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Abstract  9 

The paralysis of the muscles controlling the hand dramatically limits the quality of life of 10 

individuals living with spinal cord injury (SCI). Here, with a non-invasive neural interface, 11 

we demonstrate that eight motor complete SCI individuals (C5-C6) are still able to task-12 

modulate in real-time the activity of populations of spinal motor neurons with residual neural 13 

pathways. 14 

 In all SCI participants tested, we identified groups of motor units under voluntary control 15 

that encoded various hand movements. The motor unit discharges were mapped into more 16 

than 10 degrees of freedom, ranging from grasping to individual hand-digit flexion and 17 

extension. We then mapped the neural dynamics into a real-time controlled virtual hand. The 18 

SCI participants were able to match the cue hand posture by proportionally controlling four 19 

degrees of freedom (opening and closing the hand and index flexion/extension).  20 

These results demonstrate that wearable muscle sensors provide access to spared motor 21 

neurons that are fully under voluntary control in complete cervical SCI individuals. This non-22 

invasive neural interface allows the investigation of motor neuron changes after the injury 23 

and has the potential to promote movement restoration when integrated with assistive 24 

devices. 25 
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Abbreviations: HDsEMG = High-density surface electromyography; PPS = Pulses per 1 

Second; SCI = Spinal Cord Injury 2 

 3 

 4 

Introduction  5 

Impaired hand function is arguably one of the most severe motor deficits in subjects with 6 

spinal cord injury (SCI), especially when bilateral1. There are currently no effective 7 

treatments for regaining hand control after muscle paralysis. Hand surgery is established, 8 

although not possible in every case, and with several challenges, such as reconstruction of 9 

intrinsic hand function and requiring precise diagnostics and planning2. Restoration of hand 10 

function has so far been achieved by neural interfaces recording the activity of the motor 11 

cortex3, either through closed-loop electrical stimulation of the muscle4 or by controlling 12 

external devices5. However, besides the relatively poor control, invasive cortical implants are 13 

also an option limited to a small proportion of patients because of the surgical risks and long-14 

term stability of the implant. Other neural interfaces involve the delivery of electrical 15 

stimulations in the spinal cord that indirectly target the activity of the alpha motor neurons6. 16 

The neural information most directly associated with behavior is the activity of spinal alpha 17 

motor neurons, representing the final neural code of movement. The activity of spinal motor 18 

neurons generates movement through a simple transformation (the dynamics of the twitch 19 

forces of the muscle units), and therefore, movement intent can be decoded directly. Almost 20 

all SCIs are due to contusions of the spinal cord, which could leave some spared connections 21 

above and below the level of the injury7. While this spared neural activity is insufficient to 22 

drive muscles to generate detectable forces, it can be used to infer motor intent and, therefore, 23 

to decode movements. Accordingly, as a case study, we have recently reported in a single 24 

motor-complete SCI (C5-C6) individual the presence of a significant number of task-25 

modulated motor units encoding the flexion and extension of individual fingers through a 26 

wearable, non-invasive neural interface8. That case study was a proof of concept in a single 27 

patient, and it was limited to offline analysis without any demonstration of patient-in-the-loop 28 

control. Here, we support previous evidence of voluntarily controlled spinal motor neurons in 29 

eight SCI individuals (injury levels ranging from C5 to C6)7–10. Through the decomposition 30 

of the high-density surface electromyogram (HDsEMG)11–13, we identified active motor 31 

neurons in all tested patients (Fig. 1). These motor neurons encoded the movements of the 32 
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paralyzed hand during synergistic and individual digit movements. The discharge patterns of 1 

the motor neurons were similar to those observed in non-injured young adults. The motor 2 

neurons followed precise recruitment and discharge rate patterns that closely matched the 3 

movements of the virtual hand. This study shows that even many years after chronic SCI, 4 

there are still spared motor neurons that receive functional inputs modulated by voluntary 5 

intent.  6 

Materials and methods  7 

Participants 8 

Eight participants with SCI were recruited for this study (seven individuals with chronic 9 

motor complete SCI and one with motor incomplete SCI – Fig. 2 and Table 1). The inclusion 10 

criteria were: (1) injury level C4-C6, (2) age between 18 and 60 years old, and (3) absence of 11 

voluntary movement of one hand or both hands. Participants S6 and S7 have functional left 12 

hands. 13 

In Table 1, we reported information from standard clinical examinations of the SCI group 14 

regarding clinical classification of injury according to the American Spinal Injury 15 

Association (ASIA) impairment scale; spasticity assessment through the modified Ashworth 16 

scale and testing of upper limb stretch reflexes (biceps, triceps, and brachioradialis tendon 17 

reflexes). In Supplementary Figure 1, we reported T2-weighted MRI images from the SCI 18 

group's medical history to depict the location and diversity of the injuries. 19 

Additionally, we recruited 12 healthy, uninjured subjects (control group, age 27.1 ± 3.4 years, 20 

two females) for comparison. 21 

All participants gave their written informed consent to take part in the study. The study was 22 

conducted in agreement with the Declaration of Helsinki and was approved by the Friedrich-23 

Alexander-Universität Ethics Committee (applications 22-138-Bm and 21-150-B). 24 

Study overview and experimental protocol 25 

This study was conducted in two sessions. In the first session, we asked the participants to 26 

attempt the movements displayed by videos of a virtual hand. At the same time, we recorded 27 

HDsEMG signals from their forearm muscles. For the second session, six subjects from the 28 

SCI group returned after 3-5 months of the first session (S1-S4, S6, and S8), in which a 29 
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regression model (based on global EMG) and/or an online decomposition method was used to 1 

decode movement intention, according to their HDsEMG signals. 2 

In the first session, according to their forearm circumference, we placed 256 or 320 3 

HDsEMG electrodes on the forearm of the participants' dominant hand (S7 was paralyzed 4 

only on the non-dominant hand). The electrodes covered the forearm muscles and the wrist. 5 

We chose this placement to maximize the number of electrodes and, thus, improve the 6 

accuracy of HDsEMG decomposition since we can also detect far-field electrical potentials at 7 

the wrist 14. For the SCI group, after placing the electrodes, we asked the subjects to stay in a 8 

comfortable position with their arms (Fig. 1A, Fig. 5B, and 5F). For the control group, the 9 

participants were standing with their dominant elbows flexed (this setup was previously 10 

described 15). To both groups, we showed the same videos of a virtual hand performing 11 

different tasks on a computer monitor and instructed the participants to attempt the 12 

movements accordingly. The tasks lasted 42s each and included flexion and extension of the 13 

individual digits at two speeds (0.5Hz and 1.5Hz), grasp, two-finger pinch, three-finger 14 

pinch, and wrist flexion and extension (0.5Hz). Two trials were performed for each 15 

movement (only for the SCI group). We only analyzed data from slow (0.5Hz) movements as 16 

the subjects reported difficulty performing the fast ones. 17 

In the second session, we tested a real-time EMG decomposition approach (brief offline 18 

decomposition followed by online decomposition, Fig. 5C-D). We used 128 HDsEMG 19 

electrodes to assess if the subjects would be able to follow a digital trajectory with their 20 

motor units smoothed cumulative discharge rate. First, during the offline decomposition, we 21 

recorded HDsEMG data while the participants attempted a maximum flexion of the digits 22 

(10s per task). This data was decomposed as described in the 'Online decomposition' section 23 

(Supplementary material), and we stored the decomposition results for the online task. 24 

Subsequently, in the online decomposition step, we instructed the subjects to follow a 25 

periodic rectangular waveform trajectory shown on a monitor, with 10s period (5s of rest in 26 

between), for 60-120s. The trajectories have two different activation levels, 20% and 30% of 27 

maximum neural activation, i.e., of the maximum discharge rate obtained during the brief 28 

offline decomposition step. These activation values should not be confused with the maximal 29 

voluntary force obtained in healthy individuals. It could be impossible for a person to 30 

modulate the discharge rate of a specific motor unit up to its maximum for a prolonged time. 31 

This is because of the nonlinear behavior of motor units due to the spike-frequency 32 

adaptation and the discharge rate modulation due to intrinsic motor neuron properties 16–18. 33 
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The subjects attempted flexion and extension of the same digits for two consecutive periods 1 

as performed in the offline decomposition with 20% maximum neural activation. The motor 2 

unit firings detected with this method (smoothed motor unit firings) were shown as feedback 3 

to the subjects. Lastly, we also tested if the participants could modulate their discharge rate 4 

and progressively recruit motor units by increasing the height of the ramp to 30% maximum 5 

neural activation and alternating between the two activation levels (Supplementary Video 1).  6 

Also, an EMG-to-activation regression model was generated in the second session using the 7 

same electrode configuration as in the first visit. During this session, we asked the subjects to 8 

indicate which tasks from the first session they could perform with the least effort. These 9 

tasks were, therefore, selected to build the model. For that, the subjects were asked to attempt 10 

the maximal/full flexion of these tasks (e.g., the selected task was index movement; thus, they 11 

had to perform an index maximal flexion to build the model). These EMG signals were 12 

acquired and associated to the synthetic ground truth representing maximal activation for the 13 

relevant degrees of freedom. After that, the participants attempted the flexion and extension 14 

of the digits according to their chosen tasks. The predicted activation was shown in real-time 15 

through a virtual hand interface ('predicted hand', Fig. 5F, Supplementary Video 2). We used 16 

a virtual hand showing a predefined movement (referred here as 'control hand', Fig. 5F, H-I) 17 

to help the subjects to perform the movements and for further analysis. 18 

For complete information on the recordings and data analysis, see Supplementary Material. 19 

 20 

Results  21 

To assess the extent of spared motor unit activity in SCI participants, we analyzed the number 22 

of identified motor units, the reconstructed HDsEMG signals (motor unit action potential 23 

shapes convolved with motor unit firings), discharge rate, and coherence area values. We 24 

compared these measures to those of the control group. Additionally, we evaluated the 25 

outcomes of the real-time decomposition and virtual hand control. 26 

Figure 1 shows an overview of the offline experiments. We asked the subjects to match the 27 

visual cue displayed through a virtual hand (hand opening and closing, two and three-finger 28 

pinch, and flexion and extension of individual digits at 0.5Hz movement velocity). Figure 1A 29 

shows the experimental setup, with 320 electrodes placed on the proximal and distal forearm 30 

muscles and tendons (wrist). Figure 1B-C illustrates six EMG channels and a motor unit 31 
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waveform superimposed on a heatmap based on the root mean square activity. In all tested 1 

patients, we observed clear motor unit action potentials with high signal-to-noise ratio 2 

(>26dB19). We then looked at how these motor units were controlled by studying the 3 

association between motor unit activation times (Fig. 1D) and the attempted movement by 4 

looking at the trajectories of the digit tip of the virtual hand (grey curve in Fig. 1D). The 5 

raster plot in Fig. 1D shows a clear grouping of motor units encoding flexion and extension 6 

movements during a grasping task. As in our previous experiment8, we used a factorization 7 

method to retrieve the motor dimension (flexion and extension of the motor units, Fig. 1E-F). 8 

For all tested individuals, we consistently identified some motor neurons that were 9 

controlling the flexion and extension movements (Supplementary Figs. 2-9). From the power 10 

spectrum of the neural modules (Fig. 1G), we found a peak at the movement frequency 0.5Hz 11 

and lower frequencies. Figure 1H-I shows the coherence values across all tasks of subject 6 12 

(mean) and the coherence peak for the delta (1 - 5Hz), alpha (6 - 12Hz), beta (15 - 30Hz), and 13 

gamma (31 -80Hz) bandwidths. 14 

Table 1 and Supplementary Figure 1 show a summary of all subjects and tasks, including a 15 

description of the SCI through T2-weighted MRI. Details regarding the sensory level of the 16 

injury, stretch reflexes, and spasticity are also presented in Table 1. We provide a comparison 17 

between raw EMG signals of SCI and control groups in Fig.2A and Fig.6. For all the tasks 18 

(Fig. 2C, Table 1), we identified a specific subpopulation of motor units that encoded that 19 

particular movement, with an average of 9.8 ± 6.0 motor units per task across all SCI 20 

subjects. We also identified unique motor units for each task (Table 1). In Figure 2B, we 21 

show the number of motor units across all tasks for each subject for SCI and control groups. 22 

Across tasks of the same subject, the variability in the number of motor units is low, with a 23 

standard deviation (SD) between 1-2 motor units for all subjects except S6, where we have 24 

SD = 4. For the control group, we observed an average of 8.0 ± 4.1 motor units per task 25 

across all participants. The groups present similar median values (Fig. 2D), with no 26 

significant difference regarding the number of decomposed motor units (generalized linear 27 

mixed-effects: β = 0.007, t(144) = 1.10, p-value = 0.27). This information shows that SCI 28 

subjects still present a relatively high number of motor units. 29 

Due to the similar number of identified motor units between the groups, we conducted an 30 

additional analysis to determine if the HDsEMG data detected most of the active motor units 31 

in the SCI group. It is important to note that the number of detected motor units is not directly 32 

related to the total number of motor units, as many methodological factors influence it (see 33 
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20,21 for more information). First, we extracted the motor unit action potential shapes from the 1 

decomposed HDsEMG signals and convolved these shapes with the motor unit firings to 2 

reconstruct the EMG signal. We then calculated the root mean square error (RMSE) between 3 

the original and reconstructed EMG signals to measure the residual EMG activity (see 4 

Supplementary Methods). This value serves as an index of the undecomposed motor units 5 

and the total number of active motor units for a given task. Interestingly, as shown in Fig. 2E-6 

F, we found significantly lower RMSE values in SCI (20.3 ± 16.7µV) in comparison to the 7 

control (41.0 ± 18.8 µV) (β = -33.7, t(144) = -4.5, p-value = 1.6e-5). These lower values 8 

indicate that we are decomposing a higher proportion of motor units in SCI and that there are 9 

fewer active motor units for a specific task.  10 

In Figures 3A-B, we present the average discharge rate in pulses per second (pps) calculated 11 

across tasks and subjects. We can observe that the variation in discharge rate is subject -12 

specific (Fig. 3A), with S1, S2, and S3 presenting higher median discharge rates. Comparing 13 

the data across subjects of both groups (average discharge rate of SCI = 11 ± 3.2 pps and 14 

control = 12.8 ± 2.1 pps per task across all subjects), we can identify S4 to S7 with the lower 15 

discharge rates, and S2, S3, and S8 with similar values to the control group. Overall, in 16 

Figure 3C, we observed no significant difference between the groups (β = -0.002, t(144) = -17 

1.64, p-value = 0.10).  18 

In Figure 4, we show the average coherence across all subjects and tasks and the area of each 19 

frequency bandwidth across subjects. For the delta band, the median area values did not differ 20 

across subjects apart from S1 and S6 (delta) with higher values. We found that S1 and S6 are 21 

significantly different from S3, S4, and S7 (Kruskal–Wallis’s test: H = 40.8, df =7, p-value = 22 

8.7e-7). For the alpha band, only S1 presented a higher median, being significantly different 23 

from S2, S4, S6, and S7 (H = 25.2, df =7, p-value = 0.0007). For beta and gamma bands, 24 

subjects S1, S3, and S5 presented higher coherence areas in comparison to the other subjects, 25 

the distributions from these subjects are significantly higher than S2 (beta band, H = 27.9, df 26 

=7, p-value = 0.0002). For gamma, we found S3 with the highest median, significantly 27 

different from S2, S4, S6, and S7, also S1 significantly different from S4 (H = 35.4, df =7, p-28 

value =9.5e-6). When comparing it between groups, only beta and gamma bands are 29 

significantly higher in the SCI group – and this is only when we consider the tasks as a fixed 30 

effect in our generalized linear mixed-effects model (beta band: β = 2.14, t(151) = 2.38, p-31 

value = 0.018; gamma band: β = 0.73, t(151) = 2.75, p-value = 0.007).  32 
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Overall, because of the number of motor units detected, we could identify unique units 1 

virtually in all recorded tasks (> 2 motor units/task, except for S3 – Table 1), which can allow 2 

an accurate and precise classification for all these motor dimensions. Therefore, after years of 3 

cervical SCI leading to motor complete paralysis (ranging from 5.0 to 24.2 years, Table 1), 4 

these subjects still had spared connections from the motor cortex, impinging the activity of 5 

spinal motor neurons. This is evidenced by the fact that some motor units showed high 6 

voluntary modulation that matched with the kinematics of the virtual hand videos (Fig. 5A). 7 

Figure 5A shows all the identified motor units for all tasks of one individual. These previous 8 

results are based on the number of motor dimensions from the offline decomposition of the 9 

HDsEMG. 10 

In a second experiment, collected on average 3-5 months after the first session, we tested six 11 

subjects again (S1-S4, S6, and S8) with a similar experimental procedure but tuned for real-12 

time control. We asked the subjects to proportionally control a moving cursor on a screen 13 

based on the real-time decoding of the discharge timings of motor neurons (Fig. 5C-D). 14 

Moreover, these individuals also controlled a virtual hand (Fig. 5F-I, Supplementary Video 15 

2), demonstrating full voluntary control of the decoded neural activity. 16 

We developed a real-time mapping of the discharge timings of motor neurons so that the 17 

patients could control a cursor on the screen with the motor unit discharge activity and a 18 

virtual hand with the HDsEMG signals (Fig. 5, Supplementary Video 1). After a few seconds 19 

of training (Fig. 5D), the subjects were able to control the motor unit firing patterns and 20 

progressive recruitment of motor units at different target forces and with high accuracies, i.e., 21 

high cross-correlation values between the requested trajectory and the smoothed cumulative 22 

motor unit discharge rate (Fig. 5C-D). In this experiment, we also used a supervised machine-23 

learning algorithm to control a virtual hand (Fig. 5F-I, Supplementary Video 2). 24 

Supplementary Video 1 shows a subject controlling the activity of groups of motor units in 25 

real-time, modulating the recruitment and discharge rate to proportionally match two 26 

different target levels of activation. The motor neuron discharge times were summed and 27 

normalized in real time to the number of active neurons so that the patients could modulate a 28 

moving object (yellow cursor, Fig. 5C-D) by increasing/decreasing the discharge rates. 29 

Figure 5C shows the proportional control of two target levels mediated by both the 30 

concurrent recruitment of additional units (grey raster plot) and higher discharge rates. Figure 31 

5D shows a complete recording set that lasted 120 seconds. Note that just after 50 seconds of 32 

training, the subject was able to move the cursor on relatively high levels of normalized 33 
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10 

motor unit activity. The scaling of the motor unit activity is based on an equation that 1 

considers the maximal motor unit discharge activity and the highest number of motor units 2 

identified during an offline calibration trial that lasted 10 seconds for each trained task. 3 

We then trained the subjects to move a virtual hand that was displayed on a monitor and to 4 

match the movement of a control hand (Fig. 5F-I, Supplementary Video 2). After this 5 

training, the subjects could proportionally and repeatedly open and close the hand, when 6 

compared to the control hand instructions (Fig. 5I, Supplementary Video 2). Most of the 7 

participants were able to proportionally flex and extend the index finger (two degrees of 8 

freedom) and open and close the hand (two degrees of freedom). Figure 5F shows the 9 

subject's view: the monitor displayed two hands, a control hand (white color) and a second 10 

hand controlled by a regression-based machine learning algorithm. Four out of six subjects 11 

(Fig. 5G) were able to control four degrees of freedom consisting of proportional control of 12 

index flexion and extension and hand opening and closing (Fig. 5H-I, Video 2).  13 

 14 

Discussion 15 

The results above confirm previous evidence of voluntarily controlled spinal motor neurons 16 

in subjects with SCI (motor complete ranging from C5 to C6) that have been paralyzed for 17 

decades7–10. We observed the presence of active modulation of motor neuron activity in all 18 

tested patients, with motor units associated with flexion or extension of movements of the 19 

paralyzed hand digits. This association is evidenced by the real-time proportional control of 20 

the spinal motor neurons, complex movements of the virtual hand, and the factorization 21 

analysis results, in which two modules (flexion and extension) explained most of the variance 22 

for the movements of each subject. Although the power spectrum of the extracted neural 23 

modules shows a peak at the movement frequency, these modules seem to be relatively out of 24 

phase and/or delayed for some tasks. These offline results agree with our previous single-case 25 

study8. 26 

Although there is variability in the number of identified motor units across subjects, this 27 

number is statistically comparable to the number of motor units found in the control group. 28 

For several reasons, we hypothesized that more motor units would be detected for the SCI 29 

group. First, the decomposition of HDsEMG signals relies on the total number of active 30 

motor units, so the higher this number, the more complex it is for the algorithm to separate 31 

the individual motor units20,21 (for example, in healthy individuals, we detect more motor 32 
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11 

units at 10% of maximal force than at 50%, due to a higher superimposition of higher, larger-1 

threshold motor units). Second, the algorithm works best when there are minimal muscle 2 

movements (due to the gearing of the muscle) below the recording electrodes. In the SCI 3 

group, due to paralysis, this condition is guaranteed as there is no visible movement or force 4 

during the attempted hand movements. Moreover, because of the spinal lesion, the number of 5 

motor units that the SCI individuals can voluntarily recruit is low, leading to low background 6 

noise on the EMG. In contrast, the control group is likely to have a higher number of motor 7 

units that are recruited. Consequently, from a computational perspective, this would allow 8 

better detection of motor units by decomposition algorithms. Although we found a high 9 

number of motor units for two subjects (S1 and S6, Table 1) with different characteristics 10 

(e.g., age, injury), this was not observed for the rest of the SCI group. This might indicate a 11 

lower number of active motor units for the other subjects of this group.  12 

We further conducted an analysis comparing the filtered-original EMG and the reconstructed 13 

EMG. By reconstructing the EMG using the decomposed motor units, we could estimate the 14 

residual EMG activity, which is related to the motor units that were not decomposed. As 15 

anticipated, we found that the SCI subjects showed smaller RMSE values than the control 16 

group, suggesting that we likely decomposed the majority of the spared motor units present in 17 

the EMG signal. 18 

The discharge rate is highly variable across subjects and tasks, with three participants 19 

presenting a higher median discharge rate than the others. The discharge rate across tasks 20 

varies from 7-21 pps, and it is comparable with our control group. Even though the absence 21 

of visible movement, the motor unit discharges are still within the range for voluntary 22 

contractions in non-injured healthy young adults 22. This finding supports the idea that the 23 

discharge rate can be applied as user feedback for controlling the proposed interface. 24 

The coherence values indicate that the motor neurons share common synaptic inputs, and 25 

therefore, a few active motor neurons can be representative of a large pool of motor neurons 26 

and used for decoding. In the SCI group, we did not observe a clear pattern of coherence area 27 

across subjects. Some subjects present concurrently higher beta and gamma coherence than 28 

others, influencing the comparison across groups, with beta and gamma being higher than in 29 

the control group. Previous literature describes a possible decrease in beta, with reduced 30 

corticospinal input after SCI, and an increase in gamma coherence as compensatory23–26. 31 

However, a few potential limitations should be considered. First, our results should be 32 

validated by a larger number of participants. Second, the coherence values include both 33 
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12 

intramuscular and intermuscular coherence. Therefore, we are not able to distinguish the 1 

motor units from specific motor pools. Last, we could not perform motor-evoked potential 2 

measurements, and further electrophysiological measurements are necessary to assess the 3 

function and integrity of corticospinal pathways. 4 

Despite that, beta coherence is significantly associated with cortical control since peripheral 5 

beta coherence has been shown to be correlated with electroencephalography (EEG) cortical 6 

beta during voluntary movements27. In addition, beta activity has also been shown to be 7 

volitionally modulated through neurofeedback, which could be applied in training SCI 8 

participants27. Future experiments, including motor-evoked potentials28,29 and other 9 

experimental paradigms30,31 could highlight potential differences in descending pathways 10 

from the cortex and brainstem in controlling flexors and extensor motor units. 11 

Additionally, we did not observe any specific relations between the behavior of the active 12 

motor units (discharge rate, coherence) and the spasticity level, stretch reflex, and sensory 13 

level of the injury obtained from clinical examinations. However, this may be attributed to 14 

the variability between subjects and the relatively low number of tested patients (n=8). Since 15 

we have no more information on the residual sensory and motor pathways, we are limited to 16 

understand which characteristics could be related to this residual voluntary control. This 17 

should be examined in future studies. 18 

Regarding the number of motor units for each task, overall, we found at least 2 unique motor 19 

units per task, except for S3 (Figure 2, Table 1). The unique motor units are defined as motor 20 

units that are recruited only during one attempted movement. Once they are activated, we can 21 

be sure that the SCI individual is attempting a specific movement. This finding confirms that 22 

the motion intent of individuals with SCI can be decoded through our non-invasive interface. 23 

According to our real-time tests and previous work8, at least 1-2 unique motor units per task 24 

are necessary for our detection approach and to be able to decode more complex movements. 25 

The number of detected motor units for each task is crucial for the neural interface 26 

performance. The number of unique motor units influences the classification of specific 27 

motor dimensions (e.g., index vs middle finger tasks) and the stability of the control over 28 

time. It is important to note that a decreased error in the control has been observed with more 29 

decoded units due to the averaging effects caused by a large number of motor units firing 30 

synchronously32.  31 
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Finally, given the number of specific task-modulated motor units found, we developed a real-1 

time mapping of the discharge timings of motoneurons so that the patients could control a 2 

cursor on a monitor and a virtual hand, through an EMG-to-activation regression model. The 3 

tested patients performed both cursor and virtual hand tasks accurately and proportionally, 4 

demonstrating full voluntary control of the decoded neural activity with the ability to 5 

modulate the motor units' discharge rate. Interestingly, all the patients could proportionally 6 

control the cursor to 20% and 30% of maximal activation. For the control of a prosthetic 7 

device, the proportional control of a motor unit firing activity from 1% to 30% would be 8 

sufficient to obtain a large output of forces that could be controlled with, for example, a 9 

brushless motor. Therefore, this relatively low range should not indicate a problem in the 10 

method but rather a strength of the approach. 11 

Regarding the virtual hand control, this approach is based on a linear regressor model, 12 

including an adaptive filter40, that learns and maps combinations of EMG activity into the 13 

movement of the virtual hand. To build the regressor model, we defined artificial labels 14 

associated with the movements. Therefore, independent of the capabilities of the user, there is 15 

a possible linear superposition of the output labels used during the training of the machine 16 

learning model due to the similarity between EMG patterns related to the different 17 

movements. Consequently, some accessory movements of the virtual hand might occur. For 18 

this reason, the virtual hand control performance was evaluated simply by task 19 

completion33,34. 20 

Moreover, it is important to note that no extensive training was required from the subjects 21 

when performing the tasks. Each experiment across all patients did not last more than 3 22 

hours, and we used most of this time to place the electrodes and explain the tasks. Although 23 

we did not measure the time it took for the subjects to control the virtual hand and 2D cursor 24 

control, we estimate less than 30 minutes, even for the individuals with the highest level of 25 

wrist and hand paralysis. This time can be further improved once the subjects are trained with 26 

the tasks. A critical aspect of neural interfaces is the training time and intuitive use. The fact 27 

that the subjects learned the tasks in a short training time and were not under fatigue 28 

conditions demonstrates the feasibility of the presented approach.  29 

Our results indicate that motor- and sensory-complete SCI individuals maintain relevant 30 

neural activity as the output of the spinal cord circuits below the lesion and that they can 31 

accurately control this activity to regain hand function. Wearable muscle sensors are 32 

accessible, non-invasive, and have the potential to enhance the neural control of assistive 33 
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devices and increase the use of these devices. Therefore, this technology may compete in 1 

terms of clinical viability and efficacy with current invasive brain or spine implants for 2 

restoring hand function in complete SCI patients. While we cannot directly compare these 3 

approaches and further tests are needed, our results are similar in task achievement and 4 

performance for tasks such as grasping and other hand movements without requiring any 5 

surgery and complex models 35–37. Previous surveys show that a considerable number of 6 

tetraplegic and paraplegic patients are reluctant to have cortical implants3,38,39. Therefore, we 7 

argue that the proposed non-invasive approach might have the potential to be a clinically 8 

superior solution for the purpose of hand function restoration in SCI compared to the current 9 

invasive brain and spinal neural interfaces.  10 

One important constraint of our approach is that it is inherently linked to spared motor unit 11 

activity. Although we found spared motor units in all SCI individuals that were classified as 12 

motor complete, this technology may not be effective for subjects with higher levels of 13 

complete lesions (C1-C2) and muscles far from the level of the injury. A second constraint is 14 

that we calibrate our real-time session in an offline decomposition step by decoding the 15 

activity during a predefined task. This implies that the online decomposition is limited by the 16 

number of motor units recruited during this first step. Therefore, it is possible that motor units 17 

recruited during real-time tasks cannot be detected by our algorithms. This could be further 18 

improved by implementing algorithms that work in parallel with the real-time feedback of 19 

motor unit data to the patients. Importantly, for the classification of the different hand digit 20 

movements, our method is inherently bound to the number of unique motor units that can be 21 

found in a task. Furthermore, spasticity could also affect the efficiency of our approach. We 22 

observed that some motor units persist in firing even when the voluntary intent stops, and this 23 

should also be considered for the development of future algorithms. 24 

Limitations 25 

The current study focuses on HDsEMG measurements, motor unit behavior, and real-time 26 

control of motor unit activity. Therefore, this limits the investigation of the mechanisms 27 

underlying the residual voluntary activity found in SCI subjects. As spinal motor neurons 28 

execute the final motor commands, we have limited information on the spinal and supraspinal 29 

inputs that determine the volitional recruitment and modulation of motor unit firings in SCI. 30 

Additional electrophysiological and clinical tests, such as stimulation of the brain and spinal 31 

cord, might help infer some of the cortical and spinal pathways involved. Consequently, with 32 
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the current dataset, we cannot hypothesize about the origins of the synaptic inputs impinging 1 

on spinal motor neurons. Future tests should include further medical examinations concurrent 2 

with electrophysiological testing at the central and peripheral levels and evoked electrical and 3 

magnetic stimulation measurements. 4 

 5 

Conclusion 6 

In summary, our results confirm that SCI subjects can voluntarily control residual motor 7 

neuron activity. This activity provides enough information to decode movement intent of fine 8 

hand tasks. We demonstrated that the presented non-invasive technology could provide 9 

intuitive and effective control of the paralyzed hand, even many years after the injury. Our 10 

findings could be helpful in the investigation of movement control and recovery mechanisms 11 

after SCI through the tracking of the same motor unit across interventions. Therefore, this 12 

neural interface has a direct clinical translation for home and hospital use to restore and 13 

monitor the spared connections after traumatic SCI. Further work will focus on improving the 14 

online control based on motor unit activity related to the different movements and integration 15 

with assistive technology, such as exoskeletons and prosthetics. 16 
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Figure legends 20 

Figure 1 Overview of experimental setup and motor unit data analysis (A) Experimental 21 

setup consisting of 320 surface EMG electrodes placed in the forearm muscles. The 22 

movement instructions were guided by a virtual hand video displayed on a monitor in front of 23 

the subject. (B) A few example electrodes show raw HDsEMG signals while the subject 24 

attempts a grasp task (flexion and extension of the fingers, 0.5Hz). (C) Example of spatial 25 

mapping based on the root mean square values of the motor unit action potential. (D) Raster 26 

plot of motor unit firings (color-coded) identified during 10s of a grasp task. (E) Neural 27 

modules extracted for the same task, using factorization analysis. (F) Pearson correlation 28 

values (r) of the individual motor units with the two neural modules. (G) Neural modules' 29 

power spectra, showing a peak at the movement frequency (0.5Hz). (H) Coherence between 30 

cumulative spike trains of motor units across all tasks of subject 6 (S6), highlighting alpha 31 
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and beta bands. (I) Coherence peak across all tasks of S6 for delta (1-5Hz), alpha (6-12Hz), 1 

beta (15-30Hz), and gamma (31-80Hz) bandwidths. The dashed line in red in (H) and (I) 2 

indicates the coherence threshold (average coherence between 100-250Hz). 3 

 4 

Figure 2 Number of detected motor units and residual HDsEMG signals. (A) Example of 5 

raw HDsEMG signals for both groups, SCI (pink) and control (blue). The signals are shown 6 

in time windows of 20s and 1s. (B) Number of detected motor units across subjects for both 7 

groups, SCI and control (the dots are color-coded for the subjects of the SCI group). (C) 8 

Number of detected motor units across all tasks (the dots represent the tasks). (D) 9 

Distribution of the total number of motor units across groups, SCI in pink and control in blue. 10 

(E) Example of EMG channels from both SCI and control groups overlayed with the 11 

reconstructed EMG. (F) Root mean square error (RMSE) between EMG and reconstructed 12 

EMG, representing the residual EMG activity for both groups. ***p-value < 0.001. 13 

 14 

Figure 3 Discharge rate. (A) Average discharge rate across subjects for both groups (the 15 

dots are color-coded for the subjects of the SCI group). (B) Average discharge rate across all 16 

tasks (the dots represent the tasks). (C) Distribution of the total number of motor units across 17 

groups, SCI in pink and control in blue. 18 

 19 

Figure 4 Coherence. (A) Average coherence across all participants and all tasks for both 20 

groups, SCI in pink and control in blue. The black dashed line represents the coherence 21 

threshold (average coherence between 100-250Hz). Each curve in grey represents the 22 

coherence for one subject. (B-E) Area under coherence curve across all subjects and groups 23 

for delta (1-5Hz), alpha (6-12Hz), beta (15-30Hz), and gamma (31-80Hz) bands, respectively 24 

(the dots represent the tasks and are color-coded for the subjects of the SCI group). For each 25 

frequency band, we also show the group distribution of the coherence area values across all 26 

tasks and subjects. *0.01 < p-value < 0.05; **0.001 < p-value < 0.01. 27 

 28 

Figure 5 Real-time control of motor units and virtual hand. (A) Raster plot for all motor 29 

units identified for S6 during the respective task (color-coded) and the virtual hand 30 

movement trajectories (grey line). Note the task-modulated activity of the motor unit firing 31 
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patterns that encoded flexion and extension movements. (B) Real-time tasks for two 1 

participants (S1 and S6). (C) The participants were asked to follow a trajectory on a screen 2 

(green line) by attempting a grasp movement. The motor units were decomposed online, and 3 

the cumulative smoothed discharge rate (yellow line) was used as biofeedback. After a few 4 

seconds of training (D), the subjects could track the trajectories with high accuracy and at 5 

different target levels (C). (E) Cross-correlation coefficient (R) between the smoothed 6 

discharge rate and the requested tasks for 4 subjects. (F) After the online motor unit 7 

decomposition, we used a supervised machine learning method to proportionally control the 8 

movement of a virtual hand. Four out of six subjects were able to proportionally open and 9 

close the hand (G-I), and proportionally control in both movement directions (flexion and 10 

extension) the index finger (H-I). These subjects were able to control four degrees of 11 

freedom (DoFs) that corresponded to hand opening, closing, index flexion, and extension. 12 

These subjects were able to control four degrees of freedom (DoFs) that corresponded to 13 

hand opening, closing, index flexion, and extension. 14 

 15 

Figure 6 Examples of raw HDsEMG signals and spatial amplitude maps. We report 16 

examples of EMG signals for all subjects of the SCI group (S1-S8) during index and grasp 17 

tasks. The normalized signals from the three EMG channels with higher root mean square 18 

(RMS) values (in black) are presented during 5s, together with the virtual hand kinematics (in 19 

grey). For each subject, we show a spatial map based on the RMS values of each EMG 20 

channel. For brevity, we only present data from eight control group participants for 21 

comparison. 22 

  23 
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Table 1 Characteristics of research participants 1 

Subje
ct 

Age 
(year

s) 

Gend
er 

Inju
ry 

level 

AI
S 

Wrist 
moveme

nt 

Time 
since 
injur

y 
(year

s) 

Senso
ry 

levela 

Spastici
ty 

upper 

limb 
(MAS)b 

Note Stretch 
reflexes 
upper 

limb 

MUs/ta
skc 

Unique 
MUs/ta

skc 

S1 39 Male C6 B Yes 18.8 S5 0 Tenode

sis 

Absent 14.5 ± 2 10.1 ± 

2.3 

S2 34 Male C5 B Yes 9.1 C5 0 Tenode
sis 

B: 
reduced; 

BR, T: 
absent 

8.1 ± 1.2 5.7 ± 1.7 

S3 41 Female C6 B Yes 24.2 C6 0 Tenode
sis 

B, BR: 
exaggerat

ed; T: 
absent 

3.5 ± 1.4 0.8 ± 1.6 

S4 39 Female C5 A Yes 24.2 C5 0 - Normal 7.3 ± 2.3 3.7 ± 1.3 

S5 34 Male C6 A No 22.2 C6 0 - Absent 8.4 ± 0.7 8.3 ± 0.7 

S6 57 Male C5 A No 6.9 T3 Right: 2, 

left: 0 

Botox 

right 
arm 

Right: 

reduced; 
left: 

exaggerat
ed 

22.8 ± 

4.2 

21.1 ± 

3.2 

S7 44 Male C6 C No 18.2 C6 Right: 2, 
left: 0 

- Right: 
exaggerat

ed; left: 
reduced 

7.4 ± 2 4.4 ± 2.7 

S8 38 Female C5 B Yes 5.0 T1 1 - Absent 5.9 ± 1.2 4.8 ± 1.6 

AIS = ASIA Impairment Scale; B = Biceps reflex; BR = Brachioradialis reflex; MAS = Modified Ashworth Scale; T = Triceps reflex. 2 
aThe sensory level corresponds to lowest level with normal sensory function. 3 
bSpasticity was assessed for elbow flexion. 4 
cAverage number of motor units (MUs) identified per task (mean ± SD) for each subject  5 
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