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Thermal vibrations in the inversion of dynamical electron scattering
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Relativistic forward scattering of electrons at finite temperature involves the incoherent superposition of
diffraction patterns formed by different snapshots of thermal atomic displacements. In experiments, thermal
vibrations lead to thermal diffuse scattering (TDS), partly dominating diffraction patterns of thick specimens.
This study sheds light on the effects of TDS on solutions to the inverse scattering problem using combined real-
and diffraction-space information acquired in a scanning transmission electron microscope (STEM) to retrieve
the object’s phase. Using frozen phonon multislice within the Einstein approximation, realistic ground truth data
of 20-nm-thick SrTiO3 is generated and subjected to contemporary inverse multislice schemes to retrieve the
projected Coulomb potential slicewise. We first classify phase retrieval algorithms as to their assumptions on
periodicity along the incident beam direction, as well as pixelwise and parametrized reconstruction methods. It
is found that pixelwise object reconstructions are capable of retrieving structural details qualitatively while being
prone to contain TDS-related artifacts which can result in unphysical potentials. For pixelwise reconstructions of
multiple independent specimen slices, we observe that the origin of TDS, i.e., thermal atomic displacements,
starts to emerge naturally. However, the quantitative assessment tends to too small mean squared thermal
displacements, also when reconstructing multiple object modes. Using an atomistically parametrized inversion
strategy which exploits the explicit separation of thermal vibrations and potentials, temperature and chemistry
of the specimen can be retrieved quantitatively with high accuracy.
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I. INTRODUCTION

Having been a focus of x-ray science over decades, pty-
chography [1] evolved to a reliable technique for solving the
inverse problem of electron scattering. One possibility to for-
mulate the inversion as a tractable mathematical problem is to
increase the dimensionality of the experimental data to induce
redundancy. Thanks to the introduction of ultrafast diffrac-
tion cameras to scanning transmission electron microscopy
(STEM) [2–6], comprehensive and densely sampled momen-
tum space information can be recorded for each position of
a scanning probe, i.e., an electron wave function which can
be shaped and positioned flexibly by the optical system of
the STEM. This combination of real- and diffraction-space
information has enabled a plenitude of new methodologies
to explore atomic-scale solid-state properties and to eluci-
date the physics of electron scattering, among them electron
ptychography.

For example, scattering at thin specimens such as 2D ma-
terials or weakly scattering organic matter can be described
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using single-scattering approaches [7]. Concerning the inverse
problem, the complex object transmission function (OTF)
can then be retrieved by both analytical direct schemes like
the single-sideband method [8,9] or Wigner-distribution de-
convolution [10], and by iterative ones, e.g., the extended
ptychographical iterative engine (ePIE) [11]. Considering
electron diffraction from the general perspective, however,
introduces two major additional complications.

Firstly, multiple electron scattering becomes significant
above specimen thicknesses of a few nanometres, limiting
the applicability of single scattering approximations [12–14].
Forward scattering theories provide solutions to the dynamical
electron diffraction problem in various frameworks, among
them Bloch wave [15] calculations exploiting the periodicity
of crystalline specimens, multislice [16] approaches without
constraints as to translational symmetry, or scattering matrix
approaches. Inversion strategies have recently been developed
employing the scattering matrix concept [17–20], typically
assuming periodic specimens to limit the matrix dimension to
a computationally manageable size in practice. Importantly,
inverse multislice has been introduced [21–25] which is not
constrained to periodic specimens. To date, inverse multislice
allows for structure determination with superresolution lim-
ited only by the thermal vibrations of the atoms [22].

Secondly, temperature effects lead to the breaking of any
symmetries in the specimen and cause thermal diffuse scat-
tering (TDS) which becomes partly dominant at elevated
specimen thickness [26,27]. The TDS intensity governs the
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dark field in diffraction patterns and is sensitive to both, chem-
ical composition and temperature [28–31]. Including TDS
accurately in the inversion process is thus not only attractive
from the application point of view, but also provides insights
into the fundamental physics of electron scattering in depen-
dence of the temperature. For scattering matrix approaches,
TDS has successfully been included in forward simulations
[32], whereas the introduction to inverse scattering beyond
absorption potentials [33] is a remaining challenge. Con-
temporary inverse multislice schemes strive for finding the
projected potentials of specimen slices as a static object
to be determined such that consistency with experimentally
recorded diffraction patterns is obtained. However, it is known
from forward scattering theory that thermal effects involve the
incoherent averaging over multiple states of the specimen, as
included, e.g., in the frozen phonon (FP) model [34–36]. As
a consequence there is not one, fix object to reconstruct, but
an object which itself has never existed during experiments,
formed from several snapshots of its thermal perturbations.

Contemporary inverse multislice methods have several
possibilities to reproduce diffuse scattering.

(i) Inverse multislice exploiting the periodicity of crys-
talline specimens along the electron beam direction via
reconstructing a single slice on a pixelated grid repeatedly
used in the multislice simulation have pointed towards TDS
be reconstructed only formally via introducing artifacts in the
reconstructed potentials [25].

(ii) Optimizing multiple slice transmission functions of
a specimen pixelwise offers sufficient freedom to produce
diffuse scattering either in a fully coherent setup in unimodal
manner for a single FP multislice configuration [22], or using
a truly multimodal specimen setup [37], the latter reflecting
the incoherent averaging within the FP concept.

(iii) Atomistically parametrized inversion has been sug-
gested as a consequent inverse implementation of the FP
multislice model [25], however, it has only been exploited for
structure retrieval so far.

So far, pixelwise reconstructions using ansatz (ii) have
successfully reconstructed different thermal displacement
configurations within an ultrathin specimen of sub-nanometer
thickness [37]. However, a quantitative evaluation of the
mean squared displacements (MSDs) currently tends to un-
derestimate thermal effects. Moreover, TDS causes significant
fractions of the scattered intensity typically at elevated
specimen thicknesses well beyond 10 nm. This suggests a
systematic study on the quantification of MSDs assuming
also thicker specimens with considerable amounts of TDS,
and additionally the exploration of different regularization
concepts. Parametrized strategies (iii) require substantial prior
knowledge about the structure. Although the FP model is
conceptually exactly represented there, distinguishing temper-
ature effects from atomic number contrast remains a decisive
task to measure temperature and chemistry quantitatively, be-
cause both tend to increase high-angle scattering in similar
manner.

In this work, we briefly summarize the multislice concept
first, together with the frozen phonon and Debye-Waller ap-
proach to account for temperature effects in scattering models
(Sec. II). These forward models form the decisive kernel of
inversion schemes and thus lay the basis for the subsequent

conceptual work. Section III provides an overview over differ-
ent contemporary gradient-based inverse multislice concepts
as a basis for the application in subsequent sections. This is
followed by reconstructions of simulated momentum-resolved
STEM data for an SrTiO3 crystal in Sec. IV. Whereas struc-
ture retrieval has been the focus of previous work using
parametrized inverse multislice [25], this study sheds light on
the effect of thermal diffuse intensity in diffraction patterns on
various inverse multislice reconstructions, of both pixelwise
and parametrized nature. In particular, we analyze reconstruc-
tions obtained by pixelwise optimization of the OTF using
ansatz (i) and (ii), being one computationally efficient model
optimizing only one object transmission function used repet-
itively, but precluding the incorporation of TDS. Importantly,
further models reconstructing each slice independently in uni-
or multimodal manner are comprehensively studied, provid-
ing the opportunity of incorporating TDS for the multimodal
setup. In this context we showcase the applicability of regu-
larization techniques for pixelwise reconstructions [23,38,39],
aiming at suppressing the generation of artifacts in individual
slice transmission functions in favor of enforcing the solver to
produce TDS by means of physically reliable MSDs. The find-
ings are compared with an inverse algorithm featuring phonon
ensemble averaging, drawing further attention to the quantita-
tive reconstructions of atom potentials, which is a prerequisite
for deciphering the accurate chemistry. In that respect, a
comprehensive evaluation of the uniqueness of determining
the type and MSD of an atom closes this section. Results
are discussed in Sec. V, which furthermore includes a study
on the decontamination of amorphous surface layers during
the reconstruction by introducing a hybrid inverse multislice
model which consists of both, atomistically parametrized and
pixelwise reconstructed slice transmission functions.

II. FORWARD SCATTERING THEORY

A. Multislice concept

Forward momentum-resolved STEM simulations need to
propagate an electron wave through the whole TEM, i.e., the
probe-forming optics, the specimen and finally to the detec-
tor in the Fraunhofer diffraction plane. The incident electron
probe wave function Ψin(�r) can be obtained by an inverse
Fourier transform of a complex pupil function, whose modu-
lus is given by a binary aperture function A(�k). The vector �k =
(kx, ky) denotes a reciprocal space coordinate, whereas kmax

defines the radius of a circular aperture. Via |�k| = sin(θ )/λ
spatial frequencies relate to angles θ inclined with the optical
axis, whereas θconv = arcsin(λkmax) defines the convergence
semi-angle of the conical incident beam and λ the electron
wavelength. Lens aberrations are included as a phase factor
e−iχ (�k) with χ (�k) the aberration polynomial, such that the
probe wave function in real space reads

Ψin(�r, �s) = F−1[A(�k) · e−iχ (�k) · e−2π i�k·�s], (1)

with �s the scan coordinate. In this work, only a defocus a is
considered such that χ (k) = πλak2.

Within the multislice scheme, multiple scattering is taken
into account by the multiplication of the electron wave func-
tion with a complex OTF Φ(�r) in each slice, and Fresnel
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FIG. 1. Multislice algorithm scheme. The electron probe Ψin is
propagated through the sliced specimen by alternating multiplication
with the slice’s object transmission function Φ and convolution with
the Fresnel propagator F . A Fourier transform of the exit wave Ψexit

gives the diffraction patterns (DP).

propagation F in between. The OTF phase ϕ(�r) = ωVP(�r)
(phase grating) incorporates the interaction constant ω and the
projected slice potential

VP(�r) =
∫ ∞

−∞

∑
m

vm(�r − �rm, z) dz , (2)

integrated along the beam direction z. A modulus of Φ(�r)
can be used to account for absorption. In Eq. (2), vm(�r) is
the Coulomb potential of atom m located at the origin, �rm =
(xm, ym) denotes its lateral position in the slice. As illustrated
in Fig. 1, the exit wave function of a specimen with N slices
is calculated as

Ψexit (�r, �s) = F
(

1
2 tN

) ⊗ ΦN (�r) · F
(

1
2 tN

)
⊗ F

(
1
2 tN−1

) ⊗ ΦN−1(�r) · F
(

1
2 tN−1

)
⊗ · · · ⊗ F

(
1
2 t1

) ⊗ Φ1(�r) · F
(

1
2 t1

) ⊗ Ψin(�r, �s),

(3)

with Φn the OTF of slice n having a thickness tn. Note the
Fresnel propagation over half the slice thickness so as to apply
the OTF at the slice center. Furthermore, the first propagation
of the probe Ψin can also be regarded as an additional defocus
of the probe-forming lens, and the final propagation F ( 1

2 tN )
to the exit face of the specimen is not observed in diffraction
work, because it results in a phase plate in the back focal plane
of the lens. Note that for the special case of equally thick
slices with thickness t , Fresnel propagation in between the
slices equals convolution with F (t ). After the last slice, the
exit wave 
exit (�r, �s) is transferred to the farfield by Fourier
transform, whereas the squared modulus gives the recorded
diffraction pattern intensity at scan point �s,

I (�k, �s) = ∣∣F�r[Ψexit (�r, �s)](�k)|2. (4)

FIG. 2. Simulated position-averaged convergent beam electron
diffraction (PACBED) patterns (square-root scale) using (a) frozen
phonons in Einstein approximation and (b) the Debye-Waller damp-
ing. The inset in (b) shows the Ronchigram simulated with absorptive
potentials. The intensities are normalized to the frozen phonon
simulation.

Up to this point, the projected potentials are derived from
the Coulomb potentials of static atoms, located at fixed po-
sitions over time. No temperature effect is included, such
that inverting experimental momentum-resolved data based
on Eq. (3) is incomplete.

B. Frozen phonon model

The frozen phonon (FP) model provides a physically re-
liable incorporation of thermal diffuse scattering (TDS) by
displacing atoms statistically from their equilibrium posi-
tions �rm, and by averaging incoherently over the resulting
diffraction patterns of multiple FP ensembles. The projected
potential of a slice for one FP configuration τ then reads

V FP
P (�r, τ ) =

∫ ∞

−∞

∑
m

vm
(
�r − �rm −

√〈
u2

m

〉 · �gm,τ , z
)

dz, (5)

with two-dimensional Gaussian normal variables �gm,τ to de-
scribe the random displacement of atom m according to the
atom’s specific, temperature-dependent MSD 〈u2

m〉 assuming
the Einstein model. With Eq. (5) replacing Eq. (2), the mul-
tislice operation (3) yields a diffraction pattern IFP

τ (�k, �s) with
TDS from a single FP configuration τ via Eq. (4). Note that
V FP

P (�r, τ ) does not obey the crystal symmetries anymore. Re-
alistic diffraction patterns are obtained by averaging multiple
FP configurations τ = 1, 2, . . . , T ,

IFP(�k, �s) = 1

T

T∑
τ=1

IFP
τ (�k, �s). (6)

Figure 2(a) shows a simulated position-averaged convergent
beam electron diffraction (PACBED) pattern of an SrTiO3

crystal, generated using frozen phonons. The effect of TDS
is clearly visible as diffuse intensity surrounding the Ronchi-
gram, i.e., the bright field disk. It dominates the dark field
and exhibits characteristic Kikuchi bands. While this model
indeed offers a physically accurate solution to the problem
for high-energy electrons and uncorrelated atomic vibrations,
the computational demand increases proportionally to T . Note
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that the meanings of equilibrium atom positions �rm and indi-
vidual slice transmission functions Φn cease as to modeling
diffraction patterns including the dark field. Instead, a recon-
struction based on the FP model is to yield a multimodal OTF
ensemble T for each slice.

C. Debye-Waller approximation

The Debye-Waller (DW) model provides an efficient
method in which the atomic potentials in Eq. (2) are replaced
by their average over time to incorporate thermal vibra-
tions. They are convolved with a Gaussian function, which
is conveniently described in Fourier space by multiplying
the atomic scattering amplitude fm(�k) = F[vm](�k) with the
Debye-Waller factor

f DW
m (�k) = e− 1

4 Bmk2
fm(�k). (7)

Assuming isotropic thermal vibrations, the Debye parameter

Bm = 8π2
〈
u2

m

〉
(8)

is given by the MSD and can be found in literature for a variety
of materials. For anisotropic vibrations, Bm is a second-rank
tensor. Unlike the FP model, the DW approach retains the
symmetry of the structure during simulations. Thus neither
thermal diffuse intensity nor Kikuchi bands are generated as
exemplified in Fig. 2(b). The neglect of TDS leads to too in-
tense Bragg reflections which can be accounted for by adding
an absorptive potential vm,abs such that vm → vm + ivm,abs as
was used to simulate the inset of Fig. 2(b). This converts Φn(�r)
from a pure phase object to a slice transmission function with
additional amplitude modulation dedicated to remove the TDS
from the diffraction pattern [40–42]. Therefore care is to be
taken when employing the DW scheme in an inverse model
applied to diffraction patterns with TDS.

III. INVERSE MULTISLICE PROBLEM

A. Gradient-based optimization

The inverse problem, involving the reconstruction of an
unknown specimen, essentially consists of iteratively per-
forming forward simulations and optimizing the system’s
parameters until the simulated diffraction patterns closely
match the experimental ones. The optimization parameters
{X } may include characteristics of the specimen, such as the
transmission functions Φn of the individual slices, as well
as electron probe parameters like aberrations or coherence.
During the optimization a loss function L j is to be minimized,
which calculates the error between the reconstructed and the
experimental diffraction patterns in each epoch j. A conve-
nient loss is defined as the mean absolute error

L j = 1

Npix

∑
�k∈K

∑
�s∈S

∣∣I {X ( j)}(�k, �s) − Iexp(�k, �s)
∣∣ + μR j

= L1, j + μR j (9)

involving the pixelwise subtraction of the diffraction pat-
terns obtained by using the parameters {X } within the current
forward model and the experimental ones, respectively. In
Eq. (9), K defines a region in diffraction space (i.e., solid
angle range) to be used for calculating the loss, S refers to

FIG. 3. Schematic illustration of the pixelwise [(a) and (b)] and
parametrized [(c) and (d)] OTF optimization models. The atom posi-
tions received from the optimization are colored in grey and the atom
peak positions in the OTF in red, which are equal in the pixelwise
optimization model. Since in the parametrized model a FP simulation
is included, the atom positions deviate from the optimized positions
statistically according to the MSD.

a set of scan points �s to be taken into account, and Npix is the
total number of diffraction pattern pixels from which L1 is
determined. Optionally, a regularization term R j weighted by
μ can be added so as to prevent overfitting or promote desired
properties of {X }, e.g., smoothness of Φn.

The set {X } is adjusted in every epoch j along the negative
loss gradient with respect to all parameters of interest, so
as to minimize L j+1. For example, component l of {X } is
updated via

X ( j+1)
l = X ( j)

l − βl · ∂L j

∂X ∗
l

(10)

with βl the learning rate. Especially for inverse multislice
within the FP approach, potentially accounting for partial
coherence in addition, calculating the derivatives constitutes
a computationally demanding task, for which, however, effi-
cient backpropagation algorithms exist [43].

B. Slicing concepts

It is clear that exploiting as much prior information as
possible does not only accelerate the reconstructions due to,
e.g., an educated guess of {X (1)} but also reduces the risk
of getting stuck in a local minimum of L. Furthermore, the
electron probe and slice transmission functions Φn can either
be represented as numerical, complex-valued arrays of inde-
pendent pixels to form {X } with a huge cardinality of the order
107, or be parametrized by a much sparser set of aberration co-
efficients and pre-calculated atomic potentials [44]. Together
with the possibility to enforce periodicity of the specimen
along electron beam direction or not, four different slicing
concepts are possible as schematically illustrated in Fig. 3.
Pixelwise strategies as shown in Figs. 3(a) and 3(b) offer enor-
mous flexibility at individual pixel level to reconstruct slice
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transmission functions Φn. In the strict sense, solutions are
not even bound to represent physically reliable OTF phases
which correspond to projected potentials as in Eqs. (2), (5),
and (7), but often resemble the atomic structure already well.
In cases where the specimen is periodic in beam direction, a
straightforward method to reduce both, computational effort
and degrees of freedom, is to use the wrapped-slice scheme as
in Fig. 3(a). This means optimizing the very same slice trans-
mission function Φ1 to be reused to describe the interaction
in each slice. This model obviously precludes any ensemble
averaging as required by Eq. (6) and is thus incapable of
incorporating TDS correctly.

The situation is different in Fig. 3(b), where N independent
slices are reconstructed. This allows for solutions nonperiodic
in beam direction, being an interesting case as to study TDS.
Let us assume the forward FP multislice case and a crystal
having lattice periodicity along beam direction except for
thermal disorder. Then Eq. (5) would be re-evaluated with the
same equilibrium positions �rm in each slice, however, with
newly drawn random vectors �gm. Thus a pixelwise recon-
struction employing a specimen model as in Fig. 3(b) can, in
principle, be expected to yield potential maxima at positions
scattered around the equilibrium positions �rm from slice to
slice. Although first studies exist for multimodal reconstruc-
tions of a two-slice system [37], the quantitative nature of the
obtained MSDs, retrieved potentials and the reconstruction
settings pose further remaining challenges.

To constrain the OTF phases to be a sum of atomic poten-
tial functions, the specimen can be reconstructed parametrized
[25], optimizing a set of specimen-characteristic parameters
and recalculating the OTF from these in every iteration.
The number of optimization parameters corresponds approx-
imately to the number of atoms in the interaction volume.
Making use of the so-released computing resources opens a
way to incorporate a full FP model with T = 1, . . . , 10 into
the reconstruction for a 50-slice system dealt with here, ensur-
ing physically nearly correct inclusion of TDS and potential
landscapes in accordance with self-consistent Hartree-Fock
calculations yielding fm(�k) for isolated atoms [41,44,45]. Fig-
ure 3(c) exemplifies how TDS can be taken into account even
within a wrapped-slice model for specimens periodic along
the beam direction. Optimized are the atomic equilibrium
positions �rm and types via vm, being common to all slices and
FP configurations. However, random thermal displacements√〈u2

m〉 · �gm,τ are added to �rm every time the slice is used.
Nonperiodic cases can be treated similarly, except that each
slice exhibits an individual set of atom types and equilibrium
positions, as depicted in Fig. 3(d).

At first sight, building the projected potential by atomic
look-up tables implies all atomic types to be known be-
forehand. Moreover, the chemistry apparently remains static
during the reconstruction because vm(�r) is not a differentiable
parameter, in contrast to a pixelwise optimization of the OTF
phase. As will be shown below, this problem can be addressed
in two steps. Firstly, a pixelwise reconstruction is performed
to identify atomic sites and guess atom types. Secondly, we
employ a scalar, differentiable weighting parameter w for the
atom potentials according to

vm(�r) −→ wm · vm(�r), (11)

which replaces vm in Eqs. (5) and (7), respectively. By this
means, the derivative with respect to wm indicates whether
the scattering potential at site m is too high or too low, such
that the atom type can be adjusted in the model for the next
epoch. This strategy is used because the atomic potentials are
discretized according to the periodic system. Note that by the
incorporation of explicit atom types, and allowing for their
update via a decision based on the weight gradient, mapping
composition is in principle possible by ptychography. Since
Z-contrast affects high angle scattering mostly, being in turn
dominated by TDS, studying how accurate different inverse
multislice concepts incorporate temperature effects and Z-
contrast suggests itself and is dealt with next.

IV. IMPACT OF TDS FOR DIFFERENT
INVERSION CONCEPTS

A. Ground truth simulation and reconstruction framework

Momentum-resolved STEM reference data of strontium
titanate (SrTiO3) were simulated as the ground truth using
the multislice algorithm as implemented in the TORCHSLICE

[25] software employing the FP approximation with 25 ther-
mal configurations newly drawn for each probe position and
slice. In order to achieve a substantial amount of TDS, the
specimen thickness was chosen to 50 unit cells, corresponding
to approximately 20 nm. Electron beam incidence was along
〈100〉 with an energy of 80 keV. The slices had a constant
thickness of one unit cell such that t = 0.3905 nm, and real-
space potentials have been sampled with a pixel size of 3
pm. Scattering factors for electrons from isolated atoms were
taken from Lobato and van Dyck [44]. The electron probe
was scanned across 3 × 3 unit cells with a scan step size of
0.49 Å and a slight defocus of −5 nm was used. Resulting
CBEDs had a cutoff at 1/6.1 pm−1 or 754 mrad, respec-
tively. A part of the FP simulation is shown as a PACBED
in Fig. 2(a). In the following, the slicing concepts introduced
in Sec. III B are systematically studied as to the effect of TDS
on the reconstruction, the prospects of regularization concepts
and the capabilities to yield thermal MSDs and atomic types
quantitatively.

For reconstructions the loss L was calculated according to
Eq. (9). The learning rate β was set to 2 × 10−3 for pixelwise
reconstructions and to 1 × 10−2 for parametrized ones, and
always halved when the loss increased. After 50 and 100
iterations the learning rate was reset to allow the escape from
a local minimum. After 150 epochs at maximum, the loss
was stable and the reconstruction terminated. In independent
slice reconstructions, the slice sequence has been permuted
several times during the reconstruction to minimize artifacts
stemming from limited resolution along beam direction and
limited surface sensitivity.

B. Pixelwise reconstruction of a wrapped slice

1. Incorporation of the full�k space

Due to the lack of any ensemble averaging pointed out
in Sec. III B, it is interesting to study how the pixelwise
reconstruction of a wrapped slice accomplishes the loss min-
imization according to Eq. (9) when TDS is present as in
Fig. 2(a). Two models for the slice transmission function Φ1
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FIG. 4. Result of inverse multislice using a pixelwise reconstruc-
tion of a wrapped slice. (a) Simulated PACBED intensity (square root
scale) using the reconstructed phase grating shown in (b) received
by optimizing phase and amplitude of Φ1. (b) Section of the recon-
structed phase grating (top left atom being Sr) in radian with log
scaled FFT of the whole scan area as inset. FFT frequencies up to
1 Å−1 [(c) and (d)] show the corresponding results for reconstructions
optimizing a pure phase slice transmission function.

can be used. Either the slice transmission function is (i) a com-
bined amplitude and phase object or (ii) a pure phase object.
Considering the first case, optimizing a complex OTF Φ1 for
a slice thickness of 1 unit cell without any regularization leads
to the data in Fig. 4, where Fig. 4(a) shows the PACBED
simulated employing the reconstructed OTF whose phase is
shown in Fig. 4(b). Furthermore, Figs. 4(c) and 4(d) exhibit
the result of reconstructing a pure phase object. This repro-
duces the bright field part of the PACBED to some extent,
but it is also obvious that the phase distribution in Fig. 4(d)
does not resemble the atomic lattice very well. The following
considerations as to the wrapped slice model thus refer to
reconstruct both amplitude and phase of Φ1.

Regarding the summations in Eq. (9), K span the whole
diffraction space and S the whole 3 × 3 unit cells large scan
region of the ground truth with equivalent super cell size as
well as real and reciprocal space samplings, respectively. The
PACBED in Fig. 4(a) exhibits diffuse intensity, reproducing
also clearly visible bands surrounding the bright field disk.
Given the static slicing model, the emulation of TDS features
is surprising on the one hand. On the other hand, the striking
similarity between Figs. 2(a) and 4(a) indicates that at least
numerically, the pixelwise reconstruction possesses enough
degrees of freedom so as to minimize Eq. (9) by matching
model and ground truth diffraction patterns up to scattering
angles of approximately 4 × θconv. The origin becomes obvi-
ous in the reconstructed phase grating in Fig. 4(b), showing
stripelike artifacts superimposed to the atomic structure ex-
emplarily depicted for a quarter of a unit cell. Although these

FIG. 5. Loss L1, PG-Error EPG and total variation RTV (top),
and the relative maximum of atomic phases with STD (bottom) of
pixelwise wrapped-slice reconstructions done using different recon-
struction angles α.

features provide a good recovery of the diffuse intensity dis-
tribution, no direct physical meaning can be assigned to them.
Nevertheless, the efficiency of the wrapped slice approach
is attractive in practice, which suggests exploring inverse
multislice reconstruction conditions under which TDS-related
artifacts can be suppressed as much as possible. To this end,
adding a regularization term μR in Eq. (9) is studied next.

2. Quantification of reconstruction errors

Figure 2 clearly indicates the difference between scatter-
ing models employing FP ensembles and the static case in
Figs. 2(a) and 2(b), respectively. Because TDS dominates the
diffraction space beyond 1-2 times the radius of the Ronchi-
gram, which itself can be obtained rather accurately using the
static DW model, a significant suppression of TDS-related
artifacts is observed when L1 is calculated from solid angles K
for which k × λ < c × θconv =: α with c > 1 kept small, in fa-
vor of delivering smooth phase gratings with atomic potentials
given by Eq. (7). Utilizing this relation, we propose suitable
quantification of the diffuse intensity which is intrinsically
produced to minimize L1 and TDS-related phase artifacts. We
define the total variation

RTV = 1

2Npix

∑
i, j

(|ϕi+1, j − ϕi, j |2 + |ϕi, j+1 − ϕi, j |2 + ε)
1
2

(12)

of the phase ϕ represented on a pixel array with Npix pixels
and (i, j) indexing a pixel. The parameter ε becomes relevant
for regularization purposes below and is kept zero for the
moment. The total variation is expected to increase with α,
which is indeed the case as shown by the triangles in Fig. 5.
In particular, RTV(α) stays small for α � 2 × θconv, indicating
that reconstructions with this setting are robust against TDS
artifacts in the sense that atomically smooth OTF phases are
obtained. For the present example, RTV stagnates for α � 7 ×
θconv, presumably because the amount of TDS decreases with
high scattering angles and thus causes no further significant
artifacts in the reconstructed slice transmission function Φ1.

In addition, it is instructive to quantify the cumulative nor-
malized differences between reconstruction and ground truth
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as to the obtained phase gratings. To this end, we define

EPG =
∑

�r

|ϕ{X }(�r) − ϕref (�r)|∑
�r ϕref (�r)

(13)

with ϕ{X } and ϕref being the phases of the final reconstruction
and the ground truth, respectively and the sum over 1.5 unit
cells. ϕref has been derived using the DW model in Eq. (7),
being equivalent to an ensemble average over Eq. (5). Since
physics is invariant against a global constant phase shift, an
offset was added to the phase of the reconstructions which
minimized the error of the background being ϕref < 0.1 ϕref

max
between the DW simulation and the reconstruction result. The
error of the reconstructed diffraction patterns is quantified by
the first summand L1 of the loss in Eq. (9), multiplied by 108

for better presentation, if not stated differently.
As a matter of fact, subjecting increasing solid angles K to

the loss minimization lets the loss decrease with increasing α,
as illustrated by the black crosses in Fig. 5. Note that for scat-
tering beyond the reconstruction angle α, the intensity I {X }(�k)
of the final reconstruction falls to zero, reducing the overall
agreement. Conversely, the introduction of TDS-related arti-
facts to the reconstructed OTF increases the error of the phase
gratings EPG(α) as shown by the grey circles in Fig. 5, which
follows the same trend as RTV(α). This confirms that the total
variation is a reliable measure of the TDS-induced artifacts
where EPG is in practice not available due to the insufficient
knowledge of the ground truth. Additionally this suggests
RTV to be an appropriate regularization term which is studied
more extensively below.

So far, the considered error metric has statistical character.
With respect to the sensitivity of inverse multislice to the
local chemistry of the specimen, we add the ratio of the phase
peaks within the reconstruction and ground truth, respectively
in Fig. 5 for different atomic columns. In particular, an area
of 4 unit cells has been considered, yielding several phase
peaks for each of the different atomic columns containing
Sr, TiO2, or O, from which mean and standard deviation
have been determined. Although the accuracy increases up
to a reconstruction angle of approximately α = 2 × θconv, the
obtained phases amount only to 90 and 70% of the true ones.
This means that the reconstructed projected potentials tend to
be underestimated significantly, a problem dealt with in more
detail below.

3. Suppressing artifacts with regularization

The total variation RTV in Eq. (12) was shown to be a mea-
sure of the amount of TDS artifacts in reconstructions. Using
the full diffraction space for the inverse problem becomes
feasible, if smooth phase gratings are enforced via penalizing
high-frequency noise in real space in terms of the regulariza-
tion term in Eq. (9). To assure differentiability, ε = 10−8 is
used for RTV regularizations in Eq. (12), and the impact μ

of the regularization term in Eq. (9) is systematically studied.
Furthermore, we explore the performance of sparse frequency
regularization

RSF = 1

Npix

∑
�k

|F[Φ](�k)|, (14)

FIG. 6. Effect of total variation (TV) and sparse frequency (SF)
regularization on pixelwise reconstructions of the single OTF within
the wrapped-slice model. (a) 1 unit cell of the phase grating (top left
atom being Sr) and FFTs of the whole scan area (right) of reconstruc-
tions using μ = 106 and μ = 10−1 for TV and SF regularization,
respectively. Phase grating scale bars, 1 Å. FFTs are in log scale up to
1 Å−1. (b) Losses L1 and PG-errors EPG and the total variation RTV

of the PG (top), and relative maximum atomic phases ϕ (bottom)
of regularized reconstructions dependent on the regularization factor
μ for TV (left) and SF regularization (right). (c) Radial average of
PACBEDs for selected regularization factors for both regularization
methods, demonstrating the suppression of diffuse intensity as com-
pared to the ground truth FP simulation (black dots).

which updates all Fourier coefficients towards zero with the
same rate, such that small Fourier coefficients are suppressed
more strongly in relative respect. Thus RSF steers the phase
grating towards a sparse spectrum resulting in highly periodic
reconstructions.

The reconstructions using RTV and RSF and their Fourier
transforms are shown in Fig. 6(a), exhibiting a good suppres-
sion of the high-frequency phase artifacts caused by TDS for
both regularization methods. It is to note that at the same time,
the maximum phase is consistent with the nonregularized
phase grating in Fig. 4(b). Although no solid angle K needs
to be restricted empirically, regularization comes along with
the free choice of its strength μ in Eq. (9). The parameter
μ has thus been varied from μ = 0 (no regularization) up
to 106 or 0.1, being strong regularizations for RTV and RSF,
respectively.
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As μ increases, the total variation and thus the amount
of TDS-related artifacts decreases. It then stagnates for both
regularization schemes as depicted in Fig. 6(b). The same
trend is observed for the error EPG of the reconstructed phase
grating with respect to the DW expectation. The L1 loss
of the diffraction pattern increases significantly, indicating
that the regularization terms indeed cause a strong suppression
of the intensity scattered to high angles to favor smooth po-
tentials, as intended. The ratio of the maximum reconstructed
phases to those of the DW ground truth in Fig. 6(b) (bot-
tom) yield a better agreement for the heavy atoms where a
good match is obtained, but oxygen columns are still assigned
too weak scattering of less than 80%. Characteristics of the
reconstructed diffraction patterns are furthermore compacted
in Fig. 6(c), where azimuthal PACBED averages are shown
for various regularization strengths. The graphs confirm that
reconstructions reproduce the diffraction pattern accurately
within the central part dominated by Bragg scattering up to
approximately 1.5 × θconv and in the solid angle of the first
Laue zone when using only small regularization strengths μ,
as seen by comparison with the FP ground truth (black dots).
At the same time, both regularization methods, RTV and RSF,
are capable of practically eliminating the occurrence of diffuse
intensity if μ set to high values.

As an intermediate conclusion, reusing the OTF in a pix-
elwise reconstruction can restore the atomic structure very
well, but it is accompanied with artifacts when TDS is present
in the dark field. Since the wrapped slices model does not
allow for incorporating TDS, this slicing method has a limited
sensitivity to characteristics of high-angle scattering during
inversion of momentum-resolved STEM data, such as atomic
number contrast due to local chemical composition gradients
of the specimen. The oxygen columns are well differentiable
from the Sr and the TiO columns in all cases, but their phase
shifts are far smaller than the true ones.

C. Slicewise optimization

Individual optimization of the slice OTFs as in Fig. 3(b)
allows a symmetry break in z direction, and enables diffuse
scattering either by a single snapshot of atomic displacements,
or via multiple OTF modes according to true thermal diffuse
scattering in FP approximation. Before addressing the inverse
problem, let us frame the potential outcome in a forward sim-
ulation to eliminate, e.g., the impact of parameters inherent
to the reconstruction such as loss definitions, learning rates
or regularizations. To this end, Fig. 7 shows the losses of a
DW simulation on the one hand, and FP simulations using
different FP configurations on the other hand. The loss L1

was calculated with respect to the ground truth simulations
employing 10 to 100 FP configurations, and simulations have
been performed for various specimen thicknesses. Each sim-
ulation was repeated 20 times and from this, the mean and
the standard deviation of L1 were calculated. The latter was
found to be highest for 1 FP configuration and two unit cells
specimen thickness and amounts to 2% of the loss, being
negligibly small.

Regarding thicknesses below 100 unit cells (40 nm), Fig. 7
shows that a single FP snapshot results in a worse agree-
ment with the ground truth than a DW simulation (horizontal

FIG. 7. Forward simulation study for various specimen thick-
nesses given in unit cells showing the losses to a full FP simulation
for simulations using different numbers of FP configurations and for
the respective DW simulation, represented by the lines.

lines) which lacks diffuse scattering entirely. Even for the
high thicknesss of 250 unit cells (100 nm), diffuse intensity
introduced by a single snapshot leads to an insignificantly
better agreement. Note that L1 has been calculated based
on individual diffraction patterns, and that a single thermal
snapshot is insufficient to represent TDS physically, since the
simulation remains fully coherent. When dealing with a single
FP configuration, we therefore only use the term diffuse in-
tensity without the attribute thermal. Concerning thicknesses
above 50 unit cells, at least two FP configurations are required
to improve L1 as compared to the DW model. For thinner
specimens, the respective minimum number of FP configu-
rations increases.

As to the reconstruction problem with TDS, this forward
simulation study provides a gauge of how many object modes
to allocate at least. In the present case of 50 unit cell thick
SrTiO3, we concentrate on one to six object modes, as can
be motivated as follows. Although one expects a single mode
to cause higher L1 than the DW approach, it might be an
upper limit in some cases considering the capability of the
computational ressources. Thus it is tested in the following,
to which extent structural disorder in the unimodally recon-
structed phase gratings corresponds to the thermal MSDs of
the ground truth. Note that the loss from the forward sim-
ulations in Fig. 7 does not allow direct conclusions on the
quality of the reconstructed MSDs. Then, two object modes
are considered since this is the minimum requirement for an
FP implementation in the reconstruction. Six modes corre-
spond to the maximum that can currently be considered with
state-of-the-art hardware assuming the dimensionality of the
problem considered here. In analogy to Sec. IV B, we consider
two cases, where the slice transmission functions Φ1...N are
either arbitrary complex or pure phase objects.

1. Slices as amplitude and phase objects

Unimodal reconstruction. As to inverse multislice,
Fig. 8(a) (left) shows the slice-averaged reconstructed phase
grating received by optimizing 50 slice transmission func-
tions independently pixelwise in amplitude and phase. The
atomic landscape is clearly visible and the quantitative er-
ror to the ground truth, being EPG = 14.7, is slightly lower
than those of the nonregularized wrapped-slices reconstruc-
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FIG. 8. Pixelwise reconstruction of independent slices optimiz-
ing phase and amplitude. (a) Averaged phase gratings and phase
grating of slice 10 (top left atom being Sr) of pixelwise independent
slice phase and amplitude reconstructions done without regulariza-
tion (left), and with TV- and SF-regularization (middle) using the
strengths μ = 105 and 10−2, respectively, and using 2 object modes
(right). (b, c) Normalized atomic displacement distribution of the Sr
columns with Gaussian fits of the reconstruction using independent
slices and using 1 (b) and 5 (c) object modes. The inset shows the
atomic displacement distribution in two dimensions.

tion. Although the averaged phase grating is relatively smooth
(RTV = 1.08 × RTV,simu.), a closer look at the reconstructed
phase distributions reveals that some individual layers are still
affected by artifacts [Fig. 8(a), no reg, slice 10 ]. With atomic
phases being 82 ± 3%, 87 ± 3%, and 73 ± 4% of theory for
Sr, TiO, and O, respectively, the reconstructed phase gratings
do not show a significant improvement. However, the loss
of L1 = 8.11 is close to the loss of a simulation using 1 FP
configuration in Fig. 7, suggesting a quantitative assessment
of the potentially reconstructed thermal disorder.

Within an area of 4 unit cells, the centers of mass have
been calculated in the reconstructed phase gratings inside
patches around the average atom column position, whereas
phases smaller than 5% than the maximum at the respective
column were set to zero to suppress noise stemming from
the reconstruction. We concentrate on the atomic columns
consisting of pure elements, i.e., Sr and O. The spatial dis-
tribution of these site-specific centers of mass is shown in the
inset of Fig. 8(b). The histogram of the atomic displacements
in Fig. 8(b) indicates a decreasing frequency with increasing

TABLE I. Pixelwise optimization of 50 independent slice
transmission functions optimizing phase and amplitude. Phase recon-
struction errors EPG and reconstructed maximum atomic phases ϕReco

(normalized to the ground truth simulation) for the three different
atom columns using no as well as TV and SF regularization and 1, 2,
and 5 object modes (OM).

ϕReco/ϕSimu in %

Reconstruction model EPG in % Sr TiO O

1 OM, no reg. 14.7 82 (3) 87 (3) 73 (4)
1 OM, RTV, μ = 105 19.5 57 (9) 49 (10) 68 (7)
1 OM, RSF, μ = 10−2 12.7 83 (5) 85 (4) 77 (4)
2 OM, no reg. 21.8 78 (12) 75 (13) 66 (13)
5 OM, no reg. 36.3 45 (19) 49 (17) 63 (19)

thermal displacement, being physically reliable in general.
However, the so-determined, averaged MSDs are 0.4 and 3.5
pm2 for the Sr and O-columns. These are 0.6% and 5% of
the theoretical values being 78.5 and 95.0 pm2, respectively.
Note that atomicity and thermal effects have been found in-
trinsically by the pixelwise reconstruction which had been
initialised by a flat OTF.

Although the atomic displacements observed in pixel-
wise optimized independent slices enable diffuse scattering,
Fig. 8(a) demonstrates that the OTFs still show phase artifacts
known from the wrapped slice approach. This supports the
conclusion that this inversion scheme produces diffuse scat-
tering in hybrid manner, via physically reliable but too small
thermal displacements, and artificial phase noise in the OTFs
to achieve consistency with the underlying experiment. Based
on the regularization study in Sec. IV B where the phase noise
could be suppressed successfully, exploring similar regular-
ization concepts here suggests itself. In particular, favoring
smooth scattering potentials while simultaneously allowing a
single FP ensemble realized as a sequence of independently
reconstructed slices, could be expected to push the inversion
towards larger thus more accurate MSD. Importantly, using
RTV and RSF regularizations both assure atomically smooth
phases as shown in the middle of Fig. 8(a). Noting the iden-
tical color scaling, however, an underestimation of the phase
maxima at all atomic sites is observed. Both regularization
concepts even enhance the phase error EPG as summarized
together with the relative atomic phases in Table I. With MSDs
of 3.3 and 0.7 pm2 for the Sr atoms and 4.2 and 1.0 pm2 for
the oxygen atoms, no significant improvement of the thermal
displacements could be achieved. Using RTV, the obtained
thermal displacements are in fact larger than those of the
nonregularized results, but still amount to less than 5% of the
theoretical values. RSF leads to even smaller displacements
which is not surprising since promoting high periodicity and
statistically displaced atoms contradict each other. Reasons
for the algorithms getting stuck in a respective local loss
minimum provoking too small atomic potentials and MSDs
are elucidated in Sec. IV C.

Multimodal reconstruction. As shown in the simulation
study in Fig. 7, using two object modes is expected to yield
a better agreement of the diffraction patterns. When using two
object modes, the loss decreased from 8.11 to 7.40. Increased
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atomic displacements were observed, amounting 12 and
44 pm2 (15% and 46% of theory) for the strontium- and oxy-
gen columns, respectively. Using five object modes, a loss of
6.98 and a further broadening of the displacement distribution
was found, as shown in Fig. 8(c). The measured displacements
amount to 50 and 134 pm2, being 63% and 141% of the
theoretical values. Table I shows the relative atomic potentials
of the reconstructions which are still too low and decrease
with the number of optimized object modes. Also some layers
are still afflicted by artifacts as can be also seen in Fig. 8(a),
going along with a high phase grating error EPG = 36.3%.

2. Slices as pure phase objects

Recalling that the forward FP multislice concept involves
slice transmission functions being pure phase objects in the
absence of absorption, constraining the inverse model to func-
tions Φ1,...,N with constant amplitude of one but varying phase
becomes evident. Therefore the same inversion strategy as
above has been used but only phases have been optimized.

Unimodal reconstruction. Figures 9(a)–9(f) show the
unimodal result including different regularizations. The
PACBED in Fig. 9(a) was simulated using the reconstructed
phase gratings and, contrary to Fig. 4(c), also contains diffuse
intensity similar to the ground truth in Fig. 2(a). The loss
amounts to L1 = 9.5, being slightly higher than the error
for the arbitrary complex slice transmission functions above.
The lack of the amplitude degree of freedom paired with the
reconstruction of the diffuse intensity implies the presence
of structural disorder here. Indeed, the displacement statistics
in Fig. 9(c) shows a Gaussian-shaped frequency distribution
of the phase maxima from the atomic sites, however, being
insignificantly broader than those for reconstructing both,
phase and amplitude. Evaluated quantitatively, the MSDs take
values of 2.3 and 8.1 pm2 for Sr and O, respectively, being
still less than 10% of the true values. High-frequency artifacts
in between the atoms and the asymmetric distribution of the
reconstructed projected atom potentials as shown in Fig. 9(b)
can provide an alternative explanation for the emergence of
the diffuse intensity. According to these unreasonable atomic
phases and noticing the colorbar in Fig. 9(b), the phase error
was determined to EPG = 49.9%, being much higher than
those of the other reconstructions carried out to this point.

According to Secs. IV B 3 and IV C 1, TV and SF reg-
ularization can suppress high-frequently phase artifacts, like
also observed here. Both regularization methods lead to a
smoother phase grating in between the atoms and also regard-
ing the shapes of the atomic potentials as shown in Figs. 9(d),
9(e), which reduced the phase error to 12.8% and 19.0%,
respectively. Restricting strong phase variations at the atomic
sites again implies diffuse scattering being realized by atomic
displacements which was the case for both regularization
methods here. The statistical evaluation reveals MSDs of 32.4
and 50.7 pm2 for Sr and O, respectively, being 95% and 65%
of the theoretical values when using TV regularization. With
SF-regularization MSDs of 8.0 and 20.6 pm2 were received
for Sr and O, being 10% and 26% of the theory. Although
SF regularization provokes high periodicity and was shown to
narrow the displacement distribution in Sec. IV C 1, the recon-
struction shows rather large atomic displacements. In this case

FIG. 9. Pixelwise reconstruction of independent slices with con-
stant amplitude. (a) PACBED. Scale bar, 50 mrad. (b) Slice-averaged
phase grating of the reconstruction. Scale bar, 2 Å. [(c) and (g)]
Normalized atomic displacement distributions of the Sr columns of
the reconstruction using independent slices with constant amplitude
and (c) one or (g) six object modes, including Gaussian fits. The
inset shows the atomic displacement distribution in two dimensions.
[(d) and (e)] Slice-averaged phase gratings of reconstructions using
TV and SF regularization (top left atom being Sr). Scale bar, 1 Å. (f)
Phases (top left atom site being TiO) of slice 10 (left) and 9 (right)
of the reconstruction using SF regularization. Scale bar, 2 Å.

the atomic phase maxima are found to be shifted collectively
from their equilibrium position exemplarily shown for two
different slices in Fig. 9(f). Due to asymmetric atomic po-
tentials and regularization-induced modification of the atomic
phases atomic reconstructions using pure phase object slice
transmission functions could not improve the accuracy of
quantitative atomic potentials. The maximum atomic phases
of the respective reconstructions are summarized in Table II,
together with the phase errors.

Multimodal reconstruction. Using two object modes, sig-
nificantly increased MSDs were determined to 18 and 76 pm2,
being 23% and 80% of the theoretical ones. The accuracy
of the MSD measurements increased further when six object
modes have been reconstructed, for which the displacement
statistics is shown in Fig. 9(g). In this case, the MSDs amount
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TABLE II. Pixelwise optimization of 50 independent pure phase-
object slice transmission functions. Phase reconstruction errors EPG

and reconstructed maximum atomic phases ϕReco (normalized to the
ground truth simulation) for the three different atom columns using
no as well as TV- and SF- regularization and 1, 2, and 6 object modes
(OM).

ϕReco/ϕSimu in %

Reconstruction model EPG in % Sr TiO O

1 OM, no reg. 49.9 75 (10) 74 (8) 66 (11)
1 OM, RTV, μ = 105 12.8 46 (19) 52 (23) 77 (36)
1 OM, RSF, μ = 10−2 19.0 71 (4) 76 (3) 108 (5)
2 OM, no reg. 40.8 78 (45) 59 (34) 119 (64)
6 OM, no reg. 24.7 87 (57) 78 (35) 110 (53)
6 OM, RTV, μ = 104 32.5 59 (37) 51 (32) 86 (30)

to 20 and 95 pm2 (25% and 100% of theory). Despite the
enhancement of the accuracy of the atomic displacement mea-
surement, the phase accuracy, i.e., the phase error and the
height of the atomic phases did not improve, as compiled
in Table II. Using TV-regularization, which showed a strong
enlargement of the measured atomic displacements when us-
ing one object mode, MSDs of 61 and 142 pm2 were found
when using six object modes, which are 78% and 181% of
the theoretical values. The phase error, however, increased
to EPG = 32.5% and the atomic potentials were found to be
less accurate compared to the nonregularized reconstruction
as shown in Table II. Since the overall phase accuracy de-
creased and the choice of the regularization strength leads to
ambiguous results, we leave the derivation of potentially more
reliable regularization strategies as a future task.

In summary, the emergent thermal disorder in indepen-
dent slice reconstructions as a true physical effect is striking.
Enabling the inclusion of incoherent scattering in the re-
construction model by optimizing multiple object modes
promotes the formation of thermally displaced atomic ensem-
bles, which can be improved for some cases by appropriate
regularization techniques. Leaving the development of, e.g.,
regularization strategies to promote quantitatively reliable
MSDs as a potential future challenge we now focus on
parametrized approaches [25] to solve this task in the
following.

D. Atomically parametrized reconstructions

Instead of trying to obtain the full potential landscape in
Eq. (5) in pixelated manner, we now make use of the fact that
the vm(�r), �rm and MSDs 〈u2

m〉 are known with sufficiently high
accuracy to build an initial model. At first sight, reconstructing
the ground truth with a very close model for the inversion
appears trivial. On the contrary, it is by no means clear
whether the inverse multislice which draws fully independent
thermal snapshots as compared to the ground truth simula-
tion, reproduces the true parameters and if so, how many
FP configurations are necessary. From the practical point of
view, pixelwise reconstructions as in the previous sections are
preliminary steps, delivering appropriate structural guesses.
Because we have seen that the pixelwise schemes tend to

FIG. 10. Reconstructed weights (with standard deviation as error
bar) of a parametrized reconstruction with wrapped slices using
different numbers of FP configurations. In the first panel, the atom
positions were assumed to be static, i.e., no atomic vibrations were
allowed. Os denotes the single oxygen column and OTi the oxygen in
the TiO-column.

underestimate the potentials, the following parametrized re-
construction was initialized by a rather conservative guess
with atomic weights wm of 0.86, 0.91, and 0.74 for all Sr,
Ti and O atoms according to Eq. (11). As the specimen is
periodic in all three dimensions except for the thermal noise,
wrapped OTF layers as in Fig. 3(c) were used.

1. Number of phonon configurations during inversion

In a first study, the MSD were set to the true values, or set to
zero and kept fix in both cases, whereas the weights wm have
been optimized using different numbers of FP ensembles. As
shown in Fig. 10, increasing the number of phonon config-
urations in the inverse multislice leads to accurate potentials
already for two thermal snapshots. The precision is finite only
for the oxygen atoms and gets asymptotically better up to six
FP configurations, the maximum considered in this study due
to computational hardware limitations. This means that one to
two FP ensembles suffice to correctly determine the Sr and Ti
atomic types, whereas the light O atom can uniquely be iden-
tified as such from four to five thermal snapshots on. Note that
the weight directly reflects the accuracy of the atomic phase
maxima. Thus the phase of the oxygen atom columns, which
have been initialized around 30% too low, now correspond to
100 ± 1% of the ground truth. Disabling atomic vibrations in
the reconstruction as indicated by the data labeled static in
Fig. 10, the oxygen columns are assigned only 80%, titanium
sites approximately 110% of the true potential, respectively.

2. Optimizing thermal displacements

Since six FP configurations are found to yield a safely
converged solution, corresponding final reconstruction results
of the 4D-STEM data are compiled in Table III, together with
those obtained from the pixelwise reconstruction models dealt
with above. For the parametrized reconstructions, the losses
of 2.93 and 6.79 match well with the losses of 2.95 and 6.80
estimated in the simulation study in Fig. 7 for six and one
FP configurations. The reconstructions also show more than
ten times lower PG errors as compared to the pixelwise meth-
ods. For the parametrized reconstructions, two optimization
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TABLE III. Reconstruction losses L1(×108), phase grating errors EPG, reconstructed relative maximum phases ϕReco/ϕSimu for the three
different atom columns and MSDs σ 2 for the three atom species derived for different reconstruction methods: pixelwise using wrapped
and independent slices each without (no reg.) and with TV/SF regularization and independent slices using multiple object modes (OM),
parametrized reconstruction results using one and six FP configurations with the initial MSDs being fix and corresponding to the true values,
and with the MSD being optimized and initialized as zero. EPG, and ϕReco/ϕSimu are given in percent. The values in brackets are the standard
deviation of ϕReco/ϕSimu and the percentage of the measured MSDs to theory.

ϕReco/ϕSimu MSD σ 2

L1 EPG Sr TiO O Sr Ti O

Pixelwise amplitude and phase
Wrapped slice 50×
No Reg. 3.48 15.0 85.9 (1.2) 90.9 (1.5) 739.7 (1.2) – – –
RTV × 106 4.33 10.3 101.9 (1.2) 101.1 (0.4) 77.4 (0.7) – – –
RSF × 10−1 4.74 10.4 100.1 (0.3) 99.1 (0.03) 77.1 (0.5) – – –

Pixelwise amplitude and phase
50 independent slices
1 OM, no reg. 8.11 14.7 82 (3) 87 (3) 73 (4) 0.4 pm2 (0.6%) – 3.5 pm2 (3.7%)
1 OM, RTV × 105 10.3 19.5 57 (9) 49 (10) 68 (7) 3.3 pm2 (4.2%) – 4.2 pm2 (4.4%)
1 OM, RSF × 10−2 8.99 12.7 83 (5) 85 (4) 77 (4) 0.7 pm2 (0.9%) – 1.0 pm2 (1.1%)
2 OM, no reg. 7.40 21.8 78 (12) 75 (13) 66 (13) 12 pm2 (15%) – 44 pm2 (46%)
5 OM, no reg. 6.98 36.3 45 (19) 49 (17) 63 (19) 50 pm2 (63%) – 134 pm2 (141%)

Pixelwise phase
50 independent slices
1 OM, no reg. 9.5 49.9 75 (10) 74 (8) 66 (11) 2.3 pm2 (2.9%) – 8.1 pm2 (8.5%)
1 OM, RTV × 105 7.27 12.8 46 (19) 52 (23) 77 (36) 32 pm2 (41%) – 41 pm2 (43%)
1 OM, RSF × 10−2 5.36 19.0 71 (4) 76 (3) 108 (5) 8.0 pm2 (10%) – 21 pm2 (22%)
2 OM, no reg. 8.5 40.8 78 (45) 59 (34) 119 (64) 18 pm2 (23%) – 76 pm2 (80%)
6 OM, no reg. 7.2 24.7 87 (57) 78 (35) 110 (53) 20 pm2 (25%) – 95 pm2 (100%)
6 OM,RTV × 104 7.9 32.5 58.5 (37) 51.3 (32) 85.8 (30) 61 pm2 (78%) – 142 pm2 (181%)

Parametrized atomic model
6FP, MSD fix 2.93 1.65 99.6 (0.1) 100.5 (0.5) 99.6 (0.1) 79 pm2 (100%) 56 pm2 (100%) 95 pm2 (100%)
6FP, MSD opt 2.89 1.49 99.6 (0.1) 99.5 (0.2) 98.0 (0.1) 71 pm2 (90%) 55 pm2 (99%) 75 pm2 (79%)
1FP, MSD fix 6.79 1.82 98.1 (0.1) 103.5 (0.5) 97.7 (0.2) 79 pm2 (100%) 56 pm2 (100%) 95 pm2 (100%)
1FP, MSD opt 6.22 4.88 98.9 (0.1) 97.0 (0.9) 93.3 (0.2) 42 pm2 (53%) 42 pm2 (75%) 31 pm2 (33%)

settings are listed for the 6 FP and 1 FP case labeled fix and
opt, respectively. The former denotes an inverse multislice ini-
tialized with the true MSD which was kept unchanged during
the reconstruction, the latter corresponds to an initial setting of
〈u2

m〉 = 0 which was then optimized as well. In essence, this
explores to which extent temperature and chemical contrast
can be distinguished during inversion.

Setting the initial MSDs to zero and using only one FP
configuration, the reconstructed MSDs of the Sr-, Ti- and O-
displacements are 41.7, 41.6, and 30.9 pm2 being 53%, 75%,
and 33% of the true values. Averaging over six phonon ensem-
bles, MSDs of 70.6, 55.0, and 74.8 pm2 were received which
are 90%, 99%, and 79% of the theoretical values. It becomes
hence evident that increasing the number of FP ensembles im-
proves also the accuracy of the displacement reconstructions.
When leaving the MSD variable, a slightly reduced accuracy
of the atomic weights, or equivalently, maximum phases is
observed, and the error of the reconstructed phase is higher
which is seen by comparing the fix and opt data in Table III.
Note the availability of accurate MSD for Ti within the TiO
column for the atomistically parametrized scheme. In theory,
a reduction of the MSD increases the atomic potential in time
average. Conversely a reduction of the weight decreases it.

In reconstructions, these two parameters seem to influence
each other since lower MSDs correlate with lower maximum
atomic phases or weights. Despite the reduced accuracy of
the reconstruction when leaving the MSD variable, the loss
was found to be smaller. A systematic investigation of how
the atomic phases and the MSDs influence each other in
the optimization process is elaborated in a simulation study
presented next.

3. Sensitivity to atomic weights and mean square displacements

The pixelwise reconstruction of independent slices and
the parametrized approach point towards taking a simultane-
ous determination of atom types and thermal displacements
with care. Both impact high-angle scattering, motivating a
systematic study of the uniqueness of determining the two
parameters, atomic weight wm and MSD 〈u2

m〉. To this end,
a simulation series using 25 FP configurations was gener-
ated and the L1 loss to the simulated ground truth has been
calculated according to Eq. (9) in dependence of wm and
σ = √〈u2

m〉.
Figure 11 shows loss maps for different probe positions

on a regular grid over a quarter unit cell, with the corners
of the grid lying on atom centers. The atomic column whose

064102-12



THERMAL VIBRATIONS IN THE INVERSION OF … PHYSICAL REVIEW B 110, 064102 (2024)

FIG. 11. Diffraction losses for various weights w and standard deviations σ of atomic displacements for different probe positions. In each
map, the weight w and the STD σ of each atom are varied and 25 [(a) and (b)] or 1 [(c) and (d)] frozen phonon configurations are used. The
probe is scanned over a quarter unit cell on a regular raster with the corners being on the given atom columns. (c) and (d) only show one row
of the scan. Weights and standard deviations are given relative to their theoretical values w0 and σ0.

weight and MSD were varied is framed in red, i.e., Fig. 11(a)
depicts loss maps arranged on a scan grid while Sr parameters
have been varied, in Fig. 11(b), the oxygen weight and MSD
was varied at each of the 5 × 5 scan positions. Instead of
25 FP configurations, only one thermal snapshot was used in
Figs. 11(c) and 11(d). Note the parameter scaling relative to
the ground truth, such that w/w0 = 1 and σ/σ0 = 1 reflect
the correct setting, at which a deep loss minimum is expected
in the ideal case. Regarding strontium properties, Fig. 11(a)
exhibits loss minima at these ground truth values indeed. It
moreover shows that within the 3 × 3 scan points closest
to the Sr site, loss gradients are large compared to the rest
of the scan points depicting a shallow minimum. In other
words, the gradients in Eq. (10) calculated with respect to wSr

and 〈u2
Sr〉 lead to significant strontium updates mostly based

on diffraction patterns recorded at scan points close to Sr, as
expected. Apart from that, a strong anisotropy of the loss is
observed, favoring high sensitivity to the atomic weight w,
but comparably low dependence on the MSD. For oxygen
in Fig. 11(b), a fully analogous trend is observed, however,
the sensitivity to atomic weight and MSD is confined to scan
points close to the O column.

Conforming with strontium having a higher atomic po-
tential than oxygen, the area around the atom providing
weight information is higher for Sr, which still shows weight-
sensitivity on the oxygen positions. Oxygen in contrast shows
no weight dependency on the Sr column. For both atom
species, a loss minimum is located around w/w0 = 1, being
most sensitive to the weight on and nearby the respective
atom. In general the sensitivity of the 4D-STEM data to the
oxygen parameters is lower, i.e., the difference between the
highest and the lowest loss for the oxygen atom is 62% of
the strontium loss range, for the probe being on the respective

atom center. This in combination with the smaller informa-
tion radius around the atom can explain the higher error and
lower accuracy of reconstructed oxygen parameters observed
consistently throughout this study.

The effect of using fewer FP configurations is investigated
in Figs. 11(c) and 11(d) where we find that the loss minimum
broadens, corresponding to the weights being measurable less
accurately if the number of phonon ensemble averages is
reduced. This explains the observations made in Fig. 10 and
the increase of MSDs with growing number of reconstructed
object modes in pixelated reconstructions. Regarding the sen-
sitivity of the loss to the atom’s MSD, it is much lower
than the weight dependency. Note that the position of the
loss minimum is shifted to lower σ when using only one
FP configuration for both atomic columns in Figs. 11(c) and
11(d), implying that using too few FP configurations during
multislice inversion can lead to systematic errors.

Including a sufficient number of FP configurations is
thus crucial for accurate quantitative reconstructions of both
parameters simultaneously, atomic potentials and MSDs.
Looking at the fine structure especially of the strontium-
related losses in Fig. 11(a), several local minima occur which
could favor the reconstruction of too low atomic weights
wm and MSDs 〈u2

m〉. Although the optimization pathways of
the parametrized and pixelwise reconstruction (independent
slices) cannot be compared directly, the partly too low poten-
tials and MSDs found in Sec. IV C are probably related to this
observation.

V. DISCUSSION

Inversion of dynamical scattering has reached a level where
statistical parameters arising from thermal motion of atoms
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need to be included. This defines a hierarchy of models used
during inversion. For crystals periodic in beam-direction the
exploitation of the wrapped-slices model provides a compu-
tationally efficient method to retrieve the specimen’s atomic
lattice with limited sensitivity to the atomic potentials. Op-
timizing an amplitude and phase-object pixelwise, a high
congruence of the diffraction patterns to the reference can be
achieved formally, realized by high-frequency artifacts in the
phase grating. Contrary, the use of a pure phase object cannot
create diffuse intensity in the diffraction space, not even by
introducing phase artifacts. This excludes the optimization of
a pure phase object within the pixelwise wrapped-slice model
for the reconstruction of strongly diffuse scattering specimen.
When optimizing an amplitude and phase object using the full
diffraction space including TDS, the atomic structure can be
retrieved without artifacts by using appropriate regularization
techniques. Therefore optimizing one wrapped amplitude-
and phase slice transmission function in pixelwise manner is
a reasonable approach to obtain a qualitative representation of
the atomic structure, at least for the case considered here.

Enabling physically correct incorporation of temperature
effects, the independent-slices model was shown to be able
to detect thermal displacements conceptually as the root of
TDS, being in agreement with recent literature on temperature
effects in thin specimens [37]. This was found for both, opti-
mizing slice transmission functions as amplitude and phase as
well as a pure phase objects pixelwise. However, this study
was not able to yield MSDs quantitatively via this approach
since the diffuse scattering is produced in a hybrid manner
by phase grating artifacts on the one hand and physically
reliable but too small atomic displacements on the other hand.
In particular, mixed amplitude and phase objects exhibited
additional artificial phase noise, whereas pure phase objects
lead to asymmetric phase distributions at the atomic sites.
Using appropriate regularization techniques could increase
the MSDs whereby TV regularization within a pure phase-
object reconstruction retained the highest observed MSDs,
amounting from 60% to 90% of the theoretical values. The
lacking amplitude degree of freedom when assuming pure
phase objects in combination with a regularization method
aiming for physically more reliable atomic potentials appear
to support TDS being realized by thermal atomic disorder.
This, however, does not improve the reconstruction of atomic
potentials quantitatively as the maximum atomic phases are
still up to 50% too small. In fact, when expecting thermal
displacements to be reconstructed correctly the atomic phases
of the slices must be compared to the pure projected atom po-
tentials and not to the time-averaged Debye-Waller potentials
which are up to four times smaller for this simulation setting.
Consequently, the quantitative information obtained from this
model is rather poor. Moreover, reconstructing multiple object
modes could enlarge the MSDs, with displacements increas-
ing with the number of modes used. Nevertheless, this could
not enhance the accuracy of the atomic potentials, presumably
due to the high number of free parameters. Although this
reconstruction model apparently considers thermal disorder in
a physically true manner, the entanglement of TDS and atomic
number contrast remains a substantial challenge.

Parametrizing the inverse scattering model can solve
this problem as it explicitly discerns the atomic potential

distribution separated from thermal atomic move-
ment. The increasing accuracy of the reconstructed
atomic potentials with increasing numbers of FP
configurations, as well as systematic errors, i.e.,
too small MSDs when using an insufficient number
of phonon ensemble averages makes correct consideration
of TDS within the model crucial for unique identification
of atomic species. At present, the model assumptions still
rely on idealizations which are, however, common also
for forward simulations. In particular, considering thermal
effects by means of the Einstein model neglects correlated
atomic vibrations. In real experiments, these cause a faint
substructure of TDS, which can already be accounted for
by including second-neighbour interactions [46]. Thus
including phonon dispersions beyond the Einstein model are
a promising future perspective.

Besides TDS, inelastic scattering, especially due to plas-
mon excitations, has been found to cause significant redis-
tributions of intensity in diffraction patterns [31,47–49]. A
rigorous incorporation into the forward model involves the
excitation and multislice propagation of a large set of mu-
tually incoherent waves through the specimen volume for
each scan point and thermal configuration. Given the present
hardware capabilities, the direct implementation into gradient-
based inverse multislice appears challenging for specimens
with a reasonable number of slices. Instead, the inelastic
scattering problem can be approximated by assuming commu-
tativity of propagation and transition potential for the inelastic
events. In this case, the effect of plasmon excitation as the
most significant contribution can be accounted for by sin-
gle (multiple) convolution of each diffraction pattern with a
Lorentzian to account for single (multiple) plasmon excita-
tions [48]. Including inelastic scattering as a Monte Carlo
process into the conventional multislice run provides another
option [49].

Considering real experimental data, counting noise might
become relevant at low doses. For the reconstruction, re-
placing the L1 loss in Eq. (9) by the Poisson loss [50]
is recommended. Additionally, noise in the input data re-
quires an estimate for the precision of the determined
parameters, whereas the present work dealt with accuracy
aspects only. Since error estimation within highly nonlinear,
high-dimensional problems is nontrivial, precisions estimates
might then be based on statistics over reference regions where
the parameters can be assumed uniform.

In addition, atomistic parametrization suggests itself for
crystalline specimens in the first place. Apart from that,
also the study of crystalline materials often suffers from
amorphous surface layers due to hydrocarbon contamination
or preparation-induced damage. Consequently, setting up an
initial atomistic structural model for the amorphous layers
appears challenging. However, properties of interest concern
the crystal in between, where the parametric model can be
beneficial [25] as worked out here for thermal and chemi-
cal properties. In this respect, our methodology allows for
hybrid models combining the different options in Fig. 3. In
particular, a set of slices to be reconstructed pixelwise can
be wrapped around the atomically parametrized ones. In a
simulation study, we generated amorphous carbon layers of
5 nm thickness on the top and bottom face of 20-nm-thick
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FIG. 12. Hybrid slice reconstruction model for consideration of
contamination. Schematic illustration of a hybrid optimization layer
system (left) and phase of pixelwise reconstructed 5-nm-thick amor-
phous carbon layers (right). The reconstructed data set was generated
similar to this used in this work but with additional amorphous
carbon layers on both sides of the specimen. Scale bar, 4 Å.

SrTiO3, and generated simulated diffraction patterns using
FP multislice. As shown in Fig. 12, allocating two slices for
pixelwise reconstruction at the top and bottom surface, respec-
tively, could successfully decontaminate the specimen during
reconstruction while yielding characteristic atom parameters
of the crystalline part correctly, including TDS.

VI. SUMMARY AND CONCLUSION

In this work, we systematically worked out the capabilities
and the limitations of different inverse multislice strategies to
retrieve specimen information comprising thermal vibrations
and dynamical scattering. Pixelwise slice transmission func-
tion optimization methods resemble the atomic lattice well
but are prone to include phase artifacts so as to achieve for-
mal consistency with experimental diffraction patterns. Using

appropriate regularization terms could successfully suppress
these artifacts. Optimizing 50 slice transmission functions
individually yielded the diffuse CBED intensity very accu-
rately by introducing thermal disorder to the atomic positions,
which reflects the physical nature of TDS if multimodal
objects are asumed. However, the quantitative evaluation of
atomic potentials showed that these tend to be significantly
too small. In contrast, a parametrized model restricts the slice
transmission functions to a linear combination of projected
atomic potentials, here obtained from Hartree-Fock calcula-
tions. Combined with the FP model, mean squared thermal
displacements could be retrieved with almost 100% accuracy,
while still exhibiting trustworthy chemical sensitivity.

To conclude, the introduction of inverse multislice opened
the possibility to solve the inverse scattering problem for thick
specimens. The omnipresence of thermal diffuse scattering
needs to be viewed from two different directions. First, present
pixelwise reconstruction methods need to be used carefully
since they might be prone to artifacts, unless dedicated reg-
ularizations are used or further developed. Second, thermal
diffuse scattering offers attractive perspectives to enhance the
local chemical and temperature sensitivity in measurements
providing combined real and momentum space data, if suit-
able inverse models are employed.
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