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Abstract  

Purpose: AI (artificial intelligence)-based methodologies have become established tools for 

researchers and physicians in the entire field of ophthalmology. However, the potential of AI 

to optimize the refractive outcome of keratorefractive surgery by means of machine learning 

(ML)-based nomograms has not been exhausted yet. In this study, we wanted to 

comprehensively compare state-of-the-art conventional nomograms for Small-Incision-

Lenticule-Extraction (SMILE) with a novel ML-based nomogram regarding both their spherical 

and astigmatic predictability. 

Methods: A total of 1,342 eyes were analyzed for creation of three different nomograms based 

on a linear model (LM), a generalized additive mixed model (GAMM) and an artificial-

neuronal-network (ANN), respectively. A total of 16 patient- and treatment-related features 

were included. Each model was trained by 895 eyes and validated by the remaining 447 eyes. 

Predictability was assessed by the difference between attempted and achieved change in 

spherical equivalent (SE) and the difference between target induced astigmatism (TIA) and 

surgically induced astigmatism (SIA). The root mean squared error (RMSE) of each model was 

computed as a measure of overall model performance. 

Results: The RMSE of LM, GAMM and ANN were 0.355, 0.348 and 0.367 for the prediction 

of SE and 0.279, 0.278 and 0.290 for the astigmatic correction, respectively. By applying the 

created models, the theoretical yield of eyes within ±0.50 D of SE from target refraction 

improved from 82% to 83% (LM), 84% (GAMM) and 83% (ANN), respectively. Astigmatic 

outcomes showed an improvement of eyes within ±0.50 D from TIA from 90% to 93% (LM), 

93% (GAMM) and 92% (ANN), respectively. Subjective manifest refraction was the single 

most influential covariate in all models. 

Conclusion: Machine learning endorsed the validity of state-of-the-art linear and non-linear 

SMILE nomograms. However, improving the accuracy of subjective manifest refraction 

seems warranted for optimizing ±0.50 D SE predictability beyond an apparent methodological 

90% limit.
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Introduction 

In recent years, a surge in applications for artificial intelligence (AI) – particularly the subset 

of machine learning (ML) and its subset deep learning – has been observable in ophthalmology. 

AI-based methodologies have become established tools for researchers and physicians alike in 

the posterior segment, predominantly in diabetic retinopathy, macular and glaucomatous 

disease.1 In contrast, its employment in the anterior eye segment seems to bear more potential 

than currently realized.2  

 

In refractive surgery, ML has been successfully utilized to identify eyes with an increased risk 

for developing progressive post-laser in situ keratomileusis (LASIK) ectasia.3-5 Furthermore, a 

multiclass machine learning model has recently been created that can select the optimal laser 

surgery option between photorefractive keratectomy (PRK), LASIK and small incision 

lenticule extraction (SMILE) for a particular patient on an expert level.6 Moreover, ML has 

proven highly accurate in refining and optimizing intraocular lens power calculations in order 

to reduce “refractive surprises” after cataract or refractive lens exchange surgery.7, 8 In the near 

future, ML may also be beneficial for intraocular lens (IOL) power calculation in post-

keratorefractive surgery eyes, which still pose a particular challenge with variable refractive 

outcomes.9 

 

Surprisingly, the potential of AI to optimize the refractive outcome of keratorefractive surgery 

by means of ML-based nomograms has not been exhausted yet. Nomograms represent 

mathematical approaches for adjusting the surgical refractive correction in reference to the 

patient’s preoperative subjective refraction, and have been an integral component of refractive 

surgery since its very beginning.10 In the first study of its kind, Yang et al.11 used neural network 

computing as early as 1998 to determine PRK nomograms but failed in face of their small 

sample size of only 44 eyes. Taking the ML-based nomogram approach one step further, Cui 
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et al. conducted a larger scaled, prospective study of 510 myopic spherocylindrical SMILE 

treatments using a ML-based nomogram.12 Despite overall favorable predictability of the ML-

based nomogram, shortcomings of the model became evident for high myopic and astigmatic 

treatments owing to the limited number of those eyes in the sample that was used for training 

of the model (training dataset). Moreover, nomograms were analyzed only for their prediction 

of spherical equivalent (SE) of manifest refraction but not for the astigmatic component of the 

surgical correction. In addition, no actual comparison with well-established conventional 

statistical methods for refractive surgery nomograms was conducted. Instead, an undisclosed 

“surgeon nomogram” was used in the control group based on the surgeons’ personal 

experience.10, 13 

Hence, the aim of the present study was to comprehensively compare both the spherical and 

astigmatic predictability of a novel ML-based nomogram with state-of-the-art conventional 

refractive surgery nomograms in a big data sample of 1,342 SMILE treatments. 

 

Participants and Methods 

Patient Selection and Matching 

For the purpose of this cross-sectional study, our institution’s database was screened for patients 

who underwent uneventful SMILE for treatment of myopia or myopic astigmatism. A further 

inclusion criterion was a minimum age of 18 years as well as a minimum of 3 months of post-

surgical follow-up with complete records of all investigated parameters. The study protocol was 

approved by the ethics committee of the Ludwig-Maximilians-University (approval ID: 22-

1001). Consent to use their data for analysis and publication was obtained from all subjects and 

all study-related procedures adhered to the tenets outlined in the Declaration of Helsinki. 

 

SMILE surgery  
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All SMILE procedures were performed by one of two highly experienced corneal surgeons 

(M.D., S.G.P.) using the VisuMax 500-kHz femtosecond laser system (Carl Zeiss Meditec AG, 

Jena, Germany). The technical principles of the SMILE procedure have been outlined in detail 

previously.14 An optical zone between 6.0 mm and 7.0 mm was created. The intended cap 

diameter was 7.8-7.9 mm and the intended cap thickness ranged between 120 µm and 140 μm. 

For manual extraction of the refractive lenticule, a 4.00 mm incision was created by the 

femtosecond laser centered at the 135° position in right eyes and at the 45° position in left 

eyes.15  

Postoperatively, patients were prescribed dexamethasone 0.1% and tobramycin 0.3% eyedrops 

6 times daily for 1 week. Thereafter, dexamethasone 0.1% eyedrops were tapered over the 

course of 1 month starting with a 4 times daily (QID) regimen. Additionally, patients were 

encouraged to use preservative-free lubricating eye drops as often as individually required.  

 

Subjective Refraction & Visual Acuity Readings 

Subjective manifest and cycloplegic refraction were measured using the Jackson cross-cylinder 

method. Monocular and binocular uncorrected (UDVA) and best-corrected distance visual 

acuity (CDVA) was determined using standard ETDRS charts at 4 meters. 

 

Corneal Tomography  

Preoperative and postoperative corneal tomography scans were obtained using a high-

resolution rotating Scheimpflug camera system (Pentacam HR; Oculus Optikgeräte GmbH, 

Wetzlar, Germany). All measurements were obtained under standard scotopic ambience light 

conditions and subjects had to refrain from using eye drops one hour prior to scanning. Angle 

kappa was calculated as the offset between the corneal intercept with the Pentacam’s optical 

axis and the geometric pupil center.16 Apex-vertex (A-V) distance was calculated as the offset 
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between the corneal intercept with the Pentacam’s optical axis and the location of the maximum 

corneal curvature (Kmax).16 

 

Nomogram Generation & Statistical Analysis 

For generation and testing of the ML-based nomogram, the clinical data of 1,342 eyes of 686 

patients were used. A total of 895 eyes of 457 patients were used for model training (training 

dataset) and the remaining 447 eyes of 229 patients were held back as test the dataset for model 

validation (validation dataset). When splitting the dataset, it was ensured that paired eyes were 

included into the same dataset to avoid biased performance estimates for the different models, 

since similar responses to the laser treatment can be assumed for paired eyes. 

The following patient and SMILE treatment-related parameters were included for nomogram 

creation and analysis: (1) patient age at the time of treatment (years), (2) sex, (3) laterality, (4) 

mesopic pupil size (mm), (5) pachymetry (µm), (6) Kmax (D), (7) angle kappa (mm), (8) A-V 

distance (mm), (9) attempted change in manifest refraction spherical equivalent (SE; Diopters; 

D), (10) target induced astigmatism (TIA; D), (11) axis of refractive astigmatism (°), (12) 

optical zone size (mm), (13) cap thickness (µm), (14) minimum lenticule thickness (µm), (15) 

astigmatism axis deviation (defined as the angle between the refractive and topographic axis of 

astigmatism) and (16) astigmatism power deviation (defined as the difference between the 

refractive and topographic power of astigmatism). The two separate, dependent outcome 

variables were (1) the difference between attempted and achieved change in spherical 

equivalent (SE) and (2) the difference between target induced astigmatism (TIA) and 

surgically-induced astigmatism (SIA) according to the Alpins power vector methodology.13 To 

investigate the effect of the 16 different covariates on the two dependent outcome variables, we 

generated three different models, all of which were estimated using R (Version 4.2.1).17 The 

significance level for all analyses were set to p<0.05.   
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Firstly, a linear model (LM) was created in which the covariates were selected based on a p-

value smaller than 5%, which represents the most commonly and well-established approach for 

refractive surgery nomograms.10, 13 All potential 16 covariates were included into the LM and 

insignificant covariates were removed. The estimation was based on the default “lm” function 

of R. 

Secondly, a generalized additive mixed model (GAMM) was created.18, 19 GAMM represents a 

more elaborate linear model, in which the shape of the continuous covariates is data driven 

(using smooth functions / penalized B-Splines) and in which the presence of multiple 

measurements per patient (paired-eye data) are appropriately taken into account. We relied on 

the default estimation of the maximal degrees of freedom and used restricted maximum 

likelihood (REML) for optimizing the parameters. To account for partially paired-eye data we 

used random intercepts. The covariates are selected based on 10-fold cross-validation on the 

training dataset while ascertaining to not split paired-eye data. The estimation was based on the 

gamm4 package in R.20 

Thirdly, an artificial neural network (ANN), a deep learning method with three hidden layers 

was created. The parameters of the ANN (number of knots, activation function, penalty, 

optimizer and learning rate) were optimized during the training. The resulting model is 

described in the results section. As loss function we used mean squared error (“MSE”) and 

applied 25 epochs with a batch size of 32 and a 20% validation split. The estimation is based 

on the packages tensorflow and keras in R.21,22 The optimization of the ANN parameters was 

performed using the tfruns package of R.23 In the ANN, the continuous covariates are scaled in 

the interval [0,1] while the categorical variables are coded manually as multiple binary 

variables. The complete analysis code can be obtained from the following open source 

repository:  

https://ascgitlab.helmholtz-

muenchen.de/elmar.spiegel/optimizing_refractive_outcomes_of_smile.  

https://ascgitlab.helmholtz-muenchen.de/elmar.spiegel/optimizing_refractive_outcomes_of_smile
https://ascgitlab.helmholtz-muenchen.de/elmar.spiegel/optimizing_refractive_outcomes_of_smile
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After “training” of the three models based on the training dataset, their performance was 

evaluated on the validation data set. Using various covariates (see above) the models predict 

the residual refractive error after SMILE. The predicted refractive error after SMILE was then 

compared with the actually observed postoperative refractive error in the validation dataset. 

Based on these prediction errors, root mean squared error (RMSE) of each model were 

calculated as a measure of model performance. Moreover, kernel density estimator graphics 

and stacked bar graphs were created to compare the actually observed refractive outcome in the 

validation dataset with the (hypothetically achievable) outcome after correction by the 

respective models/nomograms. 

 

Results 

Surgical Outcomes 

A total of 1,342 eyes of 686 patients [364 (53%) females] with a mean age of 33 ± 8 [95% 

confidence interval (95% CI)  21-52] years were included into this analysis. Mean preoperative 

SE was -4.74 ± 1.89 D with a 95% CI of -8.38 to -1.62 D. Mean target induced astigmatism 

(TIA) was 0.91 ± 0.79 with a 95% CI of 0 to 3.00 D. The standard graphs for reporting 

keratorefractive surgery outcomes (in the complete dataset) are shown in Figure 1. 

 

Overall Predictive Quality of Models  

To compare the overall predictive quality of the three different models (LM, GAMM and 

ANN), the root mean squared error (RMSE) based on the validation data set was calculated. 

The results are displayed in Table 1. As compared to models based on a classical statistical 

approach (LM and GAMM), the ANN showed a propensity towards subpar predictive quality, 

which can be derived from the slightly higher RMSE values. Only minor differences can be 
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detected when comparing LM and GAMM, which is not surprising since both models contained 

nearly the same covariates (Table 2). 

 

Covariates and Effects  

Table 2 gives an overview of the covariates included into the LM and GAMM models and their 

respective effects on the model fit for SE outcomes. Including attempted SE in the GAMM 

improved the predictions the most (RMSE decreases from 0.410 to 0.385). Adding further 

covariates improved the model fit slightly further, however, the RMSE differences decreased 

for each additional covariate. The coefficients of the LM can be interpreted as usual. For 

example, a higher attempted SE by 1 D resulted in a 0.092 D higher predicted residual refractive 

error. Both classical models have in common that the predicted residual refractive error was 

higher in left eyes as compared to right eyes. The interpretation of a single covariate effect, 

however, only describes the direction in terms of higher or lower values for the predicted 

residual refractive error. To assess, whether the covariates confer a propensity to refractive 

under- or overcorrection, all relevant covariates as well as their interactions must be considered.  

In the GAMM, we enabled the algorithm to flexibly decide if the effect of a continuous 

variable to the response should be linear (as in the LM) or non-linear (any kind of smooth 

function). In most cases, the GAMM selected a linear trend. However, some effects were 

estimated as smooth curve (e.g. the effect of TIA). Details on the shape of these curves can be 

obtained from the supplementary Figures 1 and 2. 

 

Table 3 summarizes the covariates included into the LM and GAMM models and their 

respective effects on the model fit for astigmatic outcomes, which can be interpreted in the 

same way as Table 2. Including TIA in the GAMM determined the largest step in the 

improvement of the model (RMSE decreases from 0.326 to 0.277). Including further variables 
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did not further improve the model fit to this extent. Both classical statistical models included 

nearly the identical variables in similar order. In the LM, the coefficients of TIA and attempted 

SE were positive. This indicates that with higher attempted changes the predicted residual 

refractive error increased. The other variables astigmatism power deviation, astigmatism axis 

deviation and Kmax had a negative impact with increasing absolute values. In contrast to the 

models for spherical residual refractive error, the laterality showed no impact on astigmatic 

outcomes.  

 

From the ANN no classical parameters can be extracted but the complexity of the model can 

be expressed by the depth of the ANN. During the optimization of the ANN, several hyper-

parameters were optimized. In both models (spherical equivalent and astigmatic outcomes) an 

ANN with 3 hidden layers was selected with Rectified Linear Unit “relu” activation function. 

To prevent overfitting, the number of units was allowed to become 1 in the final layer and a 

penalty of 0.001 was added in the MSE loss. The ANN on spherical equivalent resulted in 8 8 

8 units for the hidden layers together with “adam” optimizer based on an initial learning rate of 

0.01. A similar ANN was selected during the optimization of the hyper-parameters with respect 

to astigmatism. Here, an ANN with 16 16 16 units was selected together with “relu” activation 

function and “adam” optimizer based on an initial learning rate of 0.01. These parameters 

express that high dimensional combinations of the input variables are necessary to fit the data 

appropriately. However, due to the limited number of input variables and the rather linear 

relationship of the variables it seems as if the ANN was not able to fully express its benefits. 

This can be observed from the slightly higher RMSE of the ANN models as compared to LM 

and GAMM. 

 

Optimizing Clinical Outcomes 
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Figure 2 shows the actual refractive outcomes as compared with the hypothetically achievable 

refractive outcomes when optimized by the LM, GAMM and the ANN, respectively. As also 

observable in Figure 1 (D and E), the original SMILE procedure without application of a 

nomogram resulted in an undercorrection of approximately 0.20 D of SE (Figure 2A). After 

correcting with LM or GAMM, the mean diminished towards 0 and also the variance decreased. 

Adjustment by ANN resulted in a similar variance, but with a small propensity towards 

overcorrection. Figure 2B shows the astigmatic outcome for the different models. Only subtle 

differences between models could be detected, as the original SMILE procedure without 

application of any nomogram already resulted in residual astigmatic errors with a mode of 

approximately 0.  

To further compare the models from a clinical perspective, the absolute values of the differences 

in SE as well as in astigmatic outcomes were categorized (Figure 3). By applying LM, GAMM 

and ANN, respectively, the proportion of eyes within ±0.50 D of SE from target refraction 

could be expanded from 82% to 83%, 84% and 83%, respectively (Figure 3A). In contrast, the 

yield of eyes within ±1.00 D of SE from target refraction could barely be extended from 98% 

to 99% with all three models alike. Regarding astigmatic outcomes (Figure 3B), applying LM, 

GAMM and ANN, respectively, resulted in an increased yield of eyes within ±0.50 D from TIA 

from 90% to 93%, 93% and 92%, respectively. Only GAMM yielded an improvement of eyes 

±1.00 D from 99% (without application of a nomogram) to 100%. 

 

Discussion 

Nomogram creation for optimization of functional outcomes is considered a sine qua non 

component of modern keratorefractive surgery. As Mrochen already put forward in 2006 and 

as later confirmed by Mosquera et al. in 2018, contemporary nomograms are nevertheless 

limited to a predictability of approximately 90% of eyes within ±0.50 D of SE from the intended 
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surgical refractive change.10,24 Linear regression and multiple linear regression analyses are 

considered the statistical gold standard methodologies in contemporary nomogram creation. 

Thereby, preoperative patient- (e.g. age) or treatment-related parameters (e.g. manifest 

refraction) are correlated with postoperative refractive outcomes in order to adjust the surgical 

refractive correction accordingly. This allows for systemic under- and overcorrection to be 

eliminated.10  

 

By applying these conventional nomograms, accurate refractive outcomes for treatment of 

myopia or myopic astigmatism can readily be achieved with the SMILE procedure. For SMILE, 

the refractive predictability reported in the peer-reviewed literature commonly varies from 80% 

to 87% of eyes within ±0.50 D SE of attempted SE.25,26 Unfortunately, however, in the vast 

majority of contemporary keratorefractive publications it is not stated whether or not any 

nomogram correction had been applied at all. As a positive example, using a conventional 

nomogram, SE predictability of SMILE was remarkably improved in a study by Liang et al.27 

By applying simple linear regression model, this group increased the ±0.50 D predictability 

from 70% to 86% and the ±1.00 D predictability from 97% to 98%. 

 

As the adoption of AI in IOL power calculation has allowed for enhanced refractive outcomes 

of intraocular lens surgery, it stands to reason as to whether similar advances could be achieved 

in keratorefractive surgery nomograms with the help of AI.7,8 In the first work of its kind, Cui 

et al. conducted a larger scaled, prospective study of 510 myopic SMILE treatments using a 

ML-based nomogram.12 However, methodological shortcomings of the study limited its power. 

The ANN nomogram, which was mainly affected by the preoperative manifest refraction (and 

the co-correlated amount of corneal stromal ablation), outperformed the comparator nomogram 

with regards to its ±0.50 D predictability (93% versus 83%). Unfortunately, however, it remains 

unclear how the conventional nomogram was created in detail. In addition, the study 
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investigated purely spherical predictability and neglected the astigmatic component of the 

keratorefractive correction. This resulted in higher dispersion of SE in their ML group. The 

authors concluded that the limited eye samples with high myopia and astigmatism, the 

maximum of the latter comprising -3.5 D, were the reason for this limitation.12 

 

Hence, the present study set out to create a multi-layer ANN to predict not only spherical but 

also cylindrical refractive outcomes in a substantial sample of 1,342 SMILE treatments. In a 

second step, the predictive power of the model was compared with state-of-the art conventional 

nomograms based on LM and GAMM. With all three models, an improvement in refractive 

predictability could be achieved with regards to both spherical and astigmatic predictability. 

Using the different models, the proportion of eyes within ±0.50 D SE from target refraction 

could be expanded from 82% to 83-84%. In respect to residual refractive cylinder, the yield of 

eyes within ±0.50 D from TIA could be increased from 90% to 92-93%. Potential reasons as to 

why ANN was unable to outperform the conventional statistical models may be found in the 

nature of the input variables. For a ML-algorithm as complex as ANN, a total of 16 input 

variables is still regarded as quite limited and the data inherited rather linear relationship. 

Hence, the ANN model may not have been able to fully utilize its benefits. Especially for 

astigmatic outcomes, only minimal differences between models could be detected. This was 

probably due to the “zero-inflated” nature of our data (residual astigmatic errors after SMILE 

showed a mode of approximately 0). 

 

The most influential covariates affecting the nomograms were the attempted SE regarding 

spherical predictability and TIA regarding cylindrical predictability. By adding further 

covariates to the models, the improvements in predictability were clinically negligible. Our 

findings are in good agreement with a recent theoretical study by Park et al. that compared a 

plethora of ML algorithms (e.g. decision tree, AdaBoost and ANN) for SMILE nomogram 
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development.28 Based on a dataset of 3,034 eyes, the authors identified preoperative manifest 

refraction as the single most influential parameter affecting the nomograms.  

 

Our data indicates that - even when incorporating leading-edge AI-based methodology - 

nomograms still fail to outperform the relatively simpler conventional regression-based models, 

neither are they able to approximate “perfect” predictability (i.e. 100% of eyes within ±0.50 D 

from target refraction). Since the preoperative manifest refraction seems to represent the most 

influential covariate in all aforementioned studies, it might be considered as potential weak 

spot. Manifest refraction is a highly subjective measurement depending on several incalculable 

factors, e.g. idiosyncrasies of the refracting examiner, fluctuations in the patients’ 

accommodation, in working distance, trial lens vertex distance or power of the trial lenses.10 In 

their study of 150 eyes that underwent keratorefractive surgery, Mosquera et al. computed an 

uncertainty in subjective refraction of approximately 0.6 D for a measurement which is 

commonly performed in 0.25 D steps. Hence, subjective refraction may be regarded as the 

major limitation to improving the accuracy of refractive surgery nomograms.10 Hence, future 

research effort should be dedicated towards precise and more “objective” determination of 

subjective manifest refraction. A promising approach was recently provided by the working 

group of Damien Gatinel.29 Fittingly, the authors showed that subjective spherocylindrical 

refraction could be accurately and precisely predicted by machine learning from polynomially 

decomposed ocular wavefront aberrometry data, which represents an objective measurement 

modality. 

 

Limitation to the present study may be found. First and foremost, the nomogram models 

developed in this study were not tested prospectively in a clinical setting. Instead, the models 

were virtually validated by assuming that the adjustment in the surgical treatment plan transfers 

linearly to the achieved surgically induced refractive change - an approach that is commonly 
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used when developing refractive surgery nomograms.10 Moreover, including further potentially 

relevant variables into the models (e.g. biomechanical corneal data) might have enabled more 

precise predictions. A strength of the study is the large sample size as well as the inclusion of 

combination-parameters (e.g. astigmatism axis deviation) as well as the elaborated statistical 

analysis including non-linear models and adjustment for paired-eye data. 

 

In conclusion, the present study of 1,342 SMILE treatments showed that machine learning 

endorses the validity of state-of-the-art conventional nomograms for adjustment of 

spherocylindrical refractive outcomes. However, it was unable to outperform their 

predictability. Improving the precision of the single most influential covariate in refractive 

surgery nomograms - subjective manifest refraction - seems warranted for optimizing refractive 

outcomes beyond the apparent methodological ±0.50 D accuracy limit of 90%. 
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Figures 

 

Figure 1: The nine standard graphs for reporting refractive surgery outcomes. 
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Figure 2: Comparison of kernel density estimates of refractive outcomes without model 

application and after optimization with the three models: linear model (LM), mixed model 

(GAMM) and artificial neural network (ANN). Residual spherical equivalent errors are 

displayed in the left figure (A), residual astigmatic errors are displayed on the right (B). 
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Figure 3: Categorized refractive outcomes without model application and after optimization 

with the three models: linear model (LM), mixed model (GAMM) and artificial neural network 

(ANN). Residual spherical equivalent errors are displayed in the left figure (A), Residual 

astigmatic errors are displayed on the right (B). 
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Supplementary Figure 1: GAMM-estimated smooth curves of the covariates on the response 

“spherical equivalent”. The curves are per definition centered around 0 and only their shapes 

are interpretable (e.g. with increasing TIA the predicted difference between attempted and 

achieved increases).  
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Supplementary Figure 2: GAMM-estimated smooth curves of the covariates on the response 

astigmatism. The curves are per definition centered around 0 and only their shapes are 

interpretable (e.g. with increasing TIA the predicted difference between SIA and TIA 

increases).  
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Tables: 

Table 1: Root mean square error (RMSE) of the models in the validation data set. 

Model RMSE spherical equivalent RMSE astigmatism 

ANN 0.367 0.290 

GAMM 0.348 0.278 

LM 0.355 0.279 

 

GAMM= generalized additive mixed model; LM=linear model; RMSE=root mean square error 
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Table 2: Root mean square error (RMSE) of the selection process of the mixed model 

(GAMM) and coefficients and p-values of the linear model (LM) for spherical equivalent 

outcomes 

 GAMM  LM 

Variables RMSE Coefficient p-value (exact) 

(Intercept) 0.410 -0.563 p=0.0118 (1.18e-02) 

Attempted SE [D] 0.385 0.092 p<0.0001 (1.86e-32) 

Laterality [OS] 0.380 0.127 p<0.0001 (5.11e-07) 

TIA [D] 0.377 n.i.   

Cap thickness [≥ 135 µm] 0.376 0.026 p=0.375 (3.75e-01) 

Cap thickness [≤ 125 µm] 0.376 0.139 p=0.0012 (1.22e-03) 

Pachymetry [µm] 0.375 1.248 p=0.0024 (2.47e-03) 

Astigmatism axis deviation 

[Rx vs. topography] 

0.375 n.i.   

Optical zone [> 6.5 mm] n.i. -0.091 p=0.0479 (4.79e-02) 

Optical zone [< 6.5 mm] n.i. 0.104 p=0.328 (3.28e-01) 

 

D=Diopter; GAMM= generalized additive mixed model; LM=linear model; n.i.=not included 

in the model due to variable selection; RMSE=root mean square error; Rx=Refraction; 

SE=spherical equivalent; TIA=target induced astigmatism 
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Table 3: Root mean square error (RMSE) of the selection process of the mixed model 

(GAMM) and coefficients and p-values of the linear model (LM) for astigmatic outcomes 

 GAMM  LM  

Variables RMSE Coefficient p-value (exact) 

(Intercept) 0.326 0.556 p=0.0472 (4.72e-02) 

TIA [D] 0.277 0.237 p<0.0001 (5.20e-56) 

Astigmatism power 

deviation [Rx vs. 

topography] 

0.274 -0.112 p<0.0001 (2.41e-06) 

Astigmatism axis 

deviation [Rx vs. 

topography] 

0.272 -0.163 p<0.0001 (7.99e-07) 

Attempted SE [D] 0.271 0.014 p=0.0057 (5.65e-03) 

Kmax [D] 0.270 -0.014 p=0.0255 (2.55e-02) 

 

D=Diopter; GAMM= generalized additive mixed model; Kmax=location of the maximum 

corneal curvature; LM=linear model; RMSE=root mean square error; Rx=refraction; 

SE=spherical equivalent; TIA=target induced astigmatism  
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Supplementary File 1 

The complete statistical analysis code and instructional README file can be obtained via 

https://ascgitlab.helmholtz-

muenchen.de/elmar.spiegel/optimizing_refractive_outcomes_of_smile  
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