0

𝐻𝐻 . (73)

In this scenario, both 0
𝑉 𝑉 and 0

𝐻𝐻 contribute equally, as the dynamics of both the human and vector population play a role in the spread of
a pathogen. It is crucial to note that the reproduction rate should not be interpreted as secondary cases within the human population alone but
rather as the geometric mean of secondary cases within both populations [11]. This can lead to situations where the disease becomes epidemic in
one population while (almost) dying out in the other.
8 
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Human and vector transmissions. By simultaneously incorporating several transmission dynamics, calculations become more complex; however, in
ertain scenarios, meaningful results can still be derived. When considering solely human and vector transmissions and neglecting transmissions
ia environmental pathogens (𝛿𝑃𝐻 = 𝛼𝑃 = 0), the following results emerge (detailed calculations provided in the Appendix):

 (𝜆) = − 𝜆5
[

𝜆2 −
(

𝛿𝐻𝐻0
𝐻𝐻 + 𝛿𝑉 𝑉 0

𝑉 𝑉 ) 𝜆 +
(

𝛿𝑉 𝑉 𝛿𝐻𝐻 − 𝛿𝐻𝑉 𝛿𝑉 𝐻
)

0
𝑉 𝐻 2] . (74)

0 is therefore a combination of 0
𝐻𝐻 , 0

𝑉 𝑉 and 0
𝑉 𝐻 :

0 =
𝛿𝐻𝐻0

𝐻𝐻 + 𝛿𝑉 𝑉 0
𝑉 𝑉

2
+

√

√

√

√

√

(

𝛿𝐻𝐻0
𝐻𝐻 + 𝛿𝑉 𝑉 0

𝑉 𝑉

2

)2

−
(

𝛿𝑉 𝑉 𝛿𝐻𝐻 − 𝛿𝐻𝑉 𝛿𝑉 𝐻
)

0
𝑉 𝐻 2. (75)

These findings align with the previously discussed results.
In a scenario where all human and vector-related transmission routes are simultaneously relevant (𝛿𝐻𝐻 = 𝛿𝑉 𝐻 = 𝛿𝐻𝑉 = 𝛿𝑉 𝑉 = 1), the following

relationship holds:

0
𝑉&𝐻 = 0

𝑉 𝑉 +0
𝐻𝐻 . (76)

However, the interpretation of the reproduction rate becomes challenging as it represents a combination of reproduction rates in both the human
and the vector populations. With all transmission pathways active, an infected individual (host or human) produces both infected hosts and infected
humans. Therefore, the reproduction number in this case is the sum of both. If either 𝛿𝑉 𝐻 or 𝛿𝐻𝑉 is set to zero, the reproduction rate reduces to
0

𝐻𝐻 or 0
𝑉 𝑉 , respectively. This can be interpreted as the number of secondary cases either in the human or the host population, as only one of

these populations exhibits full epidemic dynamics.

Human and environmental pathogen transmissions. If one assumes that vector hosts are not relevantly involved (𝛿𝑉 𝐻 = 𝛿𝐻𝑉 = 𝛿𝑉 𝑉 = 0) but pathogen
and direct inter-human transmissions are both occurring (𝛿𝐻𝐻 = 𝛿𝑃𝐻 = 1, 𝛼𝑃 > 0), the following relations arise:

 (𝜆) = − 𝜆3

|

|

|

|

|

|

|

|

|

|

𝙰𝙲 − 𝜆 𝙰𝙳 0 𝙰
𝑓𝑃
𝜇𝑃

𝙱𝙲 𝙱𝙳 − 𝜆 0 𝙱
𝑓𝑃
𝜇𝑃

0 0 −𝜆 0
𝛼𝑃 𝙲 𝛼𝑃 𝙳 0 −𝜆

|

|

|

|

|

|

|

|

|

|

=𝜆4
|

|

|

|

|

|

|

|

𝙰𝙲 − 𝜆 𝙰𝙳 𝙰
𝑓𝑃
𝜇𝑃

𝙱𝙲 𝙱𝙳 − 𝜆 𝙱
𝑓𝑃
𝜇𝑃

𝛼𝑃 𝙲 𝛼𝑃 𝙳 −𝜆

|

|

|

|

|

|

|

|

= − 𝜆5
[

𝜆2 − (𝙰𝙲 + 𝙱𝙳) 𝜆 − (𝙰𝙲 + 𝙱𝙳)
𝑓𝑃 𝛼𝑃
𝜇𝑃

]

= − 𝜆5
[

𝜆2 −0
𝐻𝐻𝜆 −0

𝑃𝐻 2] ,

(77)

with the reproduction rate:

0
𝑃&𝐻 =

0
𝐻𝐻

2
+

√

√

√

√

√

(

0
𝐻𝐻

2

)2

+0
𝑃𝐻 2. (78)

Firstly, 0
𝑃&𝐻 is larger than 0

𝐻𝐻 or 0
𝑃𝐻 . This is logical as having more possible transmission routes should increase 0. Secondly, both

nvolved reproduction rates contribute positively, thereby maintaining the general dynamics described in the preceding paragraphs.

.2. Numerical results

To illustrate the applicability of this general model in real-world scenarios, the following simulations provide a descriptive overview of how
he dynamics in this model operate.

In simulating a measles outbreak in Pakistan in 2019, the article by Memon et al. [8] served as a reference due to its close alignment with
he new general model. This allows for the replication of simulations by directly adopting variables from their work without the need for refitting
arameter values. The values used (see Table 2) are incorporated and, if necessary, converted to align with the specifications of this general model.
he replication of the article using our model, along with a plot of vaccination rates, can be found in Fig. 2(a).

By setting parameters of the comprehensive model that are not covered in the original work to zero, certain compartments such as 𝐼2 and
𝐷2 are omitted, and vector population or environmental pathogen are excluded from the figures, as they remain zeros. The exceptionally high
vaccination rate of 𝑎7 = 0.58306 results in an almost fully vaccinated population of Pakistan, approximately 230, 000, 000 [31] within a few months,
which is unrealistic. However, the primarily focus here is on the new general ODE model’s capability to address various diseases, not on estimating
or fitting parameters or improving previously published works. Therefore, all parameter values are directly taken from the original paper without
further questioning or commenting on the fitted values found by others. The compartment for second dose vaccinated individuals (V2) is neither
used in the original paper, nor in this simulation. To illustrate the general possibility to reduce or enlarge our broad model, this compartment is
still depicted in the figure.

Using Eq. (67), the reproduction rate can be computed. With this high vaccination rate, the reproduction rate is found to be very small
𝑉 ≈ 0.126. A reproduction rate smaller than one aligns with the disease dying out, which occurs rapidly after the population approaches the
equilibrium state with a relevant portion being vaccinated. If the same situation is considered without any vaccination (𝑎7 = 0), the reproduction
rate increases to 0 ≈ 3.935. As expected for a reproduction rate clearly greater than one, the disease rapidly spreads throughout the entire

population, as depicted in Fig. 2(b) (note the different scales).
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Table 2
Parameter values and initial conditions used for simulations. Non listed initial conditions mean that they are set to zero.
Parameter Measles [8] Fictitious
(

𝛥, 𝛥𝑉
)

(260479, 0) individual
month (0.15, 0.1) individual

time
(

𝜇, 𝜇𝐼 , 𝜇𝑉
)

(0.00125, 0, 0) 1
month (0.001, 0.001, 0.001) 1

time
(

𝛼𝑃 , 𝜇𝑃
)

(0, 0) 1
month (1, 0.1) 1

time
(

𝑓𝐼1 , 𝑓𝐼2 , 𝑓𝐷 , 𝑓𝜇𝐼2
, 𝑓1 (𝑡) , 𝑓𝑃

)

(1, 1, 1, 1, 1, 0) (1, 1, 1, 1, 1, 1)
(

𝑎1 , 𝑎2 , 𝑎3 , 𝑎4 , 𝑎5
)

(36.812, 0.92373, 0, 0, 0) 1
month (10, 1, 1, 1, 0) 1

time
(

𝑎6 , 𝑏6 , 𝑎7 , 𝑎8 , 𝑎13 , 𝑎14
)

(9.3408, 0, 0.58306, 0, 0, 0) 1
month (0, 0, 0.1, 0.5, 0.1, 1) 1

time
(

𝑎15 , 𝑎16 , 𝑎17 , 𝑎18 , 𝑎19
)

(0, 0, 0, 0, 0) 1
month (0, 0.1, 1, 1, 0.01) 1

time
(

𝑒1 , 𝑒2
)

(0.97, 0) (0.9, 1)
(

𝛿𝐻𝐻 , 𝛿𝐻𝑉 , 𝛿𝑉 𝑉 , 𝛿𝑉 𝐻 , 𝛿𝑃𝐻
)

(1, 0, 0, 0, 0) (1, 1, 1, 1, 1)

Initial values
(

𝑆,𝐸, 𝐼1 , 𝐼2 , 𝑆𝑉 , 𝐼𝑉 , 𝑃
)

0

(

23 ⋅ 107[31], 0, 237, 0, 0, 0, 0
)

individual (97, 1, 1, 1, 99, 1, 1) individual

Fig. 2. Simulations of a measles outbreak in Pakistan in 2019 [8] including susceptible (S), exposed (E) first and second stage infected (I1 and I2) and vaccinated (V1) individuals.
In 2(a) S is above 200,000,000 and therefore out of scale and left out. To illustrate the general possibility to reduce or enlarge our model, a second dose of vaccination (V2) and
a second stage of infection (I2) are depicted in the figures, even though they are not used in the simulations and stay zero. The parameters used for this simulations can be found
in Table 2.

To explore some dynamics and properties of the newly developed general model, simulations with fictitious parameters (see Table 2) involving all
compartments simultaneously are conducted. A basic set of 100 individuals is chosen, so the results can be interpreted as a percentage. As expected,
the disease swiftly progresses through the population and, with some delay, through various compartments from susceptible 𝑆 to recovered 𝑅 (see
Fig. 3). Similarly, the vector population becomes fully infected, and the pathogen spreads in the environment. Due to the very small detection and
vaccination rates (𝑎13, 𝑎16 and 𝑎7), only a portion of the population gets detected or vaccinated.

This simulation type allows inspection of the influence of particular specifications. For example, an increase in the detection rates to 𝑎13 = 1
and 𝑎16 = 1, leading to a 50% chance of being detected in both stages of infection, along with very strict quarantine measures (𝑓𝐷 = 0), results in
a slight decrease in infections (Fig. 4(a)). Conversely, increasing the vaccination rate to 𝑎7 = 1 leads to dynamics where only 75% end up in the
recovered department, while 25% become part of the vaccinated population that managed to escape infection (see Fig. 4(b)).

While it might not be possible to switch transmission routes on and off in a real epidemic, exploring the influence of different transmission routes
and checking whether the system’s dynamics behave as expected remains an interesting consideration. For instance, considering only inter-human
transmissions (𝛿𝐻𝑉 = 𝛿𝑉 𝐻 = 𝛿𝑉 𝑉 = 𝛿𝑃𝐻 = 𝛼𝑃 = 0), significantly slow down infections (see Fig. 4(c)). This is logical as fewer transmissions occur.
With Eq. (67), a reproduction rate of 0 ≈ 0.118 is found, leading to the disease dying out once the equilibrium is attained. On the other hand,
considering only vector transmissions, as described in the corresponding paragraph above (𝛿 = 𝛿 = 𝛿 = 𝛼 = 0), yields to a reproduction
𝐻𝐻 𝐻𝑉 𝑃𝐻 𝑃
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Fig. 3. Fictitious simulations with values from Table 2, depicting susceptible (S), exposed (E), first (I1) and second stage infected (I2), recovered (R), detected (D1 and D2) and
vaccinated (V1 and V2) humans and susceptible/infected vectors (SV/IV) as well as a pathogen spread in the environment (P).

rate of 0 = 1000 (see Eq. (71)). This may seem counterintuitive as infection dynamics within the human population decrease relevantly (Fig. 4(d)).
However, as previously described, here the reproduction rate can be interpreted as the reproduction within the vector population, where the disease
spreads rapidly, infecting the entire population.

4. Discussion

The here proposed model is versatile and can be applied to a range of different diseases. It integrates the classical 𝑆𝐼𝑅 model proposed
by Kermack and McKendrick [9], which includes compartments for susceptible (𝑆), infected (𝐼1) and recovered (𝑅) individuals. Additionally, it
incorporates an exposed compartment (𝐸) representing a latency phase, as seen in models for measles [8], avian influenza [21] and malaria [19].
A second stage of infection (𝐼2) is included, following patterns observed in HIV [7] or hepatitis [15,32] models. The model further accounts for two
doses of vaccination (𝑉1 and 𝑉2) with varying levels of immunity, similar to models for measles [16] and COVID [3]. Compartments for detected
individuals at each stage of infection (𝐷1 and 𝐷2) are included to analyze the impact of different pandemic or diagnostic measures. To extend the
model’s applicability beyond diseases transmitted through direct inter-human contact, a compartment 𝑃 for environmentally spread pathogens, as
seen in the measles model by Alemneh and Belay [14], is incorporated. Additionally, the model accounts for vector populations, as seen in models
for diseases like malaria [20] and tick-borne encephalitis [18], with susceptible (𝑆𝑉 ) and infected (𝐼𝑉 ) vector compartments. The model’s flexibility
allows for reduction to smaller, more specific models by setting parameters to zero when certain dynamics are not relevant for a particular purpose.
For example, setting all transition rates to zero except for 𝑎5 and 𝑎6 results in the classical Kermack and McKendrick model [9]. This reduction
to customized sub-models maintains basic properties such as boundedness and non-negativity. For many cases even the formulas to calculate the
reproduction rate are already provided, ready to use.

By employing this new model, readily equipped with basic mathematical analysis tools, one can swiftly address the dynamics of an emerging
disease. This enables timely guidance for decision-makers, aiding in the consideration of control strategies and the assessment of the general threat
posed by an impending disease outbreak. Although a general formula is derived to compute the reproduction rate 0 as a central measure during
an epidemic, caution is advised in interpreting the reproduction rate as it might reflect dynamics in the vector host population or the environmental
pathogen instead of human dynamics. The main purpose of this work is limited to pandemic preparedness in the very early stage of a pandemic
or epidemic. For detailed investigations equipped with profound data in a later phase, still a specialized model for the specific purpose should be
developed that goes beyond the scope of this work.

While many transition rates remain unspecified beyond being non-negative and Lipschitz continuous, they can be defined as needed, enabling
the model to cover specific investigations. For example, the introduction of a faster testing method can be analyzed by defining 𝑎13 and 𝑎16 as
the product of the testing rate and sensitivity divided by the test duration. To incorporate further seasonal dynamics, like seasonal fluctuations in
population dynamics for the vector population, the transition rates and other parameters can even be defined as time dependent functions. As long
as they are Lipschitz continuous and bounded, all proofs still stay valid or can easily be adjusted. Furthermore, to some extent, it is possible to
extract information about compartments that are not explicitly modeled. For instance, if only a known rate of detected individuals can be treated
with medication, the infectiousness can be calculated as the weighted mean of untreated and treated detected individuals, consolidated in 𝐷1 and
𝐷2. The model remains open to various specializations beyond those explicitly discussed, increasing compatibility with different research questions.

The model presented here is highly flexible and capable of simulating various diseases, yet it is limited to basic structures. The model’s generality
can be enhanced by incorporating spatial or social structures to provide differentiated responses, such as those based on age. Additionally, this
11 



C. Sticha et al. Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 188 (2024) 115475 
Fig. 4. Comparison of fictitious simulations (see Table 2 for parameter values) with some modifications, depicting susceptible (S), exposed (E), first (I1) and second stage infected
(I2), recovered (R), detected (D1 and D2) and vaccinated (V1 and V2) individuals.

model currently applies only to deterministic settings, making it suitable for larger populations and case counts. For epidemics in the very early
stages with a small number of cases, probabilistic approaches should be applied and would require separate investigation. Probabilistic models
could also capture finer dynamics, such as individuals exposed to the virus who do not develop an infection due to a rapid immune response,
which are neglected in this deterministic setting.

This model focuses exclusively on human epidemic dynamics, therefore not including exposed vector compartments and considering only one
vector population. Consequently, it cannot distinguish between wild and domestic animals. To model more detailed vector dynamics, such as those
for avian influenza [22,23], additional compartments would be required to separate susceptible and infected wild and domestic animals. If the
development stages of a vector population need to be examined in more detail, the current compartments only differentiating between susceptible
and infected vectors, are not sufficient. For instance, a model that explicitly includes different larval stages of a tick population, as in [26], is not
feasible with the present model. Furthermore, unlike the influenza model proposed by Kanyiri [6], different strains of a pathogen are not explicitly
incorporated. To achieve this, separate parallel compartments for populations infected with each strain would be necessary.

The primary objective of this general model is to enable rapid analysis during the early stages of pathogen spread, guiding control strategies and
assessing the overall hazard posed by emerging diseases. To achieve this, the model simplifies human and vector populations into homogeneous
groups, without explicitly accounting for individual differences in immune responses or resistances. It focuses on mean values for the entire
population, which suffices for analyzing overall dynamics. While increased death rates for recovered individuals due to long-term damage post-
infection are not included, these could be incorporated by adding an additional death rate to the recovered compartment. This would require
detailed knowledge about long-term excess mortality, which is unlikely to be available at the start of an epidemic. To maintain clarity and simplicity,
the model excludes many compartments identified in disease-specific publications. For example, it does not separate intensive care treatments
from other treatments, as seen in the COVID model by Fuderer and colleagues [3]. Our model distinguishes only between detected and undetected
individuals, preventing further differentiation within the detected population regarding treatment methods or disease severity. Including additional
compartments for intensive care or various medications would be necessary for such differentiation.

Despite the simplistic nature of the model, it is designed to cover a wide range of scenarios, allowing for various investigations. This flexibility
enables the analysis of potential interventions, such as increasing testing capacities, expediting testing methods, and launching vaccination
campaigns. Although specific elements like a separate compartment for quarantine are not explicitly included, the model’s consideration of different
factors affecting the infectivity of detected individuals allows for in-depth investigations.
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Appendix A. Intermediate results for the next generation matrix

In Section 3.1.4 the reproduction rates are calculated using the next generation matrix approach [11]. The inverse of matrix 𝑉 reads:
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Appendix B. Intermediate results for the reproduction rate of human and vector transmissions

The characteristic polynomial in paragraph ‘‘Human and vector transmissions’’ of Section 3.1.4 is derived as follows:
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